Beispiel #1
0
static int lpx_datagram_user_disconnect( struct socket *so )
{
//    int s;
    struct lpxpcb *lpxp = sotolpxpcb(so);
	
    if (lpx_nullhost(lpxp->lpxp_faddr))
        return (ENOTCONN);
//    s = splnet();
    Lpx_PCB_disconnect(lpxp);
//    splx(s);
    soisdisconnected(so);
	
	// Unlock. sock_inject_data_in will lock. 
	lck_mtx_assert(so->so_proto->pr_domain->dom_mtx, LCK_MTX_ASSERT_OWNED);
	lck_mtx_unlock(so->so_proto->pr_domain->dom_mtx);
	
	// It will call sbappend and sorwakeup.
	sock_retain((socket_t)so);
	
	lck_mtx_assert(so->so_proto->pr_domain->dom_mtx, LCK_MTX_ASSERT_NOTOWNED);
	lck_mtx_lock(so->so_proto->pr_domain->dom_mtx);
	
	lpxp->lpxp_flags |= LPXP_NEEDRELEASE;
	
    return (0);
}
Beispiel #2
0
/*
 * User issued close, and wish to trail through shutdown states:
 * if never received SYN, just forget it.  If got a SYN from peer,
 * but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN.
 * If already got a FIN from peer, then almost done; go to LAST_ACK
 * state.  In all other cases, have already sent FIN to peer (e.g.
 * after PRU_SHUTDOWN), and just have to play tedious game waiting
 * for peer to send FIN or not respond to keep-alives, etc.
 * We can let the user exit from the close as soon as the FIN is acked.
 */
static struct tcpcb *
tcp_usrclosed(struct tcpcb *tp)
{

	switch (tp->t_state) {

	case TCPS_CLOSED:
	case TCPS_LISTEN:
		tp->t_state = TCPS_CLOSED;
		tp = tcp_close(tp);
		break;

	case TCPS_SYN_SENT:
	case TCPS_SYN_RECEIVED:
		tp->t_flags |= TF_NEEDFIN;
		break;

	case TCPS_ESTABLISHED:
		tp->t_state = TCPS_FIN_WAIT_1;
		break;

	case TCPS_CLOSE_WAIT:
		tp->t_state = TCPS_LAST_ACK;
		break;
	}
	if (tp && tp->t_state >= TCPS_FIN_WAIT_2) {
		soisdisconnected(tp->t_inpcb->inp_socket);
		/* To prevent the connection hanging in FIN_WAIT_2 forever. */
		if (tp->t_state == TCPS_FIN_WAIT_2) {
			tcp_callout_reset(tp, tp->tt_2msl, tcp_maxidle,
			    tcp_timer_2msl);
		}
	}
	return (tp);
}
Beispiel #3
0
/* FUNCTION: tcp_close()
 *
 * Close a TCP control block:
 *   discard all space held by the tcp
 *   discard internet protocol block
 *   wake up any sleepers
 *
 * 
 * PARAM1: struct tcpcb *tp
 *
 * RETURNS: 
 */
struct tcpcb * 
tcp_close(struct tcpcb *tp)
{
   struct tcpiphdr *t;
   struct inpcb *inp = tp->t_inpcb;
   struct socket *so = inp->inp_socket;

   t = tp->seg_next;
   while (t != (struct tcpiphdr *)tp) 
   {
      struct mbuf *m;

      t = (struct tcpiphdr *)t->ti_next;
      m = dtom(t->ti_prev);
      remque(t->ti_prev);
      M_FREEM(m);
   }
   if (tp->t_template)
      TPH_FREE(tp->t_template);
   TCB_FREE(tp);
   inp->inp_ppcb = (char *)NULL;
   soisdisconnected(so);
   in_pcbdetach(inp);
   tcpstat.tcps_closed++;
   return ((struct tcpcb *)NULL);
}
Beispiel #4
0
static void
udp6_close(struct socket *so)
{
	struct inpcb *inp;
	struct inpcbinfo *pcbinfo;

	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
	inp = sotoinpcb(so);
	KASSERT(inp != NULL, ("udp6_close: inp == NULL"));

#ifdef INET
	if (inp->inp_vflag & INP_IPV4) {
		struct pr_usrreqs *pru;

		pru = inetsw[ip_protox[IPPROTO_UDP]].pr_usrreqs;
		(*pru->pru_disconnect)(so);
		return;
	}
#endif
	INP_WLOCK(inp);
	if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
		INP_HASH_WLOCK(pcbinfo);
		in6_pcbdisconnect(inp);
		inp->in6p_laddr = in6addr_any;
		INP_HASH_WUNLOCK(pcbinfo);
		soisdisconnected(so);
	}
	INP_WUNLOCK(inp);
}
Beispiel #5
0
static void
udp6_abort(struct socket *so)
{
	struct inpcb *inp;
	struct inpcbinfo *pcbinfo;

	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
	inp = sotoinpcb(so);
	KASSERT(inp != NULL, ("udp6_abort: inp == NULL"));

	INP_WLOCK(inp);
#ifdef INET
	if (inp->inp_vflag & INP_IPV4) {
		struct pr_usrreqs *pru;
		uint8_t nxt;

		nxt = (inp->inp_socket->so_proto->pr_protocol == IPPROTO_UDP) ?
		    IPPROTO_UDP : IPPROTO_UDPLITE;
		INP_WUNLOCK(inp);
		pru = inetsw[ip_protox[nxt]].pr_usrreqs;
		(*pru->pru_abort)(so);
		return;
	}
#endif

	if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
		INP_HASH_WLOCK(pcbinfo);
		in6_pcbdisconnect(inp);
		inp->in6p_laddr = in6addr_any;
		INP_HASH_WUNLOCK(pcbinfo);
		soisdisconnected(so);
	}
	INP_WUNLOCK(inp);
}
static int
natm_usr_disconnect(struct socket *so)
{
	struct natmpcb *npcb;
	struct atmio_closevcc cl;
	struct ifnet *ifp;
	int error = 0;

	npcb = (struct natmpcb *)so->so_pcb;
	KASSERT(npcb != NULL, ("natm_usr_disconnect: npcb == NULL"));

	NATM_LOCK();
	if ((npcb->npcb_flags & NPCB_CONNECTED) == 0) {
		NATM_UNLOCK();
		printf("natm: disconnected check\n");
		return (EIO);
	}
	ifp = npcb->npcb_ifp;

	/*
	 * Disable rx.
	 *
	 * XXXRW: Eventually desirable to hold mutex over ioctl?
	 */
	cl.vpi = npcb->npcb_vpi;
	cl.vci = npcb->npcb_vci;
	NATM_UNLOCK();
	if (ifp->if_ioctl != NULL)
		ifp->if_ioctl(ifp, SIOCATMCLOSEVCC, (caddr_t)&cl);
	soisdisconnected(so);
	return (error);
}
Beispiel #7
0
struct tcpcb * 
tcp_usrclosed(struct tcpcb * tp)
{

   switch (tp->t_state) 
   {
   case TCPS_CLOSED:
   case TCPS_LISTEN:
   case TCPS_SYN_SENT:
      tp->t_state = TCPS_CLOSED;
      tp = tcp_close(tp);
      break;

   case TCPS_SYN_RECEIVED:
   case TCPS_ESTABLISHED:
      tp->t_state = TCPS_FIN_WAIT_1;
      break;

   case TCPS_CLOSE_WAIT:
      tp->t_state = TCPS_LAST_ACK;
      break;
   }
   if (tp && tp->t_state >= TCPS_FIN_WAIT_2)
      soisdisconnected(tp->t_inpcb->inp_socket);
   return (tp);
}
Beispiel #8
0
static void
at_pcbdetach( struct socket *so, struct ddpcb *ddp)
{
    soisdisconnected( so );
    so->so_pcb = 0;
    sofree( so );

    /* remove ddp from ddp_ports list */
    if ( ddp->ddp_lsat.sat_port != ATADDR_ANYPORT &&
	    ddp_ports[ ddp->ddp_lsat.sat_port - 1 ] != NULL ) {
	if ( ddp->ddp_pprev != NULL ) {
	    ddp->ddp_pprev->ddp_pnext = ddp->ddp_pnext;
	} else {
	    ddp_ports[ ddp->ddp_lsat.sat_port - 1 ] = ddp->ddp_pnext;
	}
	if ( ddp->ddp_pnext != NULL ) {
	    ddp->ddp_pnext->ddp_pprev = ddp->ddp_pprev;
	}
    }

    if ( ddp->ddp_route.ro_rt ) {
	rtfree( ddp->ddp_route.ro_rt );
    }

    if ( ddp->ddp_prev ) {
	ddp->ddp_prev->ddp_next = ddp->ddp_next;
    } else {
	ddpcb = ddp->ddp_next;
    }
    if ( ddp->ddp_next ) {
	ddp->ddp_next->ddp_prev = ddp->ddp_prev;
    }
    FREE(ddp, M_PCB);
}
Beispiel #9
0
static void
l2cap_disconnected(void *arg, int err)
{
	struct socket *so = arg;

	DPRINTF("Disconnected (%d)\n", err);

	so->so_error = err;
	soisdisconnected(so);
}
Beispiel #10
0
static void
rfcomm_disconnected(void *arg, int err)
{
	struct socket *so = arg;

	KASSERT(so != NULL);
	DPRINTF("Disconnected\n");

	so->so_error = err;
	soisdisconnected(so);
}
Beispiel #11
0
/*
 * Do local shutdown processing.
 * In this case, that involves making sure the socket
 * knows we should be shutting down.
 */
static int
ngs_shutdown(node_p node)
{
	struct ngsock *const priv = NG_NODE_PRIVATE(node);
	struct ngpcb *const dpcbp = priv->datasock;
	struct ngpcb *const pcbp = priv->ctlsock;

	if (dpcbp != NULL)
		soisdisconnected(dpcbp->ng_socket);

	if (pcbp != NULL)
		soisdisconnected(pcbp->ng_socket);

	mtx_lock(&priv->mtx);
	priv->node = NULL;
	NG_NODE_SET_PRIVATE(node, NULL);
	ng_socket_free_priv(priv);

	NG_NODE_UNREF(node);
	return (0);
}
Beispiel #12
0
static int lpx_USER_disconnect( struct socket *so )
{
    int s;
    struct lpxpcb *lpxp = sotolpxpcb(so);

    if (lpx_nullhost(lpxp->lpxp_faddr))
        return (ENOTCONN);
    s = splnet();
    Lpx_PCB_disconnect(lpxp);
    splx(s);
    soisdisconnected(so);
    return (0);
}
Beispiel #13
0
static void
ddp_close(struct socket *so)
{
	struct ddpcb	*ddp;
	
	ddp = sotoddpcb(so);
	KASSERT(ddp != NULL, ("ddp_close: ddp == NULL"));

	DDP_LOCK(ddp);
	at_pcbdisconnect(ddp);
	DDP_UNLOCK(ddp);
	soisdisconnected(so);
}
Beispiel #14
0
static int lpx_USER_abort( struct socket *so )
{
    int s;
    struct lpxpcb *lpxp = sotolpxpcb(so);

    s = splnet();
    Lpx_PCB_detach(lpxp);
    splx(s);
        
        sofree(so);

    soisdisconnected(so);
    return (0);
}
Beispiel #15
0
static int
rfcomm_abort(struct socket *so)
{
	struct rfcomm_dlc *pcb = so->so_pcb;

	KASSERT(solocked(so));

	if (pcb == NULL)
		return EINVAL;

	rfcomm_disconnect_pcb(pcb, 0);
	soisdisconnected(so);
	rfcomm_detach(so);
	return 0;
}
Beispiel #16
0
int  ddp_pru_abort(struct socket *so)
{
	int s;
	struct atpcb *pcb = (struct atpcb *)((so)->so_pcb);

	if (pcb == NULL) 
		return (EINVAL);

	soisdisconnected(so);
	s = splnet();
	at_pcbdetach(pcb);
	splx(s);

	return 0;
}
Beispiel #17
0
static int
ddp_abort(struct socket *so)
{
	struct ddpcb	*ddp;
	int		s;
	
	ddp = sotoddpcb( so );
	if ( ddp == NULL ) {
		return(EINVAL);
	}
	soisdisconnected( so );
	s = splnet();
	at_pcbdetach( so, ddp );
	splx(s);
	return(0);
}
Beispiel #18
0
/*
 * User issued close, and wish to trail through shutdown states:
 * if never received SYN, just forget it.  If got a SYN from peer,
 * but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN.
 * If already got a FIN from peer, then almost done; go to LAST_ACK
 * state.  In all other cases, have already sent FIN to peer (e.g.
 * after PRU_SHUTDOWN), and just have to play tedious game waiting
 * for peer to send FIN or not respond to keep-alives, etc.
 * We can let the user exit from the close as soon as the FIN is acked.
 */
static void
tcp_usrclosed(struct tcpcb *tp)
{

	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
	INP_WLOCK_ASSERT(tp->t_inpcb);

	switch (tp->t_state) {
	case TCPS_LISTEN:
		tcp_offload_listen_close(tp);
		/* FALLTHROUGH */
	case TCPS_CLOSED:
		tp->t_state = TCPS_CLOSED;
		tp = tcp_close(tp);
		/*
		 * tcp_close() should never return NULL here as the socket is
		 * still open.
		 */
		KASSERT(tp != NULL,
		    ("tcp_usrclosed: tcp_close() returned NULL"));
		break;

	case TCPS_SYN_SENT:
	case TCPS_SYN_RECEIVED:
		tp->t_flags |= TF_NEEDFIN;
		break;

	case TCPS_ESTABLISHED:
		tp->t_state = TCPS_FIN_WAIT_1;
		break;

	case TCPS_CLOSE_WAIT:
		tp->t_state = TCPS_LAST_ACK;
		break;
	}
	if (tp->t_state >= TCPS_FIN_WAIT_2) {
		soisdisconnected(tp->t_inpcb->inp_socket);
		/* Prevent the connection hanging in FIN_WAIT_2 forever. */
		if (tp->t_state == TCPS_FIN_WAIT_2) {
			int timeout;

			timeout = (tcp_fast_finwait2_recycle) ? 
			    tcp_finwait2_timeout : tcp_maxidle;
			tcp_timer_activate(tp, TT_2MSL, timeout);
		}
	}
}
Beispiel #19
0
static int
natm_usr_disconnect(struct socket *so)
{
    struct natmpcb *npcb;
    struct sockaddr_natm *snatm;
    struct atm_pseudoioctl api;
    struct atm_pseudohdr *aph;
    struct ifnet *ifp;
    int error = 0;
    int s2, s = SPLSOFTNET();
    int proto = so->so_proto->pr_protocol;

    npcb = (struct natmpcb *) so->so_pcb;
    if (npcb == NULL) {
	error = EINVAL;
	goto out;
    }

    if ((npcb->npcb_flags & NPCB_CONNECTED) == 0) {
        printf("natm: disconnected check\n");
        error = EIO;
	goto out;
    }
    ifp = npcb->npcb_ifp;

    /*
     * disable rx
     */

    ATM_PH_FLAGS(&api.aph) = ATM_PH_AAL5;
    ATM_PH_VPI(&api.aph) = npcb->npcb_vpi;
    ATM_PH_SETVCI(&api.aph, npcb->npcb_vci);
    api.rxhand = npcb;
    s2 = splimp();
    if (ifp->if_ioctl != NULL)
	ifp->if_ioctl(ifp, SIOCATMDIS, (caddr_t) &api);
    splx(s2);

    npcb_free(npcb, NPCB_REMOVE);
    soisdisconnected(so);

 out:
    splx(s);
    return (error);
}
Beispiel #20
0
/*
 * NOTE: (so) is referenced from soabort*() and netmsg_pru_abort()
 *	 will sofree() it when we return.
 */
static void
udp6_abort(netmsg_t msg)
{
	struct socket *so = msg->abort.base.nm_so;
	struct inpcb *inp;
	int error;

	inp = so->so_pcb;
	if (inp) {
		soisdisconnected(so);

		in6_pcbdetach(inp);
		error = 0;
	} else {
		error = EINVAL;
	}
	lwkt_replymsg(&msg->abort.base.lmsg, error);
}
Beispiel #21
0
/*
 * Initiate connection to peer.
 * Create a template for use in transmissions on this connection.
 * Enter SYN_SENT state, and mark socket as connecting.
 * Start keep-alive timer, and seed output sequence space.
 * Send initial segment on connection.
 */
static void
tcp_usr_connect(netmsg_t msg)
{
	struct socket *so = msg->connect.base.nm_so;
	struct sockaddr *nam = msg->connect.nm_nam;
	struct thread *td = msg->connect.nm_td;
	int error = 0;
	struct inpcb *inp;
	struct tcpcb *tp;
	struct sockaddr_in *sinp;

	COMMON_START(so, inp, 0);

	/*
	 * Must disallow TCP ``connections'' to multicast addresses.
	 */
	sinp = (struct sockaddr_in *)nam;
	if (sinp->sin_family == AF_INET
	    && IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) {
		error = EAFNOSUPPORT;
		goto out;
	}

	if (!prison_remote_ip(td, (struct sockaddr*)sinp)) {
		error = EAFNOSUPPORT; /* IPv6 only jail */
		goto out;
	}

	tcp_connect(msg);
	/* msg is invalid now */
	return;
out:
	if (msg->connect.nm_m) {
		m_freem(msg->connect.nm_m);
		msg->connect.nm_m = NULL;
	}
	if (msg->connect.nm_flags & PRUC_HELDTD)
		lwkt_rele(td);
	if (error && (msg->connect.nm_flags & PRUC_ASYNC)) {
		so->so_error = error;
		soisdisconnected(so);
	}
	lwkt_replymsg(&msg->lmsg, error);
}
Beispiel #22
0
static void
udp_close(struct socket *so)
{
	struct inpcb *inp;
	struct inpcbinfo *pcbinfo;

	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
	inp = sotoinpcb(so);
	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
	INP_WLOCK(inp);
	if (inp->inp_faddr.s_addr != INADDR_ANY) {
		INP_HASH_WLOCK(pcbinfo);
		in_pcbdisconnect(inp);
		inp->inp_laddr.s_addr = INADDR_ANY;
		INP_HASH_WUNLOCK(pcbinfo);
		soisdisconnected(so);
	}
	INP_WUNLOCK(inp);
}
Beispiel #23
0
int  ddp_pru_disconnect(struct socket *so)
{

	int s, error = 0;
	at_ddp_t *ddp = NULL;
	struct atpcb *pcb = (struct atpcb *)((so)->so_pcb);

	if (pcb == NULL) 
		return (EINVAL);

	if ((so->so_state & SS_ISCONNECTED) == 0) 
		return ENOTCONN;

	soisdisconnected(so);
	s = splnet();
	at_pcbdetach(pcb);
	splx(s);

	return error;
}
Beispiel #24
0
static int
ddp_disconnect(struct socket *so)
{
	struct ddpcb *ddp;
	
	ddp = sotoddpcb(so);
	KASSERT(ddp != NULL, ("ddp_disconnect: ddp == NULL"));

	DDP_LOCK(ddp);
	if (ddp->ddp_fsat.sat_addr.s_node == ATADDR_ANYNODE) {
		DDP_UNLOCK(ddp);
		return (ENOTCONN);
	}

	at_pcbdisconnect(ddp);
	ddp->ddp_fsat.sat_addr.s_node = ATADDR_ANYNODE;
	DDP_UNLOCK(ddp);
	soisdisconnected(so);
	return (0);
}
Beispiel #25
0
static int
ddp_disconnect(struct socket *so)
{

	struct ddpcb	*ddp;
	int		s;
	
	ddp = sotoddpcb( so );
	if ( ddp == NULL ) {
	    return( EINVAL);
	}
	if ( ddp->ddp_fsat.sat_addr.s_node == ATADDR_ANYNODE ) {
	    return(ENOTCONN);
	}

	s = splnet();
	at_pcbdisconnect( ddp );
	ddp->ddp_fsat.sat_addr.s_node = ATADDR_ANYNODE;
	splx(s);
	soisdisconnected( so );
	return(0);
}
Beispiel #26
0
/*
 * Drop connection, reporting
 * the specified error.
 */
void
ipx_drop(struct ipxpcb *ipxp, int errno)
{
	struct socket *so = ipxp->ipxp_socket;

	IPX_LIST_LOCK_ASSERT();
	IPX_LOCK_ASSERT(ipxp);

	/*
	 * someday, in the IPX world
	 * we will generate error protocol packets
	 * announcing that the socket has gone away.
	 *
	 * XXX Probably never. IPX does not have error packets.
	 */
	/*if (TCPS_HAVERCVDSYN(tp->t_state)) {
		tp->t_state = TCPS_CLOSED;
		tcp_output(tp);
	}*/
	so->so_error = errno;
	ipx_pcbdisconnect(ipxp);
	soisdisconnected(so);
}
Beispiel #27
0
static int lpx_datagram_user_abort( struct socket *so )
{
//	int s;
    struct lpxpcb *lpxp = sotolpxpcb(so);
	
	if (lpxp == 0)
		panic("lpx_datagram_user_abort: so %x null lpxpcb\n", so);
	
	soisdisconnected(so);

	Lpx_PCB_detach(lpxp);

//   s = splnet();
//	sofree(so);

//    splx(s);

	so->so_flags |= SOF_PCBCLEARING;

	Lpx_PCB_dispense(lpxp);
	
    return (0);
}
Beispiel #28
0
int natm_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    struct mbuf *control, struct proc *p)
{
  int error = 0, s, s2;
  struct natmpcb *npcb;
  struct sockaddr_natm *snatm;
  struct atm_pseudoioctl api;
  struct atm_pseudohdr *aph;
  struct atm_rawioctl ario;
  struct ifnet *ifp;
  int proto = so->so_proto->pr_protocol;

  s = splsoftnet();

  npcb = (struct natmpcb *) so->so_pcb;

  if (npcb == NULL && req != PRU_ATTACH) {
    error = EINVAL;
    goto done;
  }
    

  switch (req) {
    case PRU_ATTACH:			/* attach protocol to up */

      if (npcb) {
	error = EISCONN;
	break;
      }

      if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
	if (proto == PROTO_NATMAAL5) 
          error = soreserve(so, natm5_sendspace, natm5_recvspace);
	else
          error = soreserve(so, natm0_sendspace, natm0_recvspace);
        if (error)
          break;
      }

      so->so_pcb = (caddr_t) (npcb = npcb_alloc(M_WAITOK));
      npcb->npcb_socket = so;

      break;

    case PRU_DETACH:			/* detach protocol from up */

      /*
       * we turn on 'drain' *before* we sofree.
       */

      npcb_free(npcb, NPCB_DESTROY);	/* drain */
      so->so_pcb = NULL;
      sofree(so);

      break;

    case PRU_CONNECT:			/* establish connection to peer */

      /*
       * validate nam and npcb
       */

      if (nam->m_len != sizeof(*snatm)) {
        error = EINVAL;
	break;
      }
      snatm = mtod(nam, struct sockaddr_natm *);
      if (snatm->snatm_len != sizeof(*snatm) ||
		(npcb->npcb_flags & NPCB_FREE) == 0) {
	error = EINVAL;
	break;
      }
      if (snatm->snatm_family != AF_NATM) {
	error = EAFNOSUPPORT;
	break;
      }

      snatm->snatm_if[IFNAMSIZ-1] = '\0';  /* XXX ensure null termination
						since ifunit() uses strcmp */

      /*
       * convert interface string to ifp, validate.
       */

      ifp = ifunit(snatm->snatm_if);
      if (ifp == NULL || (ifp->if_flags & IFF_RUNNING) == 0) {
	error = ENXIO;
	break;
      }
      if (ifp->if_output != atm_output) {
	error = EAFNOSUPPORT;
	break;
      }


      /*
       * register us with the NATM PCB layer
       */

      if (npcb_add(npcb, ifp, snatm->snatm_vci, snatm->snatm_vpi) != npcb) {
        error = EADDRINUSE;
        break;
      }

      /*
       * enable rx
       */

      ATM_PH_FLAGS(&api.aph) = (proto == PROTO_NATMAAL5) ? ATM_PH_AAL5 : 0;
      ATM_PH_VPI(&api.aph) = npcb->npcb_vpi;
      ATM_PH_SETVCI(&api.aph, npcb->npcb_vci);
      api.rxhand = npcb;
      s2 = splnet();
      if (ifp->if_ioctl == NULL || 
	  ifp->if_ioctl(ifp, SIOCATMENA, (caddr_t) &api) != 0) {
	splx(s2);
	npcb_free(npcb, NPCB_REMOVE);
        error = EIO;
	break;
      }
      splx(s2);

      soisconnected(so);

      break;

    case PRU_DISCONNECT:		/* disconnect from peer */

      if ((npcb->npcb_flags & NPCB_CONNECTED) == 0) {
        printf("natm: disconnected check\n");
        error = EIO;
	break;
      }
      ifp = npcb->npcb_ifp;

      /*
       * disable rx
       */

      ATM_PH_FLAGS(&api.aph) = ATM_PH_AAL5;
      ATM_PH_VPI(&api.aph) = npcb->npcb_vpi;
      ATM_PH_SETVCI(&api.aph, npcb->npcb_vci);
      api.rxhand = npcb;
      s2 = splnet();
      if (ifp->if_ioctl != NULL)
	  ifp->if_ioctl(ifp, SIOCATMDIS, (caddr_t) &api);
      splx(s2);

      npcb_free(npcb, NPCB_REMOVE);
      soisdisconnected(so);

      break;

    case PRU_SHUTDOWN:			/* won't send any more data */
      socantsendmore(so);
      break;

    case PRU_SEND:			/* send this data */
      if (control && control->m_len) {
	m_freem(control);
	m_freem(m);
	error = EINVAL;
	break;
      }

      /*
       * send the data.   we must put an atm_pseudohdr on first
       */

      M_PREPEND(m, sizeof(*aph), M_WAITOK);
      aph = mtod(m, struct atm_pseudohdr *);
      ATM_PH_VPI(aph) = npcb->npcb_vpi;
      ATM_PH_SETVCI(aph, npcb->npcb_vci);
      ATM_PH_FLAGS(aph) = (proto == PROTO_NATMAAL5) ? ATM_PH_AAL5 : 0;

      error = atm_output(npcb->npcb_ifp, m, NULL, NULL);

      break;

    case PRU_SENSE:			/* return status into m */
      /* return zero? */
      break;

    case PRU_PEERADDR:			/* fetch peer's address */
      snatm = mtod(nam, struct sockaddr_natm *);
      bzero(snatm, sizeof(*snatm));
      nam->m_len = snatm->snatm_len = sizeof(*snatm);
      snatm->snatm_family = AF_NATM;
#if defined(__NetBSD__) || defined(__OpenBSD__)
      bcopy(npcb->npcb_ifp->if_xname, snatm->snatm_if, sizeof(snatm->snatm_if));
#elif defined(__FreeBSD__)
      sprintf(snatm->snatm_if, "%s%d", npcb->npcb_ifp->if_name,
	npcb->npcb_ifp->if_unit);
#endif
      snatm->snatm_vci = npcb->npcb_vci;
      snatm->snatm_vpi = npcb->npcb_vpi;
      break;

    case PRU_CONTROL:			/* control operations on protocol */
      /*
       * raw atm ioctl.   comes in as a SIOCRAWATM.   we convert it to
       * SIOCXRAWATM and pass it to the driver.
       */
      if ((u_long)m == SIOCRAWATM) {
        if (npcb->npcb_ifp == NULL) {
          error = ENOTCONN;
          break;
        }
        ario.npcb = npcb;
        ario.rawvalue = *((int *)nam);
        error = npcb->npcb_ifp->if_ioctl(npcb->npcb_ifp, 
				SIOCXRAWATM, (caddr_t) &ario);
	if (!error) {
          if (ario.rawvalue) 
	    npcb->npcb_flags |= NPCB_RAW;
	  else
	    npcb->npcb_flags &= ~(NPCB_RAW);
	}

        break;
      }

      error = EOPNOTSUPP;
      break;

    case PRU_BIND:			/* bind socket to address */
    case PRU_LISTEN:			/* listen for connection */
    case PRU_ACCEPT:			/* accept connection from peer */
    case PRU_CONNECT2:			/* connect two sockets */
    case PRU_ABORT:			/* abort (fast DISCONNECT, DETACH) */
					/* (only happens if LISTEN socket) */
    case PRU_RCVD:			/* have taken data; more room now */
    case PRU_FASTTIMO:			/* 200ms timeout */
    case PRU_SLOWTIMO:			/* 500ms timeout */
    case PRU_RCVOOB:			/* retrieve out of band data */
    case PRU_SENDOOB:			/* send out of band data */
    case PRU_PROTORCV:			/* receive from below */
    case PRU_PROTOSEND:			/* send to below */
    case PRU_SOCKADDR:			/* fetch socket's address */
#ifdef DIAGNOSTIC
      printf("natm: PRU #%d unsupported\n", req);
#endif
      error = EOPNOTSUPP;
      break;
   
    default: panic("natm usrreq");
  }

done:
  splx(s);
  return(error);
}
Beispiel #29
0
/*
 * Move a TCP connection into TIME_WAIT state.
 *    tcbinfo is locked.
 *    inp is locked, and is unlocked before returning.
 */
void
tcp_twstart(struct tcpcb *tp)
{
    struct tcptw *tw;
    struct inpcb *inp = tp->t_inpcb;
    int acknow;
    struct socket *so;
#ifdef INET6
//ScenSim-Port//    int isipv6 = inp->inp_inc.inc_flags & INC_ISIPV6;
#endif

//ScenSim-Port//    INP_INFO_WLOCK_ASSERT(&V_tcbinfo);  /* tcp_tw_2msl_reset(). */
//ScenSim-Port//    INP_WLOCK_ASSERT(inp);

//ScenSim-Port//    if (V_nolocaltimewait) {
//ScenSim-Port//        int error = 0;
//ScenSim-Port//#ifdef INET6
//ScenSim-Port//        if (isipv6)
//ScenSim-Port//            error = in6_localaddr(&inp->in6p_faddr);
//ScenSim-Port//#endif
//ScenSim-Port//#if defined(INET6) && defined(INET)
//ScenSim-Port//        else
//ScenSim-Port//#endif
//ScenSim-Port//#ifdef INET
//ScenSim-Port//            error = in_localip(inp->inp_faddr);
//ScenSim-Port//#endif
//ScenSim-Port//        if (error) {
//ScenSim-Port//            tp = tcp_close(tp);
//ScenSim-Port//            if (tp != NULL)
//ScenSim-Port//                INP_WUNLOCK(inp);
//ScenSim-Port//            return;
//ScenSim-Port//        }
//ScenSim-Port//    }

//ScenSim-Port//    tw = uma_zalloc(V_tcptw_zone, M_NOWAIT);
    tw = (struct tcptw *)uma_zalloc(V_tcptw_zone, M_NOWAIT);    //ScenSim-Port//
    if (tw == NULL) {
        tw = tcp_tw_2msl_scan(1);
        if (tw == NULL) {
            tp = tcp_close(tp);
//ScenSim-Port//            if (tp != NULL)
//ScenSim-Port//                INP_WUNLOCK(inp);
            return;
        }
    }
    tw->tw_inpcb = inp;

    /*
     * Recover last window size sent.
     */
//ScenSim-Port//    KASSERT(SEQ_GEQ(tp->rcv_adv, tp->rcv_nxt),
//ScenSim-Port//        ("tcp_twstart negative window: tp %p rcv_nxt %u rcv_adv %u", tp,
//ScenSim-Port//        tp->rcv_nxt, tp->rcv_adv));
    tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;

    /*
     * Set t_recent if timestamps are used on the connection.
     */
    if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
        (TF_REQ_TSTMP|TF_RCVD_TSTMP)) {
        tw->t_recent = tp->ts_recent;
        tw->ts_offset = tp->ts_offset;
    } else {
        tw->t_recent = 0;
        tw->ts_offset = 0;
    }

    tw->snd_nxt = tp->snd_nxt;
    tw->rcv_nxt = tp->rcv_nxt;
    tw->iss     = tp->iss;
    tw->irs     = tp->irs;
    tw->t_starttime = tp->t_starttime;
    tw->tw_time = 0;

/* XXX
 * If this code will
 * be used for fin-wait-2 state also, then we may need
 * a ts_recent from the last segment.
 */
    acknow = tp->t_flags & TF_ACKNOW;

    /*
     * First, discard tcpcb state, which includes stopping its timers and
     * freeing it.  tcp_discardcb() used to also release the inpcb, but
     * that work is now done in the caller.
     *
     * Note: soisdisconnected() call used to be made in tcp_discardcb(),
     * and might not be needed here any longer.
     */
    tcp_discardcb(tp);
    so = inp->inp_socket;
    soisdisconnected(so);
//ScenSim-Port//    tw->tw_cred = crhold(so->so_cred);
//ScenSim-Port//    SOCK_LOCK(so);
    tw->tw_so_options = so->so_options;
//ScenSim-Port//    SOCK_UNLOCK(so);
    if (acknow)
        tcp_twrespond(tw, TH_ACK);
    inp->inp_ppcb = tw;
    inp->inp_flags |= INP_TIMEWAIT;
    tcp_tw_2msl_reset(tw, 0);

    /*
     * If the inpcb owns the sole reference to the socket, then we can
     * detach and free the socket as it is not needed in time wait.
     */
    if (inp->inp_flags & INP_SOCKREF) {
//ScenSim-Port//        KASSERT(so->so_state & SS_PROTOREF,
//ScenSim-Port//            ("tcp_twstart: !SS_PROTOREF"));
        inp->inp_flags &= ~INP_SOCKREF;
//ScenSim-Port//        INP_WUNLOCK(inp);
//ScenSim-Port//        ACCEPT_LOCK();
//ScenSim-Port//        SOCK_LOCK(so);
        so->so_state &= ~SS_PROTOREF;
        sofree(so);
    } else
//ScenSim-Port//        INP_WUNLOCK(inp);
    ;                                                           //ScenSim-Port//
}
Beispiel #30
0
/*
 * TCP input routine, follows pages 65-76 of the
 * protocol specification dated September, 1981 very closely.
 */
void
tcp_input(usn_mbuf_t *m, int iphlen)
{
	struct tcpiphdr *ti;
	struct inpcb *inp;
	u_char *optp = NULL;
	int optlen;
	int len, tlen, off;
	struct tcpcb *tp = 0;
	int tiflags;
	struct usn_socket *so = 0;
	int todrop, acked, ourfinisacked;
   int needoutput = 0;
	short ostate;
	struct usn_in_addr laddr;
	int dropsocket = 0;
	int iss = 0;
	u_long tiwin, ts_val, ts_ecr;
	int ts_present = 0;

   (void)needoutput;
	g_tcpstat.tcps_rcvtotal++;
 
	// Get IP and TCP header together in first mbuf.
	// Note: IP leaves IP header in first mbuf.
	ti = mtod(m, struct tcpiphdr *);
	if (iphlen > sizeof (usn_ip_t))
		ip_stripoptions(m, (usn_mbuf_t *)0);
	if (m->mlen < sizeof (struct tcpiphdr)) {
		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
			g_tcpstat.tcps_rcvshort++;
			return;
		}
		ti = mtod(m, struct tcpiphdr *);
	}

#ifdef DUMP_PAYLOAD
   dump_chain(m,"tcp");
#endif

   /*
	 * Checksum extended TCP header and data.
    */
	tlen = ntohs(((usn_ip_t *)ti)->ip_len);
	len = sizeof (usn_ip_t) + tlen;
	ti->ti_next = ti->ti_prev = 0;
	ti->ti_x1 = 0;
	ti->ti_len = (u_short)tlen;
	HTONS(ti->ti_len);
   ti->ti_sum = in_cksum(m, len);
	if (ti->ti_sum) {
		g_tcpstat.tcps_rcvbadsum++;
		goto drop;
	}
   /*
	 * Check that TCP offset makes sense,
	 * pull out TCP options and adjust length. XXX
    */
	off = ti->ti_off << 2;
	if (off < sizeof (struct tcphdr) || off > tlen) {
		g_tcpstat.tcps_rcvbadoff++;
		goto drop;
	}
	tlen -= off;
	ti->ti_len = tlen;
	if (off > sizeof (struct tcphdr)) {
		if (m->mlen < sizeof(usn_ip_t) + off) {
			if ((m = m_pullup(m, sizeof (usn_ip_t) + off)) == 0) {
				g_tcpstat.tcps_rcvshort++;
				return;
			}
			ti = mtod(m, struct tcpiphdr *);
		}
		optlen = off - sizeof (struct tcphdr);
		optp = mtod(m, u_char *) + sizeof (struct tcpiphdr);

      //	Do quick retrieval of timestamp options ("options
      // prediction?"). If timestamp is the only option and it's
      // formatted as recommended in RFC 1323 appendix A, we
      // quickly get the values now and not bother calling
      // tcp_dooptions(), etc.
		if ((optlen == TCPOLEN_TSTAMP_APPA ||
		     (optlen > TCPOLEN_TSTAMP_APPA &&
			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
		     *(u_int *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
		     (ti->ti_flags & TH_SYN) == 0) {
			ts_present = 1;
			ts_val = ntohl(*(u_long *)(optp + 4));
			ts_ecr = ntohl(*(u_long *)(optp + 8));
			optp = NULL;	// we've parsed the options
		}
	}
	tiflags = ti->ti_flags;

	// Convert TCP protocol specific fields to host format.
	NTOHL(ti->ti_seq);
	NTOHL(ti->ti_ack);
	NTOHS(ti->ti_win);
	NTOHS(ti->ti_urp);

	// Locate pcb for segment.
findpcb:
	inp = g_tcp_last_inpcb;
	if (inp->inp_lport != ti->ti_dport ||
	    inp->inp_fport != ti->ti_sport ||
	    inp->inp_faddr.s_addr != ti->ti_src.s_addr ||
	    inp->inp_laddr.s_addr != ti->ti_dst.s_addr) {
		inp = in_pcblookup(&g_tcb, ti->ti_src, ti->ti_sport,
		    ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
		if (inp)
			g_tcp_last_inpcb = inp;
		++g_tcpstat.tcps_pcbcachemiss;
	}

	// If the state is CLOSED (i.e., TCB does not exist) then
	// all data in the incoming segment is discarded.
	// If the TCB exists but is in CLOSED state, it is embryonic,
	// but should either do a listen or a connect soon.
	if (inp == 0)
		goto dropwithreset;

	tp = intotcpcb(inp);

   DEBUG("found inp cb, laddr=%x, lport=%d, faddr=%x,"
         " fport=%d, tp_state=%d, tp_flags=%d",
         inp->inp_laddr.s_addr,
         inp->inp_lport,
         inp->inp_faddr.s_addr,
         inp->inp_fport, tp->t_state, tp->t_flags);

	if (tp == 0)
		goto dropwithreset;
	if (tp->t_state == TCPS_CLOSED)
		goto drop;
	
	// Unscale the window into a 32-bit value. 
	if ((tiflags & TH_SYN) == 0)
		tiwin = ti->ti_win << tp->snd_scale;
	else
		tiwin = ti->ti_win;

	so = inp->inp_socket;
   DEBUG("socket info, options=%x", so->so_options);

	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
		if (so->so_options & SO_DEBUG) {
			ostate = tp->t_state;
			g_tcp_saveti = *ti;
		}
		if (so->so_options & SO_ACCEPTCONN) {
			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
				// Note: dropwithreset makes sure we don't
				// send a reset in response to a RST.
				if (tiflags & TH_ACK) {
					g_tcpstat.tcps_badsyn++;
					goto dropwithreset;
				}
            DEBUG("SYN is expected, tiflags=%d", tiflags);
				goto drop;
			}
			so = sonewconn(so, 0);
			if (so == 0) {
            DEBUG("failed to create new connection, tiflags=%d", tiflags);
				goto drop;
         }

			// Mark socket as temporary until we're
			// committed to keeping it.  The code at
			// ``drop'' and ``dropwithreset'' check the
			// flag dropsocket to see if the temporary
			// socket created here should be discarded.
			// We mark the socket as discardable until
			// we're committed to it below in TCPS_LISTEN.
			dropsocket++;
			inp = (struct inpcb *)so->so_pcb;
			inp->inp_laddr = ti->ti_dst;
			inp->inp_lport = ti->ti_dport;

         // BSD >= 4.3
			inp->inp_options = ip_srcroute();

			tp = intotcpcb(inp);
			tp->t_state = TCPS_LISTEN;

			// Compute proper scaling value from buffer space
			while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
			   TCP_MAXWIN << tp->request_r_scale < so->so_rcv->sb_hiwat)
				tp->request_r_scale++;
		}
	}

	// Segment received on connection.
	// Reset idle time and keep-alive timer.
	tp->t_idle = 0;
	tp->t_timer[TCPT_KEEP] = g_tcp_keepidle;

	// Process options if not in LISTEN state,
	// else do it below (after getting remote address).
	if (optp && tp->t_state != TCPS_LISTEN)
		tcp_dooptions(tp, optp, optlen, ti,
			&ts_present, &ts_val, &ts_ecr);

	// Header prediction: check for the two common cases
	// of a uni-directional data xfer.  If the packet has
	// no control flags, is in-sequence, the window didn't
	// change and we're not retransmitting, it's a
	// candidate.  If the length is zero and the ack moved
	// forward, we're the sender side of the xfer.  Just
	// free the data acked & wake any higher level process
	// that was blocked waiting for space.  If the length
	// is non-zero and the ack didn't move, we're the
	// receiver side.  If we're getting packets in-order
	// (the reassembly queue is empty), add the data to
	// the socket buffer and note that we need a delayed ack.
	if (tp->t_state == TCPS_ESTABLISHED &&
	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
	    (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) &&
	    ti->ti_seq == tp->rcv_nxt &&
	    tiwin && tiwin == tp->snd_wnd &&
	    tp->snd_nxt == tp->snd_max) {
		// If last ACK falls within this segment's sequence numbers,
		// record the timestamp.
      if ( ts_present && TSTMP_GEQ(ts_val, tp->ts_recent) &&
            SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) ){
			tp->ts_recent_age = g_tcp_now;
			tp->ts_recent = ts_val;
		}

		if (ti->ti_len == 0) {
			if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
			    SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
			    tp->snd_cwnd >= tp->snd_wnd) {
				// this is a pure ack for outstanding data.
				++g_tcpstat.tcps_predack;
				if (ts_present)
					tcp_xmit_timer(tp, g_tcp_now-ts_ecr+1);
				else if (tp->t_rtt &&
					    SEQ_GT(ti->ti_ack, tp->t_rtseq))
					tcp_xmit_timer(tp, tp->t_rtt);

				acked = ti->ti_ack - tp->snd_una;
				g_tcpstat.tcps_rcvackpack++;
				g_tcpstat.tcps_rcvackbyte += acked;
            TRACE("drop so_snd buffer, drop_bytes=%d, len=%d", 
                  acked, so->so_snd.sb_cc);

				sbdrop(so->so_snd, acked);
				tp->snd_una = ti->ti_ack;
				usn_free_cmbuf(m);

				// If all outstanding data are acked, stop
				// retransmit timer, otherwise restart timer
				// using current (possibly backed-off) value.
				// If process is waiting for space,
				// wakeup/selwakeup/signal.  If data
				// are ready to send, let tcp_output
				// decide between more output or persist.
				if (tp->snd_una == tp->snd_max)
					tp->t_timer[TCPT_REXMT] = 0;
				else if (tp->t_timer[TCPT_PERSIST] == 0)
					tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;

	         if (so->so_options & SO_DEBUG)
             	tcp_trace(TA_INPUT, ostate, tp, &g_tcp_saveti, 0);

				//if (so->so_snd->sb_flags & SB_NOTIFY) {
            //   usnet_tcpin_wwakeup(so, USN_TCP_IN, usn_tcpev_sbnotify, 0);
				//	sowwakeup(so);
            //}

            // send buffer is available for app thread. 
            usnet_tcpin_wwakeup(so, USN_TCP_IN, USN_TCPEV_WRITE, 0);

				if (so->so_snd->sb_cc)
					tcp_output(tp);
				return;
			}
		} else if (ti->ti_ack == tp->snd_una &&
		    tp->seg_next == (struct tcpiphdr *)tp &&
		    ti->ti_len <= sbspace(so->so_rcv)) {

			// this is a pure, in-sequence data packet
			// with nothing on the reassembly queue and
			// we have enough buffer space to take it.
			++g_tcpstat.tcps_preddat;
			tp->rcv_nxt += ti->ti_len;
			g_tcpstat.tcps_rcvpack++;
			g_tcpstat.tcps_rcvbyte += ti->ti_len;

			// Drop TCP, IP headers and TCP options then add data
			// to socket buffer.
			m->head += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
			m->mlen -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);

         TRACE("add data to rcv buf");
			sbappend(so->so_rcv, m);
			sorwakeup(so);

         // new data is available for app threads.
         usnet_tcpin_rwakeup(so, USN_TCP_IN, USN_TCPEV_READ, m);

	      if (so->so_options & SO_DEBUG) {
            TRACE("tcp trace, so_options=%d", so->so_options);
          	tcp_trace(TA_INPUT, ostate, tp, &g_tcp_saveti, 0);
         }

			tp->t_flags |= TF_DELACK;
			return;
		}
	}

	// Drop TCP, IP headers and TCP options.
	m->head += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
	m->mlen -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);

	// Calculate amount of space in receive window,
	// and then do TCP input processing.
	// Receive window is amount of space in rcv queue,
	// but not less than advertised window.
   {
	   int win;
	   win = sbspace(so->so_rcv);
	   if (win < 0)
	      win = 0;
  	   tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
	}

	switch (tp->t_state) {
	// If the state is LISTEN then ignore segment if it contains an RST.
	// If the segment contains an ACK then it is bad and send a RST.
	// If it does not contain a SYN then it is not interesting; drop it.
	// Don't bother responding if the destination was a broadcast.
	// Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
	// tp->iss, and send a segment:
	//     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
	// Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
	// Fill in remote peer address fields if not previously specified.
	// Enter SYN_RECEIVED state, and process any other fields of this
	// segment in this state.
	case TCPS_LISTEN: {
		usn_mbuf_t *am;
		struct usn_sockaddr_in *sin;

		if (tiflags & TH_RST)
			goto drop;
		if (tiflags & TH_ACK)
			goto dropwithreset;
		if ((tiflags & TH_SYN) == 0)
			goto drop;

		// RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
		// in_broadcast() should never return true on a received
		// packet with M_BCAST not set.

		//if (m->m_flags & (M_BCAST|M_MCAST) ||
		//    IN_MULTICAST(ntohl(ti->ti_dst.s_addr)))
		//	goto drop;

		am = usn_get_mbuf(0, BUF_MSIZE, 0);	// XXX: the size!
		if (am == NULL)
			goto drop;
		am->mlen = sizeof (struct usn_sockaddr_in);
		sin = mtod(am, struct usn_sockaddr_in *);
		sin->sin_family = AF_INET;
		sin->sin_len = sizeof(*sin);
		sin->sin_addr = ti->ti_src;
		sin->sin_port = ti->ti_sport;
		bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));

		laddr = inp->inp_laddr;
		if (inp->inp_laddr.s_addr == USN_INADDR_ANY)
			inp->inp_laddr = ti->ti_dst;

		if (in_pcbconnect(inp, am)) {
			inp->inp_laddr = laddr;
			usn_free_mbuf(am);
			goto drop;
		}
		usn_free_mbuf(am);
		tp->t_template = tcp_template(tp);
		if (tp->t_template == 0) {
			tp = tcp_drop(tp, ENOBUFS);
			dropsocket = 0;		// socket is already gone
			goto drop;
		}
		if (optp)
			tcp_dooptions(tp, optp, optlen, ti,
				&ts_present, &ts_val, &ts_ecr);
		if (iss)
			tp->iss = iss;
		else
			tp->iss = g_tcp_iss;
		g_tcp_iss += TCP_ISSINCR/4;
		tp->irs = ti->ti_seq;
		tcp_sendseqinit(tp);
		tcp_rcvseqinit(tp);
		tp->t_flags |= TF_ACKNOW;
      TRACE("change tcp state to TCPS_SYN_RECEIVED, state=%d, tp_flags=%d",
            tp->t_state, tp->t_flags);
		tp->t_state = TCPS_SYN_RECEIVED;

      // tcp event
      usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPST_SYN_RECEIVED, 0);

		tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
		dropsocket = 0;		// committed to socket
		g_tcpstat.tcps_accepts++;
		goto trimthenstep6;
	}


	// If the state is SYN_SENT:
	//	if seg contains an ACK, but not for our SYN, drop the input.
	//	if seg contains a RST, then drop the connection.
	//	if seg does not contain SYN, then drop it.
	// Otherwise this is an acceptable SYN segment
	//	initialize tp->rcv_nxt and tp->irs
	//	if seg contains ack then advance tp->snd_una
	//	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
	//	arrange for segment to be acked (eventually)
	//	continue processing rest of data/controls, beginning with URG
	case TCPS_SYN_SENT:
		if ((tiflags & TH_ACK) &&
		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
		     SEQ_GT(ti->ti_ack, tp->snd_max)))
			goto dropwithreset;
		if (tiflags & TH_RST) {
			if (tiflags & TH_ACK)
				tp = tcp_drop(tp, ECONNREFUSED);
			goto drop;
		}
		if ((tiflags & TH_SYN) == 0)
			goto drop;
		if (tiflags & TH_ACK) {
			tp->snd_una = ti->ti_ack;
			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
				tp->snd_nxt = tp->snd_una;
		   tp->t_timer[TCPT_REXMT] = 0; 
		}
		
		tp->irs = ti->ti_seq;
		tcp_rcvseqinit(tp);
		tp->t_flags |= TF_ACKNOW;
      TRACE("ack now, tp flags=%d", tp->t_flags);

      // XXX: remove second test.
		if (tiflags & TH_ACK /*&& SEQ_GT(tp->snd_una, tp->iss)*/) {
			g_tcpstat.tcps_connects++;
			soisconnected(so);
         TRACE("change tcp state to TCPS_ESTABLISHED,"
               " state=%d, tp_flags=%d", tp->t_state, tp->t_flags);
			tp->t_state = TCPS_ESTABLISHED;

			// Do window scaling on this connection?
			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
				tp->snd_scale = tp->requested_s_scale;
				tp->rcv_scale = tp->request_r_scale;
			}
			tcp_reass(tp, (struct tcpiphdr *)0, (usn_mbuf_t *)0);

			// if we didn't have to retransmit the SYN,
			// use its rtt as our initial srtt & rtt var.
			if (tp->t_rtt)
				tcp_xmit_timer(tp, tp->t_rtt);
		} else {
         TRACE("change tcp state to TCPS_SYN_RECEIVED, state=%d, tp_flags=%d", 
               tp->t_state, tp->t_flags);
			tp->t_state = TCPS_SYN_RECEIVED;
         // tcp event
         usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPST_SYN_RECEIVED, 0);
      }

trimthenstep6:

		// Advance ti->ti_seq to correspond to first data byte.
		// If data, trim to stay within window,
		// dropping FIN if necessary.
		ti->ti_seq++;
		if (ti->ti_len > tp->rcv_wnd) {
			todrop = ti->ti_len - tp->rcv_wnd;
			m_adj(m, -todrop);
			ti->ti_len = tp->rcv_wnd;
			tiflags &= ~TH_FIN;
			g_tcpstat.tcps_rcvpackafterwin++;
			g_tcpstat.tcps_rcvbyteafterwin += todrop;
		}
		tp->snd_wl1 = ti->ti_seq - 1;
		tp->rcv_up = ti->ti_seq;
		goto step6;
	}

	// States other than LISTEN or SYN_SENT.
	// First check timestamp, if present.
	// Then check that at least some bytes of segment are within 
	// receive window.  If segment begins before rcv_nxt,
	// drop leading data (and SYN); if nothing left, just ack.
	// 
	// RFC 1323 PAWS: If we have a timestamp reply on this segment
	// and it's less than ts_recent, drop it.
	if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
	    TSTMP_LT(ts_val, tp->ts_recent)) {
		// Check to see if ts_recent is over 24 days old.
		if ((int)(g_tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
			// Invalidate ts_recent.  If this segment updates
			// ts_recent, the age will be reset later and ts_recent
			// will get a valid value.  If it does not, setting
			// ts_recent to zero will at least satisfy the
			// requirement that zero be placed in the timestamp
			// echo reply when ts_recent isn't valid.  The
			// age isn't reset until we get a valid ts_recent
			// because we don't want out-of-order segments to be
			// dropped when ts_recent is old.
			tp->ts_recent = 0;
		} else {
			g_tcpstat.tcps_rcvduppack++;
			g_tcpstat.tcps_rcvdupbyte += ti->ti_len;
			g_tcpstat.tcps_pawsdrop++;
			goto dropafterack;
		}
	}

	todrop = tp->rcv_nxt - ti->ti_seq;
	if (todrop > 0) {
		if (tiflags & TH_SYN) {
			tiflags &= ~TH_SYN;
			ti->ti_seq++;
			if (ti->ti_urp > 1) 
				ti->ti_urp--;
			else
				tiflags &= ~TH_URG;
			todrop--;
		}
      if ( todrop >= ti->ti_len || 
           ( todrop == ti->ti_len && (tiflags & TH_FIN ) == 0 ) ) {
         // Any valid FIN must be to the left of the window.
         // At this point the FIN must be a duplicate or
         // out of sequence; drop it.
         tiflags &= ~TH_FIN;
         // Send an ACK to resynchronize and drop any data
         // But keep on processing for RST or ACK.
         tp->t_flags |= TF_ACKNOW;
         TRACE("send ack now to resync, tp_flags=%d", tp->t_flags);
         todrop = ti->ti_len;
         g_tcpstat.tcps_rcvdupbyte += ti->ti_len;
         g_tcpstat.tcps_rcvduppack++;
      } else {
         g_tcpstat.tcps_rcvpartduppack++;
         g_tcpstat.tcps_rcvpartdupbyte += ti->ti_len;
      }

		m_adj(m, todrop);
		ti->ti_seq += todrop;
		ti->ti_len -= todrop;
		if (ti->ti_urp > todrop)
			ti->ti_urp -= todrop;
		else {
			tiflags &= ~TH_URG;
			ti->ti_urp = 0;
		}
	}

	// If new data are received on a connection after the
	// user processes are gone, then RST the other end.
	if ((so->so_state & USN_NOFDREF) && 
	    tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
		tp = tcp_close(tp);
		g_tcpstat.tcps_rcvafterclose++;
		goto dropwithreset;
	}


	// If segment ends after window, drop trailing data
	// (and PUSH and FIN); if nothing left, just ACK.
	todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
	if (todrop > 0) {
		g_tcpstat.tcps_rcvpackafterwin++;
		if (todrop >= ti->ti_len) {
			g_tcpstat.tcps_rcvbyteafterwin += ti->ti_len;

			// If a new connection request is received
			// while in TIME_WAIT, drop the old connection
			// and start over if the sequence numbers
			// are above the previous ones.
			if (tiflags & TH_SYN &&
			    tp->t_state == TCPS_TIME_WAIT &&
			    SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
				iss = tp->snd_nxt + TCP_ISSINCR;
				tp = tcp_close(tp);
				goto findpcb;
			}

			// If window is closed can only take segments at
			// window edge, and have to drop data and PUSH from
			// incoming segments.  Continue processing, but
			// remember to ack.  Otherwise, drop segment
			// and ack.
			if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
				tp->t_flags |= TF_ACKNOW;
				g_tcpstat.tcps_rcvwinprobe++;
			} else
				goto dropafterack;
		} else
			g_tcpstat.tcps_rcvbyteafterwin += todrop;
		m_adj(m, -todrop);
		ti->ti_len -= todrop;
		tiflags &= ~(TH_PUSH|TH_FIN);
	}

   // check valid timestamp. Replace code above.
   if (ts_present && TSTMP_GEQ(ts_val, tp->ts_recent) &&
         SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) ) {
		tp->ts_recent_age = g_tcp_now;
		tp->ts_recent = ts_val;
   }

	// If the RST bit is set examine the state:
	//    SYN_RECEIVED STATE:
	//	If passive open, return to LISTEN state.
	//	If active open, inform user that connection was refused.
	//    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
	//	Inform user that connection was reset, and close tcb.
	//    CLOSING, LAST_ACK, TIME_WAIT STATES
	//	Close the tcb.
	if (tiflags&TH_RST) switch (tp->t_state) {

	case TCPS_SYN_RECEIVED:
		so->so_error = ECONNREFUSED;
		goto close;

	case TCPS_ESTABLISHED:
	case TCPS_FIN_WAIT_1:
	case TCPS_FIN_WAIT_2:
	case TCPS_CLOSE_WAIT:
		so->so_error = ECONNRESET;
close:
      DEBUG("change tcp state to TCPS_CLOSED, state=%d", tp->t_state);
		tp->t_state = TCPS_CLOSED;
      // tcp event
      usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPST_CLOSED, 0);
		g_tcpstat.tcps_drops++;
		tp = tcp_close(tp);
		goto drop;

	case TCPS_CLOSING:
	case TCPS_LAST_ACK:
	case TCPS_TIME_WAIT:
		tp = tcp_close(tp);
		goto drop;
	}

	// If a SYN is in the window, then this is an
	// error and we send an RST and drop the connection.
	if (tiflags & TH_SYN) {
		tp = tcp_drop(tp, ECONNRESET);
		goto dropwithreset;
	}

	// If the ACK bit is off we drop the segment and return.
	if ((tiflags & TH_ACK) == 0)
		goto drop;

	// Ack processing.
	switch (tp->t_state) {

	// In SYN_RECEIVED state if the ack ACKs our SYN then enter
	// ESTABLISHED state and continue processing, otherwise
	// send an RST.
	case TCPS_SYN_RECEIVED:
		if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
		    SEQ_GT(ti->ti_ack, tp->snd_max))
			goto dropwithreset;
		g_tcpstat.tcps_connects++;

      DEBUG("change tcp state to TCPS_ESTABLISHED, state=%d", tp->t_state);
		tp->t_state = TCPS_ESTABLISHED;
		soisconnected(so);

		// Do window scaling?
		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
			tp->snd_scale = tp->requested_s_scale;
			tp->rcv_scale = tp->request_r_scale;
		}
		tcp_reass(tp, (struct tcpiphdr *)0, (usn_mbuf_t *)0);
		tp->snd_wl1 = ti->ti_seq - 1;
		// fall into ...

	// In ESTABLISHED state: drop duplicate ACKs; ACK out of range
	// ACKs.  If the ack is in the range
	//	tp->snd_una < ti->ti_ack <= tp->snd_max
	// then advance tp->snd_una to ti->ti_ack and drop
	// data from the retransmission queue.  If this ACK reflects
	// more up to date window information we update our window information.
	case TCPS_ESTABLISHED:
	case TCPS_FIN_WAIT_1:
	case TCPS_FIN_WAIT_2:
	case TCPS_CLOSE_WAIT:
	case TCPS_CLOSING:
	case TCPS_LAST_ACK:
	case TCPS_TIME_WAIT:

		if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
			if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
				g_tcpstat.tcps_rcvdupack++;
				// If we have outstanding data (other than
				// a window probe), this is a completely
				// duplicate ack (ie, window info didn't
				// change), the ack is the biggest we've
				// seen and we've seen exactly our rexmt
				// threshhold of them, assume a packet
				// has been dropped and retransmit it.
				// Kludge snd_nxt & the congestion
				// window so we send only this one
				// packet.
				//
				// We know we're losing at the current
				// window size so do congestion avoidance
				// (set ssthresh to half the current window
				// and pull our congestion window back to
				// the new ssthresh).
				//
				// Dup acks mean that packets have left the
				// network (they're now cached at the receiver) 
				// so bump cwnd by the amount in the receiver
				// to keep a constant cwnd packets in the
				// network.
				if (tp->t_timer[TCPT_REXMT] == 0 ||
				    ti->ti_ack != tp->snd_una)
					tp->t_dupacks = 0;
				else if (++tp->t_dupacks == g_tcprexmtthresh) {
               // congestion avoidance
					tcp_seq onxt = tp->snd_nxt;
					u_int win =
					    min(tp->snd_wnd, tp->snd_cwnd) / 2 / tp->t_maxseg;

					if (win < 2)
						win = 2;
					tp->snd_ssthresh = win * tp->t_maxseg;
					tp->t_timer[TCPT_REXMT] = 0;
					tp->t_rtt = 0;
					tp->snd_nxt = ti->ti_ack;
					tp->snd_cwnd = tp->t_maxseg;
					tcp_output(tp);
					tp->snd_cwnd = tp->snd_ssthresh +
					       tp->t_maxseg * tp->t_dupacks;
					if (SEQ_GT(onxt, tp->snd_nxt))
						tp->snd_nxt = onxt;
					goto drop;
				} else if (tp->t_dupacks > g_tcprexmtthresh) {
					tp->snd_cwnd += tp->t_maxseg;
					tcp_output(tp);
					goto drop;
				}
			} else
				tp->t_dupacks = 0;
			break;
		}

		// If the congestion window was inflated to account
		// for the other side's cached packets, retract it.
		if (tp->t_dupacks > g_tcprexmtthresh &&
		    tp->snd_cwnd > tp->snd_ssthresh)
			tp->snd_cwnd = tp->snd_ssthresh;
		tp->t_dupacks = 0;
		if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
			g_tcpstat.tcps_rcvacktoomuch++;
			goto dropafterack;
		}
		acked = ti->ti_ack - tp->snd_una;
		g_tcpstat.tcps_rcvackpack++;
		g_tcpstat.tcps_rcvackbyte += acked;

		// If we have a timestamp reply, update smoothed
		// round trip time.  If no timestamp is present but
		// transmit timer is running and timed sequence
		// number was acked, update smoothed round trip time.
		// Since we now have an rtt measurement, cancel the
		// timer backoff (cf., Phil Karn's retransmit alg.).
		// Recompute the initial retransmit timer.
		if (ts_present)
			tcp_xmit_timer(tp, g_tcp_now-ts_ecr+1);
		else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
			tcp_xmit_timer(tp,tp->t_rtt);

		// If all outstanding data is acked, stop retransmit
		// timer and remember to restart (more output or persist).
		// If there is more data to be acked, restart retransmit
		// timer, using current (possibly backed-off) value.
		if (ti->ti_ack == tp->snd_max) {
			tp->t_timer[TCPT_REXMT] = 0;
         DEBUG("change needoutput to 1");
			needoutput = 1;
         tp->t_flags |= TF_NEEDOUTPUT;
		} else if (tp->t_timer[TCPT_PERSIST] == 0)
			tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;

		// When new data is acked, open the congestion window.
		// If the window gives us less than ssthresh packets
		// in flight, open exponentially (maxseg per packet).
		// Otherwise open linearly: maxseg per window
		// (maxseg * (maxseg / cwnd) per packet).
		{
		   u_int cw = tp->snd_cwnd;
	   	u_int incr = tp->t_maxseg;

	   	if (cw > tp->snd_ssthresh)
	   		incr = incr * incr / cw;
   		tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
		}

		if (acked > so->so_snd->sb_cc) {
			tp->snd_wnd -= so->so_snd->sb_cc;
         DEBUG("drop all so_snd buffer, drop_bytes=%d, acked=%d", 
               so->so_snd->sb_cc, acked);
			sbdrop(so->so_snd, (int)so->so_snd->sb_cc);
			ourfinisacked = 1;
		} else {
         DEBUG("drop so_snd buffer, drop_bytes=%d, len=%d", acked, so->so_snd->sb_cc);
			sbdrop(so->so_snd, acked);
			tp->snd_wnd -= acked;
			ourfinisacked = 0;
		}
		//if (so->so_snd->sb_flags & SB_NOTIFY) {
			sowwakeup(so);
         usnet_tcpin_wwakeup(so, USN_TCP_IN, USN_TCPEV_WRITE, 0);
      //}

		tp->snd_una = ti->ti_ack;
		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
			tp->snd_nxt = tp->snd_una;

		switch (tp->t_state) {

		// In FIN_WAIT_1 STATE in addition to the processing
		// for the ESTABLISHED state if our FIN is now acknowledged
		// then enter FIN_WAIT_2.
		case TCPS_FIN_WAIT_1:
			if (ourfinisacked) {
				// If we can't receive any more
				// data, then closing user can proceed.
				// Starting the timer is contrary to the
				// specification, but if we don't get a FIN
				// we'll hang forever.
				if (so->so_state & USN_CANTRCVMORE) {
					soisdisconnected(so);
					tp->t_timer[TCPT_2MSL] = g_tcp_maxidle;
				}
            DEBUG("change tcp state to TCPS_FIN_WAIT_2, state=%d", tp->t_state);
				tp->t_state = TCPS_FIN_WAIT_2;
            usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPST_FIN_WAIT2, 0);
			}
			break;

		// In CLOSING STATE in addition to the processing for
		// the ESTABLISHED state if the ACK acknowledges our FIN
		// then enter the TIME-WAIT state, otherwise ignore
		// the segment.
		case TCPS_CLOSING:
			if (ourfinisacked) {
            DEBUG("change tcp state to TCPS_TIME_WAIT, state=%d", tp->t_state);
				tp->t_state = TCPS_TIME_WAIT;
            usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPST_TIME_WAIT, 0);
				tcp_canceltimers(tp);
				tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
				soisdisconnected(so);
			}
			break;
		
		// In LAST_ACK, we may still be waiting for data to drain
		// and/or to be acked, as well as for the ack of our FIN.
		// If our FIN is now acknowledged, delete the TCB,
		// enter the closed state and return.
		case TCPS_LAST_ACK:
			if (ourfinisacked) {
				tp = tcp_close(tp);
				goto drop;
			}
			break;


		// In TIME_WAIT state the only thing that should arrive
		// is a retransmission of the remote FIN.  Acknowledge
		// it and restart the finack timer.
		case TCPS_TIME_WAIT:
			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
			goto dropafterack;
		}
	}

step6:

	// Update window information.
	// Don't look at window if no ACK: TAC's send garbage on first SYN.
	if ((tiflags & TH_ACK) &&
	    (SEQ_LT(tp->snd_wl1, ti->ti_seq) || 
        (tp->snd_wl1 == ti->ti_seq && (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
	     (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd) ))  )) {
		// keep track of pure window updates
		if (ti->ti_len == 0 &&
		    tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
			g_tcpstat.tcps_rcvwinupd++;
		tp->snd_wnd = tiwin;
		tp->snd_wl1 = ti->ti_seq;
		tp->snd_wl2 = ti->ti_ack;
		if (tp->snd_wnd > tp->max_sndwnd)
			tp->max_sndwnd = tp->snd_wnd;
      DEBUG("change needoutput to 1");
      tp->t_flags |= TF_NEEDOUTPUT;
		needoutput = 1;
	}

	
	// Process segments with URG.
	if ((tiflags & TH_URG) && ti->ti_urp &&
	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {

		// This is a kludge, but if we receive and accept
		// random urgent pointers, we'll crash in
		// soreceive.  It's hard to imagine someone
		// actually wanting to send this much urgent data.
		if (ti->ti_urp + so->so_rcv->sb_cc > g_sb_max) {
			ti->ti_urp = 0;			// XXX
			tiflags &= ~TH_URG;		// XXX
			goto dodata;			// XXX
		}

		// If this segment advances the known urgent pointer,
		// then mark the data stream.  This should not happen
		// in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
		// a FIN has been received from the remote side. 
		// In these states we ignore the URG.
		//
		// According to RFC961 (Assigned Protocols),
		// the urgent pointer points to the last octet
		// of urgent data.  We continue, however,
		// to consider it to indicate the first octet
		// of data past the urgent section as the original 
		// spec states (in one of two places).
		if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
			tp->rcv_up = ti->ti_seq + ti->ti_urp;
			so->so_oobmark = so->so_rcv->sb_cc +
			    (tp->rcv_up - tp->rcv_nxt) - 1;
			if (so->so_oobmark == 0)
				so->so_state |= USN_RCVATMARK;
			sohasoutofband(so);
         // send async event to app threads.
         usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPEV_OUTOFBOUND, 0);
			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
		}

		// Remove out of band data so doesn't get presented to user.
		// This can happen independent of advancing the URG pointer,
		// but if two URG's are pending at once, some out-of-band
		// data may creep in... ick.
		if (ti->ti_urp <= ti->ti_len
#ifdef SO_OOBINLINE
		     && (so->so_options & SO_OOBINLINE) == 0
#endif
		     )
			tcp_pulloutofband(so, ti, m);
	} else
		// If no out of band data is expected,
		// pull receive urgent pointer along
		// with the receive window.
		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
			tp->rcv_up = tp->rcv_nxt;
dodata:							// XXX
#ifdef DUMP_PAYLOAD
   DEBUG("Handle data");
   dump_chain(m,"tcp");
#endif

	// Process the segment text, merging it into the TCP sequencing queue,
	// and arranging for acknowledgment of receipt if necessary.
	// This process logically involves adjusting tp->rcv_wnd as data
	// is presented to the user (this happens in tcp_usrreq.c,
	// case PRU_RCVD).  If a FIN has already been received on this
	// connection then we just ignore the text.
	if ((ti->ti_len || (tiflags&TH_FIN)) &&
	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
		TCP_REASS(tp, ti, m, so, tiflags);
		// Note the amount of data that peer has sent into
		// our window, in order to estimate the sender's
		// buffer size.
		len = so->so_rcv->sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
	} else {
		usn_free_cmbuf(m);
		tiflags &= ~TH_FIN;
	}

	// If FIN is received ACK the FIN and let the user know
	// that the connection is closing.
	if (tiflags & TH_FIN) {
		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
			socantrcvmore(so);
			tp->t_flags |= TF_ACKNOW;
         TRACE("ack FIN now, tp flags=%d", tp->t_flags);
			tp->rcv_nxt++;
		}
		switch (tp->t_state) {

		// In SYN_RECEIVED and ESTABLISHED STATES
		// enter the CLOSE_WAIT state.
		case TCPS_SYN_RECEIVED:
		case TCPS_ESTABLISHED:
         TRACE("change tcp state to TCPS_CLOSE_WAIT, state=%d", tp->t_state);
			tp->t_state = TCPS_CLOSE_WAIT;
         soewakeup(so, 0);
         usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPST_CLOSE_WAIT, 0);
			break;

		// If still in FIN_WAIT_1 STATE FIN has not been acked so
		// enter the CLOSING state.
		case TCPS_FIN_WAIT_1:
         TRACE("change tcp state to TCPS_CLOSING, state=%d", tp->t_state);
			tp->t_state = TCPS_CLOSING;
         usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPST_CLOSING, 0);
			break;

		// In FIN_WAIT_2 state enter the TIME_WAIT state,
		// starting the time-wait timer, turning off the other 
		// standard timers.
		case TCPS_FIN_WAIT_2:
         TRACE("change tcp state to TCPS_TIME_WAIT, state=%d", tp->t_state);
			tp->t_state = TCPS_TIME_WAIT;
			tcp_canceltimers(tp);
			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
			soisdisconnected(so);
         usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPST_TIME_WAIT, 0);
			break;

		// In TIME_WAIT state restart the 2 MSL time_wait timer.
		case TCPS_TIME_WAIT:
			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
			break;
		}
	}
	if (so->so_options & SO_DEBUG) {
      TRACE("tcp trace, so_options=%d", so->so_options);
		tcp_trace(TA_INPUT, ostate, tp, &g_tcp_saveti, 0);
   }

	// Return any desired output.
	//if (needoutput || (tp->t_flags & TF_ACKNOW)){
	if (tp->t_flags & TF_NEEDOUTPUT || (tp->t_flags & TF_ACKNOW)){
      TRACE("ack now or need to ouput, tp->t_flags=%d", tp->t_flags);
		tcp_output(tp);
   }
	return;

dropafterack:
   TRACE("dropafterack");
	// Generate an ACK dropping incoming segment if it occupies
	// sequence space, where the ACK reflects our state.
	if (tiflags & TH_RST)
		goto drop;
	usn_free_cmbuf(m);
	tp->t_flags |= TF_ACKNOW;
   TRACE("ack now, tp flags=%d", tp->t_flags);
	tcp_output(tp);
	return;

dropwithreset:
   TRACE("dropwithreset");
	// Generate a RST, dropping incoming segment.
	// Make ACK acceptable to originator of segment.
	// Don't bother to respond if destination was broadcast/multicast.
#define USN_MULTICAST(i) (((u_int)(i) & 0xf0000000) == 0xe0000000)
	if ((tiflags & TH_RST) || m->flags & (BUF_BCAST|BUF_MCAST) ||
	    USN_MULTICAST(ntohl(ti->ti_dst.s_addr)))
		goto drop;
   
	if (tiflags & TH_ACK)
		tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
	else {
		if (tiflags & TH_SYN)
			ti->ti_len++;
		tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
		    TH_RST|TH_ACK);
	}
	// destroy temporarily created socket
	if (dropsocket)
		soabort(so);
	return;

drop:
   TRACE("drop");
	// Drop space held by incoming segment and return.
	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) {
      TRACE("tcp trace: drop a socket");
		tcp_trace(TA_DROP, ostate, tp, &g_tcp_saveti, 0);
   }
	usn_free_cmbuf(m);
	// destroy temporarily created socket
	if (dropsocket)
		soabort(so);
	return;
}