DLLEXPORT MKL_INT s_qr_factor(MKL_INT m, MKL_INT n, float r[], float tau[], float q[], float work[], MKL_INT len) { MKL_INT info = 0; sgeqrf_(&m, &n, r, &m, tau, work, &len, &info); for (MKL_INT i = 0; i < m; ++i) { for (MKL_INT j = 0; j < m && j < n; ++j) { if (i > j) { q[j * m + i] = r[j * m + i]; } } } //compute the q elements explicitly if (m <= n) { sorgqr_(&m, &m, &m, q, &m, tau, work, &len, &info); } else { sorgqr_(&m, &n, &n, q, &m, tau, work, &len, &info); } return info; }
/* Build Q from output of geqrf */ void THLapack_(orgqr)(int m, int n, int k, real *a, int lda, real *tau, real *work, int lwork, int *info) { #ifdef USE_LAPACK #if defined(TH_REAL_IS_DOUBLE) dorgqr_(&m, &n, &k, a, &lda, tau, work, &lwork, info); #else sorgqr_(&m, &n, &k, a, &lda, tau, work, &lwork, info); #endif #else THError("orgqr: Lapack library not found in compile time\n"); #endif }
DLLEXPORT MKL_INT s_qr_thin_factor(MKL_INT m, MKL_INT n, float q[], float tau[], float r[], float work[], MKL_INT len) { MKL_INT info = 0; sgeqrf_(&m, &n, q, &m, tau, work, &len, &info); for (MKL_INT i = 0; i < n; ++i) { for (MKL_INT j = 0; j < n; ++j) { if( i <= j) { r[j * n + i] = q[j * m + i]; } } } sorgqr_(&m, &n, &n, q, &m, tau, work, &len, &info); return info; }
/* Subroutine */ int sorgtr_(char *uplo, integer *n, real *a, integer *lda, real *tau, real *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j, nb; extern logical lsame_(char *, char *); integer iinfo; logical upper; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int sorgql_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *), sorgqr_( integer *, integer *, integer *, real *, integer *, real *, real * , integer *, integer *); logical lquery; integer lwkopt; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SORGTR generates a real orthogonal matrix Q which is defined as the */ /* product of n-1 elementary reflectors of order N, as returned by */ /* SSYTRD: */ /* if UPLO = 'U', Q = H(n-1) . . . H(2) H(1), */ /* if UPLO = 'L', Q = H(1) H(2) . . . H(n-1). */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A contains elementary reflectors */ /* from SSYTRD; */ /* = 'L': Lower triangle of A contains elementary reflectors */ /* from SSYTRD. */ /* N (input) INTEGER */ /* The order of the matrix Q. N >= 0. */ /* A (input/output) REAL array, dimension (LDA,N) */ /* On entry, the vectors which define the elementary reflectors, */ /* as returned by SSYTRD. */ /* On exit, the N-by-N orthogonal matrix Q. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* TAU (input) REAL array, dimension (N-1) */ /* TAU(i) must contain the scalar factor of the elementary */ /* reflector H(i), as returned by SSYTRD. */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,N-1). */ /* For optimum performance LWORK >= (N-1)*NB, where NB is */ /* the optimal blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; lquery = *lwork == -1; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = *n - 1; if (*lwork < max(i__1,i__2) && ! lquery) { *info = -7; } } if (*info == 0) { if (upper) { i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; nb = ilaenv_(&c__1, "SORGQL", " ", &i__1, &i__2, &i__3, &c_n1); } else { i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; nb = ilaenv_(&c__1, "SORGQR", " ", &i__1, &i__2, &i__3, &c_n1); } /* Computing MAX */ i__1 = 1, i__2 = *n - 1; lwkopt = max(i__1,i__2) * nb; work[1] = (real) lwkopt; } if (*info != 0) { i__1 = -(*info); xerbla_("SORGTR", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { work[1] = 1.f; return 0; } if (upper) { /* Q was determined by a call to SSYTRD with UPLO = 'U' */ /* Shift the vectors which define the elementary reflectors one */ /* column to the left, and set the last row and column of Q to */ /* those of the unit matrix */ i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = a[i__ + (j + 1) * a_dim1]; /* L10: */ } a[*n + j * a_dim1] = 0.f; /* L20: */ } i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { a[i__ + *n * a_dim1] = 0.f; /* L30: */ } a[*n + *n * a_dim1] = 1.f; /* Generate Q(1:n-1,1:n-1) */ i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; sorgql_(&i__1, &i__2, &i__3, &a[a_offset], lda, &tau[1], &work[1], lwork, &iinfo); } else { /* Q was determined by a call to SSYTRD with UPLO = 'L'. */ /* Shift the vectors which define the elementary reflectors one */ /* column to the right, and set the first row and column of Q to */ /* those of the unit matrix */ for (j = *n; j >= 2; --j) { a[j * a_dim1 + 1] = 0.f; i__1 = *n; for (i__ = j + 1; i__ <= i__1; ++i__) { a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1]; /* L40: */ } /* L50: */ } a[a_dim1 + 1] = 1.f; i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { a[i__ + a_dim1] = 0.f; /* L60: */ } if (*n > 1) { /* Generate Q(2:n,2:n) */ i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; sorgqr_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[1], &work[1], lwork, &iinfo); } } work[1] = (real) lwkopt; return 0; /* End of SORGTR */ } /* sorgtr_ */
/* Subroutine */ int stimqr_(char *line, integer *nm, integer *mval, integer * nval, integer *nk, integer *kval, integer *nnb, integer *nbval, integer *nxval, integer *nlda, integer *ldaval, real *timmin, real *a, real *tau, real *b, real *work, real *reslts, integer *ldr1, integer *ldr2, integer *ldr3, integer *nout, ftnlen line_len) { /* Initialized data */ static char subnam[6*3] = "SGEQRF" "SORGQR" "SORMQR"; static char sides[1*2] = "L" "R"; static char transs[1*2] = "N" "T"; static integer iseed[4] = { 0,0,0,1 }; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)"; static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops " "***\002)"; static char fmt_9997[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)"; static char fmt_9996[] = "(5x,\002K = min(M,N)\002,/)"; static char fmt_9995[] = "(/5x,a6,\002 with SIDE = '\002,a1,\002', TRANS" " = '\002,a1,\002', \002,a1,\002 =\002,i6,/)"; static char fmt_9994[] = "(\002 *** No pairs (M,N) found with M >= N: " " \002,a6,\002 not timed\002)"; /* System generated locals */ integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, i__3, i__4, i__5, i__6; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void), s_wsle(cilist *), e_wsle(void); /* Local variables */ static integer ilda; static char labm[1], side[1]; static integer info; static char path[3]; static real time; static integer isub, muse[12], nuse[12], i__, k, m, n; static char cname[6]; static integer iside, itoff, itran, minmn; extern doublereal sopla_(char *, integer *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int icopy_(integer *, integer *, integer *, integer *, integer *); static char trans[1]; static integer k1, i4, m1, n1; static real s1, s2; static integer ic; extern /* Subroutine */ int sprtb4_(char *, char *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *, ftnlen, ftnlen, ftnlen), sprtb5_(char *, char *, char *, integer *, integer *, integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *, ftnlen, ftnlen, ftnlen); static integer nb, ik, im, lw, nx, reseed[4]; extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, ftnlen); extern doublereal second_(void); extern /* Subroutine */ int atimin_(char *, char *, integer *, char *, logical *, integer *, integer *, ftnlen, ftnlen, ftnlen), sgeqrf_( integer *, integer *, real *, integer *, real *, real *, integer * , integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), xlaenv_(integer *, integer *); extern doublereal smflop_(real *, real *, integer *); static real untime; extern /* Subroutine */ int stimmg_(integer *, integer *, integer *, real *, integer *, integer *, integer *); static logical timsub[3]; extern /* Subroutine */ int slatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer * , char *, real *, integer *, real *, integer *), sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *), sormqr_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real * , integer *, real *, integer *, integer *); static integer lda, icl, inb, imx; static real ops; /* Fortran I/O blocks */ static cilist io___9 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___29 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___31 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___32 = { 0, 0, 0, 0, 0 }; static cilist io___33 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___34 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___49 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___50 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___51 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___53 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___54 = { 0, 0, 0, fmt_9994, 0 }; #define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6] #define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\ reslts_dim2 + (a_2))*reslts_dim1 + a_1] /* -- LAPACK timing routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University March 31, 1993 Purpose ======= STIMQR times the LAPACK routines to perform the QR factorization of a REAL general matrix. Arguments ========= LINE (input) CHARACTER*80 The input line that requested this routine. The first six characters contain either the name of a subroutine or a generic path name. The remaining characters may be used to specify the individual routines to be timed. See ATIMIN for a full description of the format of the input line. NM (input) INTEGER The number of values of M and N contained in the vectors MVAL and NVAL. The matrix sizes are used in pairs (M,N). MVAL (input) INTEGER array, dimension (NM) The values of the matrix row dimension M. NVAL (input) INTEGER array, dimension (NM) The values of the matrix column dimension N. NK (input) INTEGER The number of values of K in the vector KVAL. KVAL (input) INTEGER array, dimension (NK) The values of the matrix dimension K, used in SORMQR. NNB (input) INTEGER The number of values of NB and NX contained in the vectors NBVAL and NXVAL. The blocking parameters are used in pairs (NB,NX). NBVAL (input) INTEGER array, dimension (NNB) The values of the blocksize NB. NXVAL (input) INTEGER array, dimension (NNB) The values of the crossover point NX. NLDA (input) INTEGER The number of values of LDA contained in the vector LDAVAL. LDAVAL (input) INTEGER array, dimension (NLDA) The values of the leading dimension of the array A. TIMMIN (input) REAL The minimum time a subroutine will be timed. A (workspace) REAL array, dimension (LDAMAX*NMAX) where LDAMAX and NMAX are the maximum values of LDA and N. TAU (workspace) REAL array, dimension (min(M,N)) B (workspace) REAL array, dimension (LDAMAX*NMAX) WORK (workspace) REAL array, dimension (LDAMAX*NBMAX) where NBMAX is the maximum value of NB. RESLTS (workspace) REAL array, dimension (LDR1,LDR2,LDR3,2*NK) The timing results for each subroutine over the relevant values of (M,N), (NB,NX), and LDA. LDR1 (input) INTEGER The first dimension of RESLTS. LDR1 >= max(1,NNB). LDR2 (input) INTEGER The second dimension of RESLTS. LDR2 >= max(1,NM). LDR3 (input) INTEGER The third dimension of RESLTS. LDR3 >= max(1,NLDA). NOUT (input) INTEGER The unit number for output. Internal Parameters =================== MODE INTEGER The matrix type. MODE = 3 is a geometric distribution of eigenvalues. See SLATMS for further details. COND REAL The condition number of the matrix. The singular values are set to values from DMAX to DMAX/COND. DMAX REAL The magnitude of the largest singular value. ===================================================================== Parameter adjustments */ --mval; --nval; --kval; --nbval; --nxval; --ldaval; --a; --tau; --b; --work; reslts_dim1 = *ldr1; reslts_dim2 = *ldr2; reslts_dim3 = *ldr3; reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1) ); reslts -= reslts_offset; /* Function Body Extract the timing request from the input line. */ s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "QR", (ftnlen)2, (ftnlen)2); atimin_(path, line, &c__3, subnam, timsub, nout, &info, (ftnlen)3, ( ftnlen)80, (ftnlen)6); if (info != 0) { goto L230; } /* Check that M <= LDA for the input values. */ s_copy(cname, line, (ftnlen)6, (ftnlen)6); atimck_(&c__1, cname, nm, &mval[1], nlda, &ldaval[1], nout, &info, ( ftnlen)6); if (info > 0) { io___9.ciunit = *nout; s_wsfe(&io___9); do_fio(&c__1, cname, (ftnlen)6); e_wsfe(); goto L230; } /* Do for each pair of values (M,N): */ i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; n = nval[im]; minmn = min(m,n); icopy_(&c__4, iseed, &c__1, reseed, &c__1); /* Do for each value of LDA: */ i__2 = *nlda; for (ilda = 1; ilda <= i__2; ++ilda) { lda = ldaval[ilda]; /* Do for each pair of values (NB, NX) in NBVAL and NXVAL. */ i__3 = *nnb; for (inb = 1; inb <= i__3; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); nx = nxval[inb]; xlaenv_(&c__3, &nx); /* Computing MAX */ i__4 = 1, i__5 = n * max(1,nb); lw = max(i__4,i__5); /* Generate a test matrix of size M by N. */ icopy_(&c__4, reseed, &c__1, iseed, &c__1); slatms_(&m, &n, "Uniform", iseed, "Nonsymm", &tau[1], &c__3, & c_b24, &c_b25, &m, &n, "No packing", &b[1], &lda, & work[1], &info); if (timsub[0]) { /* SGEQRF: QR factorization */ slacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda); ic = 0; s1 = second_(); L10: sgeqrf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, & info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { slacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda); goto L10; } /* Subtract the time used in SLACPY. */ icl = 1; s1 = second_(); L20: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { slacpy_("Full", &m, &n, &a[1], &lda, &b[1], &lda); goto L20; } time = (time - untime) / (real) ic; ops = sopla_("SGEQRF", &m, &n, &c__0, &c__0, &nb); reslts_ref(inb, im, ilda, 1) = smflop_(&ops, &time, &info) ; } else { /* If SGEQRF was not timed, generate a matrix and factor it using SGEQRF anyway so that the factored form of the matrix can be used in timing the other routines. */ slacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda); sgeqrf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, & info); } if (timsub[1]) { /* SORGQR: Generate orthogonal matrix Q from the QR factorization */ slacpy_("Full", &m, &minmn, &a[1], &lda, &b[1], &lda); ic = 0; s1 = second_(); L30: sorgqr_(&m, &minmn, &minmn, &b[1], &lda, &tau[1], &work[1] , &lw, &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { slacpy_("Full", &m, &minmn, &a[1], &lda, &b[1], &lda); goto L30; } /* Subtract the time used in SLACPY. */ icl = 1; s1 = second_(); L40: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { slacpy_("Full", &m, &minmn, &a[1], &lda, &b[1], &lda); goto L40; } time = (time - untime) / (real) ic; ops = sopla_("SORGQR", &m, &minmn, &minmn, &c__0, &nb); reslts_ref(inb, im, ilda, 2) = smflop_(&ops, &time, &info) ; } /* L50: */ } /* L60: */ } /* L70: */ } /* Print tables of results */ for (isub = 1; isub <= 2; ++isub) { if (! timsub[isub - 1]) { goto L90; } io___29.ciunit = *nout; s_wsfe(&io___29); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); if (*nlda > 1) { i__1 = *nlda; for (i__ = 1; i__ <= i__1; ++i__) { io___31.ciunit = *nout; s_wsfe(&io___31); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer)); e_wsfe(); /* L80: */ } } io___32.ciunit = *nout; s_wsle(&io___32); e_wsle(); if (isub == 2) { io___33.ciunit = *nout; s_wsfe(&io___33); e_wsfe(); } sprtb4_("( NB, NX)", "M", "N", nnb, &nbval[1], &nxval[1], nm, &mval[ 1], &nval[1], nlda, &reslts_ref(1, 1, 1, isub), ldr1, ldr2, nout, (ftnlen)11, (ftnlen)1, (ftnlen)1); L90: ; } /* Time SORMQR separately. Here the starting matrix is M by N, and K is the free dimension of the matrix multiplied by Q. */ if (timsub[2]) { /* Check that K <= LDA for the input values. */ atimck_(&c__3, cname, nk, &kval[1], nlda, &ldaval[1], nout, &info, ( ftnlen)6); if (info > 0) { io___34.ciunit = *nout; s_wsfe(&io___34); do_fio(&c__1, subnam_ref(0, 3), (ftnlen)6); e_wsfe(); goto L230; } /* Use only the pairs (M,N) where M >= N. */ imx = 0; i__1 = *nm; for (im = 1; im <= i__1; ++im) { if (mval[im] >= nval[im]) { ++imx; muse[imx - 1] = mval[im]; nuse[imx - 1] = nval[im]; } /* L100: */ } /* SORMQR: Multiply by Q stored as a product of elementary transformations Do for each pair of values (M,N): */ i__1 = imx; for (im = 1; im <= i__1; ++im) { m = muse[im - 1]; n = nuse[im - 1]; /* Do for each value of LDA: */ i__2 = *nlda; for (ilda = 1; ilda <= i__2; ++ilda) { lda = ldaval[ilda]; /* Generate an M by N matrix and form its QR decomposition. */ slatms_(&m, &n, "Uniform", iseed, "Nonsymm", &tau[1], &c__3, & c_b24, &c_b25, &m, &n, "No packing", &a[1], &lda, & work[1], &info); /* Computing MAX */ i__3 = 1, i__4 = n * max(1,nb); lw = max(i__3,i__4); sgeqrf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, &info); /* Do first for SIDE = 'L', then for SIDE = 'R' */ i4 = 0; for (iside = 1; iside <= 2; ++iside) { *(unsigned char *)side = *(unsigned char *)&sides[iside - 1]; /* Do for each pair of values (NB, NX) in NBVAL and NXVAL. */ i__3 = *nnb; for (inb = 1; inb <= i__3; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); nx = nxval[inb]; xlaenv_(&c__3, &nx); /* Do for each value of K in KVAL */ i__4 = *nk; for (ik = 1; ik <= i__4; ++ik) { k = kval[ik]; /* Sort out which variable is which */ if (iside == 1) { m1 = m; k1 = n; n1 = k; /* Computing MAX */ i__5 = 1, i__6 = n1 * max(1,nb); lw = max(i__5,i__6); } else { n1 = m; k1 = n; m1 = k; /* Computing MAX */ i__5 = 1, i__6 = m1 * max(1,nb); lw = max(i__5,i__6); } /* Do first for TRANS = 'N', then for TRANS = 'T' */ itoff = 0; for (itran = 1; itran <= 2; ++itran) { *(unsigned char *)trans = *(unsigned char *)& transs[itran - 1]; stimmg_(&c__0, &m1, &n1, &b[1], &lda, &c__0, & c__0); ic = 0; s1 = second_(); L110: sormqr_(side, trans, &m1, &n1, &k1, &a[1], & lda, &tau[1], &b[1], &lda, &work[1], & lw, &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { stimmg_(&c__0, &m1, &n1, &b[1], &lda, & c__0, &c__0); goto L110; } /* Subtract the time used in STIMMG. */ icl = 1; s1 = second_(); L120: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { stimmg_(&c__0, &m1, &n1, &b[1], &lda, & c__0, &c__0); goto L120; } time = (time - untime) / (real) ic; i__5 = iside - 1; ops = sopla_("SORMQR", &m1, &n1, &k1, &i__5, & nb); reslts_ref(inb, im, ilda, i4 + itoff + ik) = smflop_(&ops, &time, &info); itoff = *nk; /* L130: */ } /* L140: */ } /* L150: */ } i4 = *nk << 1; /* L160: */ } /* L170: */ } /* L180: */ } /* Print tables of results */ isub = 3; i4 = 1; if (imx >= 1) { for (iside = 1; iside <= 2; ++iside) { *(unsigned char *)side = *(unsigned char *)&sides[iside - 1]; if (iside == 1) { io___49.ciunit = *nout; s_wsfe(&io___49); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); if (*nlda > 1) { i__1 = *nlda; for (i__ = 1; i__ <= i__1; ++i__) { io___50.ciunit = *nout; s_wsfe(&io___50); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ldaval[i__], (ftnlen) sizeof(integer)); e_wsfe(); /* L190: */ } } } for (itran = 1; itran <= 2; ++itran) { *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]; i__1 = *nk; for (ik = 1; ik <= i__1; ++ik) { if (iside == 1) { n = kval[ik]; io___51.ciunit = *nout; s_wsfe(&io___51); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); do_fio(&c__1, side, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, "N", (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; e_wsfe(); *(unsigned char *)labm = 'M'; } else { m = kval[ik]; io___53.ciunit = *nout; s_wsfe(&io___53); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); do_fio(&c__1, side, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, "M", (ftnlen)1); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; e_wsfe(); *(unsigned char *)labm = 'N'; } sprtb5_("NB", labm, "K", nnb, &nbval[1], &imx, muse, nuse, nlda, &reslts_ref(1, 1, 1, i4), ldr1, ldr2, nout, (ftnlen)2, (ftnlen)1, (ftnlen)1); ++i4; /* L200: */ } /* L210: */ } /* L220: */ } } else { io___54.ciunit = *nout; s_wsfe(&io___54); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); } } L230: return 0; /* End of STIMQR */ } /* stimqr_ */
/* Subroutine */ int sgegv_(char *jobvl, char *jobvr, integer *n, real *a, integer *lda, real *b, integer *ldb, real *alphar, real *alphai, real *beta, real *vl, integer *ldvl, real *vr, integer *ldvr, real *work, integer *lwork, integer *info) { /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= This routine is deprecated and has been replaced by routine SGGEV. SGEGV computes for a pair of n-by-n real nonsymmetric matrices A and B, the generalized eigenvalues (alphar +/- alphai*i, beta), and optionally, the left and/or right generalized eigenvectors (VL and VR). A generalized eigenvalue for a pair of matrices (A,B) is, roughly speaking, a scalar w or a ratio alpha/beta = w, such that A - w*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero. A good beginning reference is the book, "Matrix Computations", by G. Golub & C. van Loan (Johns Hopkins U. Press) A right generalized eigenvector corresponding to a generalized eigenvalue w for a pair of matrices (A,B) is a vector r such that (A - w B) r = 0 . A left generalized eigenvector is a vector l such that l**H * (A - w B) = 0, where l**H is the conjugate-transpose of l. Note: this routine performs "full balancing" on A and B -- see "Further Details", below. Arguments ========= JOBVL (input) CHARACTER*1 = 'N': do not compute the left generalized eigenvectors; = 'V': compute the left generalized eigenvectors. JOBVR (input) CHARACTER*1 = 'N': do not compute the right generalized eigenvectors; = 'V': compute the right generalized eigenvectors. N (input) INTEGER The order of the matrices A, B, VL, and VR. N >= 0. A (input/output) REAL array, dimension (LDA, N) On entry, the first of the pair of matrices whose generalized eigenvalues and (optionally) generalized eigenvectors are to be computed. On exit, the contents will have been destroyed. (For a description of the contents of A on exit, see "Further Details", below.) LDA (input) INTEGER The leading dimension of A. LDA >= max(1,N). B (input/output) REAL array, dimension (LDB, N) On entry, the second of the pair of matrices whose generalized eigenvalues and (optionally) generalized eigenvectors are to be computed. On exit, the contents will have been destroyed. (For a description of the contents of B on exit, see "Further Details", below.) LDB (input) INTEGER The leading dimension of B. LDB >= max(1,N). ALPHAR (output) REAL array, dimension (N) ALPHAI (output) REAL array, dimension (N) BETA (output) REAL array, dimension (N) On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will be the generalized eigenvalues. If ALPHAI(j) is zero, then the j-th eigenvalue is real; if positive, then the j-th and (j+1)-st eigenvalues are a complex conjugate pair, with ALPHAI(j+1) negative. Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) may easily over- or underflow, and BETA(j) may even be zero. Thus, the user should avoid naively computing the ratio alpha/beta. However, ALPHAR and ALPHAI will be always less than and usually comparable with norm(A) in magnitude, and BETA always less than and usually comparable with norm(B). VL (output) REAL array, dimension (LDVL,N) If JOBVL = 'V', the left generalized eigenvectors. (See "Purpose", above.) Real eigenvectors take one column, complex take two columns, the first for the real part and the second for the imaginary part. Complex eigenvectors correspond to an eigenvalue with positive imaginary part. Each eigenvector will be scaled so the largest component will have abs(real part) + abs(imag. part) = 1, *except* that for eigenvalues with alpha=beta=0, a zero vector will be returned as the corresponding eigenvector. Not referenced if JOBVL = 'N'. LDVL (input) INTEGER The leading dimension of the matrix VL. LDVL >= 1, and if JOBVL = 'V', LDVL >= N. VR (output) REAL array, dimension (LDVR,N) If JOBVR = 'V', the right generalized eigenvectors. (See "Purpose", above.) Real eigenvectors take one column, complex take two columns, the first for the real part and the second for the imaginary part. Complex eigenvectors correspond to an eigenvalue with positive imaginary part. Each eigenvector will be scaled so the largest component will have abs(real part) + abs(imag. part) = 1, *except* that for eigenvalues with alpha=beta=0, a zero vector will be returned as the corresponding eigenvector. Not referenced if JOBVR = 'N'. LDVR (input) INTEGER The leading dimension of the matrix VR. LDVR >= 1, and if JOBVR = 'V', LDVR >= N. WORK (workspace/output) REAL array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,8*N). For good performance, LWORK must generally be larger. To compute the optimal value of LWORK, call ILAENV to get blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute: NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR; The optimal LWORK is: 2*N + MAX( 6*N, N*(NB+1) ). If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. = 1,...,N: The QZ iteration failed. No eigenvectors have been calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) should be correct for j=INFO+1,...,N. > N: errors that usually indicate LAPACK problems: =N+1: error return from SGGBAL =N+2: error return from SGEQRF =N+3: error return from SORMQR =N+4: error return from SORGQR =N+5: error return from SGGHRD =N+6: error return from SHGEQZ (other than failed iteration) =N+7: error return from STGEVC =N+8: error return from SGGBAK (computing VL) =N+9: error return from SGGBAK (computing VR) =N+10: error return from SLASCL (various calls) Further Details =============== Balancing --------- This driver calls SGGBAL to both permute and scale rows and columns of A and B. The permutations PL and PR are chosen so that PL*A*PR and PL*B*R will be upper triangular except for the diagonal blocks A(i:j,i:j) and B(i:j,i:j), with i and j as close together as possible. The diagonal scaling matrices DL and DR are chosen so that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to one (except for the elements that start out zero.) After the eigenvalues and eigenvectors of the balanced matrices have been computed, SGGBAK transforms the eigenvectors back to what they would have been (in perfect arithmetic) if they had not been balanced. Contents of A and B on Exit -------- -- - --- - -- ---- If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or both), then on exit the arrays A and B will contain the real Schur form[*] of the "balanced" versions of A and B. If no eigenvectors are computed, then only the diagonal blocks will be correct. [*] See SHGEQZ, SGEGS, or read the book "Matrix Computations", by Golub & van Loan, pub. by Johns Hopkins U. Press. ===================================================================== Decode the input arguments Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static real c_b27 = 1.f; static real c_b38 = 0.f; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2; real r__1, r__2, r__3, r__4; /* Local variables */ static real absb, anrm, bnrm; static integer itau; static real temp; static logical ilvl, ilvr; static integer lopt; static real anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta; extern logical lsame_(char *, char *); static integer ileft, iinfo, icols, iwork, irows, jc, nb, in, jr; static real salfai; extern /* Subroutine */ int sggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, integer * ), sggbal_(char *, integer *, real *, integer *, real *, integer *, integer *, integer *, real *, real *, real *, integer *); static real salfar; extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); static real safmin; extern /* Subroutine */ int sgghrd_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer * , real *, integer *, integer *); static real safmax; static char chtemp[1]; static logical ldumma[1]; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); static integer ijobvl, iright; static logical ilimit; extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer *, real *, real *, integer *, integer *); static integer ijobvr; extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), stgevc_( char *, char *, logical *, integer *, real *, integer *, real *, integer *, real *, integer *, real *, integer *, integer *, integer *, real *, integer *); static real onepls; static integer lwkmin, nb1, nb2, nb3; extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real * , real *, real *, real *, integer *, real *, integer *, real *, integer *, integer *), sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer * , integer *); static integer lwkopt; static logical lquery; extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, integer *); static integer ihi, ilo; static real eps; static logical ilv; #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] #define vl_ref(a_1,a_2) vl[(a_2)*vl_dim1 + a_1] #define vr_ref(a_1,a_2) vr[(a_2)*vr_dim1 + a_1] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --alphar; --alphai; --beta; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1 * 1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1 * 1; vr -= vr_offset; --work; /* Function Body */ if (lsame_(jobvl, "N")) { ijobvl = 1; ilvl = FALSE_; } else if (lsame_(jobvl, "V")) { ijobvl = 2; ilvl = TRUE_; } else { ijobvl = -1; ilvl = FALSE_; } if (lsame_(jobvr, "N")) { ijobvr = 1; ilvr = FALSE_; } else if (lsame_(jobvr, "V")) { ijobvr = 2; ilvr = TRUE_; } else { ijobvr = -1; ilvr = FALSE_; } ilv = ilvl || ilvr; /* Test the input arguments Computing MAX */ i__1 = *n << 3; lwkmin = max(i__1,1); lwkopt = lwkmin; work[1] = (real) lwkopt; lquery = *lwork == -1; *info = 0; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } else if (*ldvl < 1 || ilvl && *ldvl < *n) { *info = -12; } else if (*ldvr < 1 || ilvr && *ldvr < *n) { *info = -14; } else if (*lwork < lwkmin && ! lquery) { *info = -16; } if (*info == 0) { nb1 = ilaenv_(&c__1, "SGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); nb2 = ilaenv_(&c__1, "SORMQR", " ", n, n, n, &c_n1, (ftnlen)6, ( ftnlen)1); nb3 = ilaenv_(&c__1, "SORGQR", " ", n, n, n, &c_n1, (ftnlen)6, ( ftnlen)1); /* Computing MAX */ i__1 = max(nb1,nb2); nb = max(i__1,nb3); /* Computing MAX */ i__1 = *n * 6, i__2 = *n * (nb + 1); lopt = (*n << 1) + max(i__1,i__2); work[1] = (real) lopt; } if (*info != 0) { i__1 = -(*info); xerbla_("SGEGV ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = slamch_("E") * slamch_("B"); safmin = slamch_("S"); safmin += safmin; safmax = 1.f / safmin; onepls = eps * 4 + 1.f; /* Scale A */ anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]); anrm1 = anrm; anrm2 = 1.f; if (anrm < 1.f) { if (safmax * anrm < 1.f) { anrm1 = safmin; anrm2 = safmax * anrm; } } if (anrm > 0.f) { slascl_("G", &c_n1, &c_n1, &anrm, &c_b27, n, n, &a[a_offset], lda, & iinfo); if (iinfo != 0) { *info = *n + 10; return 0; } } /* Scale B */ bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]); bnrm1 = bnrm; bnrm2 = 1.f; if (bnrm < 1.f) { if (safmax * bnrm < 1.f) { bnrm1 = safmin; bnrm2 = safmax * bnrm; } } if (bnrm > 0.f) { slascl_("G", &c_n1, &c_n1, &bnrm, &c_b27, n, n, &b[b_offset], ldb, & iinfo); if (iinfo != 0) { *info = *n + 10; return 0; } } /* Permute the matrix to make it more nearly triangular Workspace layout: (8*N words -- "work" requires 6*N words) left_permutation, right_permutation, work... */ ileft = 1; iright = *n + 1; iwork = iright + *n; sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[ ileft], &work[iright], &work[iwork], &iinfo); if (iinfo != 0) { *info = *n + 1; goto L120; } /* Reduce B to triangular form, and initialize VL and/or VR Workspace layout: ("work..." must have at least N words) left_permutation, right_permutation, tau, work... */ irows = ihi + 1 - ilo; if (ilv) { icols = *n + 1 - ilo; } else { icols = irows; } itau = iwork; iwork = itau + irows; i__1 = *lwork + 1 - iwork; sgeqrf_(&irows, &icols, &b_ref(ilo, ilo), ldb, &work[itau], &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 2; goto L120; } i__1 = *lwork + 1 - iwork; sormqr_("L", "T", &irows, &icols, &irows, &b_ref(ilo, ilo), ldb, &work[ itau], &a_ref(ilo, ilo), lda, &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 3; goto L120; } if (ilvl) { slaset_("Full", n, n, &c_b38, &c_b27, &vl[vl_offset], ldvl) ; i__1 = irows - 1; i__2 = irows - 1; slacpy_("L", &i__1, &i__2, &b_ref(ilo + 1, ilo), ldb, &vl_ref(ilo + 1, ilo), ldvl); i__1 = *lwork + 1 - iwork; sorgqr_(&irows, &irows, &irows, &vl_ref(ilo, ilo), ldvl, &work[itau], &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 4; goto L120; } } if (ilvr) { slaset_("Full", n, n, &c_b38, &c_b27, &vr[vr_offset], ldvr) ; } /* Reduce to generalized Hessenberg form */ if (ilv) { /* Eigenvectors requested -- work on whole matrix. */ sgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo); } else { sgghrd_("N", "N", &irows, &c__1, &irows, &a_ref(ilo, ilo), lda, & b_ref(ilo, ilo), ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo); } if (iinfo != 0) { *info = *n + 5; goto L120; } /* Perform QZ algorithm Workspace layout: ("work..." must have at least 1 word) left_permutation, right_permutation, work... */ iwork = itau; if (ilv) { *(unsigned char *)chtemp = 'S'; } else { *(unsigned char *)chtemp = 'E'; } i__1 = *lwork + 1 - iwork; shgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { if (iinfo > 0 && iinfo <= *n) { *info = iinfo; } else if (iinfo > *n && iinfo <= *n << 1) { *info = iinfo - *n; } else { *info = *n + 6; } goto L120; } if (ilv) { /* Compute Eigenvectors (STGEVC requires 6*N words of workspace) */ if (ilvl) { if (ilvr) { *(unsigned char *)chtemp = 'B'; } else { *(unsigned char *)chtemp = 'L'; } } else { *(unsigned char *)chtemp = 'R'; } stgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[ iwork], &iinfo); if (iinfo != 0) { *info = *n + 7; goto L120; } /* Undo balancing on VL and VR, rescale */ if (ilvl) { sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, & vl[vl_offset], ldvl, &iinfo); if (iinfo != 0) { *info = *n + 8; goto L120; } i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { if (alphai[jc] < 0.f) { goto L50; } temp = 0.f; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__2 = temp, r__3 = (r__1 = vl_ref(jr, jc), dabs(r__1) ); temp = dmax(r__2,r__3); /* L10: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__3 = temp, r__4 = (r__1 = vl_ref(jr, jc), dabs(r__1) ) + (r__2 = vl_ref(jr, jc + 1), dabs(r__2)); temp = dmax(r__3,r__4); /* L20: */ } } if (temp < safmin) { goto L50; } temp = 1.f / temp; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vl_ref(jr, jc) = vl_ref(jr, jc) * temp; /* L30: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vl_ref(jr, jc) = vl_ref(jr, jc) * temp; vl_ref(jr, jc + 1) = vl_ref(jr, jc + 1) * temp; /* L40: */ } } L50: ; } } if (ilvr) { sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, & vr[vr_offset], ldvr, &iinfo); if (iinfo != 0) { *info = *n + 9; goto L120; } i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { if (alphai[jc] < 0.f) { goto L100; } temp = 0.f; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__2 = temp, r__3 = (r__1 = vr_ref(jr, jc), dabs(r__1) ); temp = dmax(r__2,r__3); /* L60: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__3 = temp, r__4 = (r__1 = vr_ref(jr, jc), dabs(r__1) ) + (r__2 = vr_ref(jr, jc + 1), dabs(r__2)); temp = dmax(r__3,r__4); /* L70: */ } } if (temp < safmin) { goto L100; } temp = 1.f / temp; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vr_ref(jr, jc) = vr_ref(jr, jc) * temp; /* L80: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vr_ref(jr, jc) = vr_ref(jr, jc) * temp; vr_ref(jr, jc + 1) = vr_ref(jr, jc + 1) * temp; /* L90: */ } } L100: ; } } /* End of eigenvector calculation */ } /* Undo scaling in alpha, beta Note: this does not give the alpha and beta for the unscaled problem. Un-scaling is limited to avoid underflow in alpha and beta if they are significant. */ i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { absar = (r__1 = alphar[jc], dabs(r__1)); absai = (r__1 = alphai[jc], dabs(r__1)); absb = (r__1 = beta[jc], dabs(r__1)); salfar = anrm * alphar[jc]; salfai = anrm * alphai[jc]; sbeta = bnrm * beta[jc]; ilimit = FALSE_; scale = 1.f; /* Check for significant underflow in ALPHAI Computing MAX */ r__1 = safmin, r__2 = eps * absar, r__1 = max(r__1,r__2), r__2 = eps * absb; if (dabs(salfai) < safmin && absai >= dmax(r__1,r__2)) { ilimit = TRUE_; /* Computing MAX */ r__1 = onepls * safmin, r__2 = anrm2 * absai; scale = onepls * safmin / anrm1 / dmax(r__1,r__2); } else if (salfai == 0.f) { /* If insignificant underflow in ALPHAI, then make the conjugate eigenvalue real. */ if (alphai[jc] < 0.f && jc > 1) { alphai[jc - 1] = 0.f; } else if (alphai[jc] > 0.f && jc < *n) { alphai[jc + 1] = 0.f; } } /* Check for significant underflow in ALPHAR Computing MAX */ r__1 = safmin, r__2 = eps * absai, r__1 = max(r__1,r__2), r__2 = eps * absb; if (dabs(salfar) < safmin && absar >= dmax(r__1,r__2)) { ilimit = TRUE_; /* Computing MAX Computing MAX */ r__3 = onepls * safmin, r__4 = anrm2 * absar; r__1 = scale, r__2 = onepls * safmin / anrm1 / dmax(r__3,r__4); scale = dmax(r__1,r__2); } /* Check for significant underflow in BETA Computing MAX */ r__1 = safmin, r__2 = eps * absar, r__1 = max(r__1,r__2), r__2 = eps * absai; if (dabs(sbeta) < safmin && absb >= dmax(r__1,r__2)) { ilimit = TRUE_; /* Computing MAX Computing MAX */ r__3 = onepls * safmin, r__4 = bnrm2 * absb; r__1 = scale, r__2 = onepls * safmin / bnrm1 / dmax(r__3,r__4); scale = dmax(r__1,r__2); } /* Check for possible overflow when limiting scaling */ if (ilimit) { /* Computing MAX */ r__1 = dabs(salfar), r__2 = dabs(salfai), r__1 = max(r__1,r__2), r__2 = dabs(sbeta); temp = scale * safmin * dmax(r__1,r__2); if (temp > 1.f) { scale /= temp; } if (scale < 1.f) { ilimit = FALSE_; } } /* Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary. */ if (ilimit) { salfar = scale * alphar[jc] * anrm; salfai = scale * alphai[jc] * anrm; sbeta = scale * beta[jc] * bnrm; } alphar[jc] = salfar; alphai[jc] = salfai; beta[jc] = sbeta; /* L110: */ } L120: work[1] = (real) lwkopt; return 0; /* End of SGEGV */ } /* sgegv_ */
/* Subroutine */ int sqrt02_(integer *m, integer *n, integer *k, real *a, real *af, real *q, real *r__, integer *lda, real *tau, real *work, integer *lwork, real *rwork, real *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, q_dim1, q_offset, r_dim1, r_offset, i__1; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ real eps; integer info; real resid; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); real anorm; extern /* Subroutine */ int ssyrk_(char *, char *, integer *, integer *, real *, real *, integer *, real *, real *, integer *); extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *); extern doublereal slansy_(char *, char *, integer *, real *, integer *, real *); extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SQRT02 tests SORGQR, which generates an m-by-n matrix Q with */ /* orthonornmal columns that is defined as the product of k elementary */ /* reflectors. */ /* Given the QR factorization of an m-by-n matrix A, SQRT02 generates */ /* the orthogonal matrix Q defined by the factorization of the first k */ /* columns of A; it compares R(1:n,1:k) with Q(1:m,1:n)'*A(1:m,1:k), */ /* and checks that the columns of Q are orthonormal. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix Q to be generated. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix Q to be generated. */ /* M >= N >= 0. */ /* K (input) INTEGER */ /* The number of elementary reflectors whose product defines the */ /* matrix Q. N >= K >= 0. */ /* A (input) REAL array, dimension (LDA,N) */ /* The m-by-n matrix A which was factorized by SQRT01. */ /* AF (input) REAL array, dimension (LDA,N) */ /* Details of the QR factorization of A, as returned by SGEQRF. */ /* See SGEQRF for further details. */ /* Q (workspace) REAL array, dimension (LDA,N) */ /* R (workspace) REAL array, dimension (LDA,N) */ /* LDA (input) INTEGER */ /* The leading dimension of the arrays A, AF, Q and R. LDA >= M. */ /* TAU (input) REAL array, dimension (N) */ /* The scalar factors of the elementary reflectors corresponding */ /* to the QR factorization in AF. */ /* WORK (workspace) REAL array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* RWORK (workspace) REAL array, dimension (M) */ /* RESULT (output) REAL array, dimension (2) */ /* The test ratios: */ /* RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS ) */ /* RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ r_dim1 = *lda; r_offset = 1 + r_dim1; r__ -= r_offset; q_dim1 = *lda; q_offset = 1 + q_dim1; q -= q_offset; af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; --rwork; --result; /* Function Body */ eps = slamch_("Epsilon"); /* Copy the first k columns of the factorization to the array Q */ slaset_("Full", m, n, &c_b4, &c_b4, &q[q_offset], lda); i__1 = *m - 1; slacpy_("Lower", &i__1, k, &af[af_dim1 + 2], lda, &q[q_dim1 + 2], lda); /* Generate the first n columns of the matrix Q */ s_copy(srnamc_1.srnamt, "SORGQR", (ftnlen)32, (ftnlen)6); sorgqr_(m, n, k, &q[q_offset], lda, &tau[1], &work[1], lwork, &info); /* Copy R(1:n,1:k) */ slaset_("Full", n, k, &c_b9, &c_b9, &r__[r_offset], lda); slacpy_("Upper", n, k, &af[af_offset], lda, &r__[r_offset], lda); /* Compute R(1:n,1:k) - Q(1:m,1:n)' * A(1:m,1:k) */ sgemm_("Transpose", "No transpose", n, k, m, &c_b14, &q[q_offset], lda, & a[a_offset], lda, &c_b15, &r__[r_offset], lda); /* Compute norm( R - Q'*A ) / ( M * norm(A) * EPS ) . */ anorm = slange_("1", m, k, &a[a_offset], lda, &rwork[1]); resid = slange_("1", n, k, &r__[r_offset], lda, &rwork[1]); if (anorm > 0.f) { result[1] = resid / (real) max(1,*m) / anorm / eps; } else { result[1] = 0.f; } /* Compute I - Q'*Q */ slaset_("Full", n, n, &c_b9, &c_b15, &r__[r_offset], lda); ssyrk_("Upper", "Transpose", n, m, &c_b14, &q[q_offset], lda, &c_b15, & r__[r_offset], lda); /* Compute norm( I - Q'*Q ) / ( M * EPS ) . */ resid = slansy_("1", "Upper", n, &r__[r_offset], lda, &rwork[1]); result[2] = resid / (real) max(1,*m) / eps; return 0; /* End of SQRT02 */ } /* sqrt02_ */
/* Subroutine */ int sgqrts_(integer *n, integer *m, integer *p, real *a, real *af, real *q, real *r__, integer *lda, real *taua, real *b, real *bf, real *z__, real *t, real *bwk, integer *ldb, real *taub, real * work, integer *lwork, real *rwork, real *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, r_dim1, r_offset, q_dim1, q_offset, b_dim1, b_offset, bf_dim1, bf_offset, t_dim1, t_offset, z_dim1, z_offset, bwk_dim1, bwk_offset, i__1, i__2; real r__1; /* Local variables */ static integer info; static real unfl, resid; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); static real anorm, bnorm; extern /* Subroutine */ int ssyrk_(char *, char *, integer *, integer *, real *, real *, integer *, real *, real *, integer *); extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int sggqrf_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, real *, integer * , integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *); extern doublereal slansy_(char *, char *, integer *, real *, integer *, real *); extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *), sorgrq_( integer *, integer *, integer *, real *, integer *, real *, real * , integer *, integer *); static real ulp; #define q_ref(a_1,a_2) q[(a_2)*q_dim1 + a_1] #define t_ref(a_1,a_2) t[(a_2)*t_dim1 + a_1] #define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1] #define af_ref(a_1,a_2) af[(a_2)*af_dim1 + a_1] #define bf_ref(a_1,a_2) bf[(a_2)*bf_dim1 + a_1] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= SGQRTS tests SGGQRF, which computes the GQR factorization of an N-by-M matrix A and a N-by-P matrix B: A = Q*R and B = Q*T*Z. Arguments ========= N (input) INTEGER The number of rows of the matrices A and B. N >= 0. M (input) INTEGER The number of columns of the matrix A. M >= 0. P (input) INTEGER The number of columns of the matrix B. P >= 0. A (input) REAL array, dimension (LDA,M) The N-by-M matrix A. AF (output) REAL array, dimension (LDA,N) Details of the GQR factorization of A and B, as returned by SGGQRF, see SGGQRF for further details. Q (output) REAL array, dimension (LDA,N) The M-by-M orthogonal matrix Q. R (workspace) REAL array, dimension (LDA,MAX(M,N)) LDA (input) INTEGER The leading dimension of the arrays A, AF, R and Q. LDA >= max(M,N). TAUA (output) REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors, as returned by SGGQRF. B (input) REAL array, dimension (LDB,P) On entry, the N-by-P matrix A. BF (output) REAL array, dimension (LDB,N) Details of the GQR factorization of A and B, as returned by SGGQRF, see SGGQRF for further details. Z (output) REAL array, dimension (LDB,P) The P-by-P orthogonal matrix Z. T (workspace) REAL array, dimension (LDB,max(P,N)) BWK (workspace) REAL array, dimension (LDB,N) LDB (input) INTEGER The leading dimension of the arrays B, BF, Z and T. LDB >= max(P,N). TAUB (output) REAL array, dimension (min(P,N)) The scalar factors of the elementary reflectors, as returned by SGGRQF. WORK (workspace) REAL array, dimension (LWORK) LWORK (input) INTEGER The dimension of the array WORK, LWORK >= max(N,M,P)**2. RWORK (workspace) REAL array, dimension (max(N,M,P)) RESULT (output) REAL array, dimension (4) The test ratios: RESULT(1) = norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP) RESULT(2) = norm( T*Z - Q'*B ) / (MAX(P,N)*norm(B)*ULP) RESULT(3) = norm( I - Q'*Q ) / ( M*ULP ) RESULT(4) = norm( I - Z'*Z ) / ( P*ULP ) ===================================================================== Parameter adjustments */ r_dim1 = *lda; r_offset = 1 + r_dim1 * 1; r__ -= r_offset; q_dim1 = *lda; q_offset = 1 + q_dim1 * 1; q -= q_offset; af_dim1 = *lda; af_offset = 1 + af_dim1 * 1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --taua; bwk_dim1 = *ldb; bwk_offset = 1 + bwk_dim1 * 1; bwk -= bwk_offset; t_dim1 = *ldb; t_offset = 1 + t_dim1 * 1; t -= t_offset; z_dim1 = *ldb; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; bf_dim1 = *ldb; bf_offset = 1 + bf_dim1 * 1; bf -= bf_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --taub; --work; --rwork; --result; /* Function Body */ ulp = slamch_("Precision"); unfl = slamch_("Safe minimum"); /* Copy the matrix A to the array AF. */ slacpy_("Full", n, m, &a[a_offset], lda, &af[af_offset], lda); slacpy_("Full", n, p, &b[b_offset], ldb, &bf[bf_offset], ldb); /* Computing MAX */ r__1 = slange_("1", n, m, &a[a_offset], lda, &rwork[1]); anorm = dmax(r__1,unfl); /* Computing MAX */ r__1 = slange_("1", n, p, &b[b_offset], ldb, &rwork[1]); bnorm = dmax(r__1,unfl); /* Factorize the matrices A and B in the arrays AF and BF. */ sggqrf_(n, m, p, &af[af_offset], lda, &taua[1], &bf[bf_offset], ldb, & taub[1], &work[1], lwork, &info); /* Generate the N-by-N matrix Q */ slaset_("Full", n, n, &c_b9, &c_b9, &q[q_offset], lda); i__1 = *n - 1; slacpy_("Lower", &i__1, m, &af_ref(2, 1), lda, &q_ref(2, 1), lda); i__1 = min(*n,*m); sorgqr_(n, n, &i__1, &q[q_offset], lda, &taua[1], &work[1], lwork, &info); /* Generate the P-by-P matrix Z */ slaset_("Full", p, p, &c_b9, &c_b9, &z__[z_offset], ldb); if (*n <= *p) { if (*n > 0 && *n < *p) { i__1 = *p - *n; slacpy_("Full", n, &i__1, &bf[bf_offset], ldb, &z___ref(*p - *n + 1, 1), ldb); } if (*n > 1) { i__1 = *n - 1; i__2 = *n - 1; slacpy_("Lower", &i__1, &i__2, &bf_ref(2, *p - *n + 1), ldb, & z___ref(*p - *n + 2, *p - *n + 1), ldb); } } else { if (*p > 1) { i__1 = *p - 1; i__2 = *p - 1; slacpy_("Lower", &i__1, &i__2, &bf_ref(*n - *p + 2, 1), ldb, & z___ref(2, 1), ldb); } } i__1 = min(*n,*p); sorgrq_(p, p, &i__1, &z__[z_offset], ldb, &taub[1], &work[1], lwork, & info); /* Copy R */ slaset_("Full", n, m, &c_b19, &c_b19, &r__[r_offset], lda); slacpy_("Upper", n, m, &af[af_offset], lda, &r__[r_offset], lda); /* Copy T */ slaset_("Full", n, p, &c_b19, &c_b19, &t[t_offset], ldb); if (*n <= *p) { slacpy_("Upper", n, n, &bf_ref(1, *p - *n + 1), ldb, &t_ref(1, *p - * n + 1), ldb); } else { i__1 = *n - *p; slacpy_("Full", &i__1, p, &bf[bf_offset], ldb, &t[t_offset], ldb); slacpy_("Upper", p, p, &bf_ref(*n - *p + 1, 1), ldb, &t_ref(*n - *p + 1, 1), ldb); } /* Compute R - Q'*A */ sgemm_("Transpose", "No transpose", n, m, n, &c_b30, &q[q_offset], lda, & a[a_offset], lda, &c_b31, &r__[r_offset], lda); /* Compute norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP ) . */ resid = slange_("1", n, m, &r__[r_offset], lda, &rwork[1]); if (anorm > 0.f) { /* Computing MAX */ i__1 = max(1,*m); result[1] = resid / (real) max(i__1,*n) / anorm / ulp; } else { result[1] = 0.f; } /* Compute T*Z - Q'*B */ sgemm_("No Transpose", "No transpose", n, p, p, &c_b31, &t[t_offset], ldb, &z__[z_offset], ldb, &c_b19, &bwk[bwk_offset], ldb); sgemm_("Transpose", "No transpose", n, p, n, &c_b30, &q[q_offset], lda, & b[b_offset], ldb, &c_b31, &bwk[bwk_offset], ldb); /* Compute norm( T*Z - Q'*B ) / ( MAX(P,N)*norm(A)*ULP ) . */ resid = slange_("1", n, p, &bwk[bwk_offset], ldb, &rwork[1]); if (bnorm > 0.f) { /* Computing MAX */ i__1 = max(1,*p); result[2] = resid / (real) max(i__1,*n) / bnorm / ulp; } else { result[2] = 0.f; } /* Compute I - Q'*Q */ slaset_("Full", n, n, &c_b19, &c_b31, &r__[r_offset], lda); ssyrk_("Upper", "Transpose", n, n, &c_b30, &q[q_offset], lda, &c_b31, & r__[r_offset], lda); /* Compute norm( I - Q'*Q ) / ( N * ULP ) . */ resid = slansy_("1", "Upper", n, &r__[r_offset], lda, &rwork[1]); result[3] = resid / (real) max(1,*n) / ulp; /* Compute I - Z'*Z */ slaset_("Full", p, p, &c_b19, &c_b31, &t[t_offset], ldb); ssyrk_("Upper", "Transpose", p, p, &c_b30, &z__[z_offset], ldb, &c_b31, & t[t_offset], ldb); /* Compute norm( I - Z'*Z ) / ( P*ULP ) . */ resid = slansy_("1", "Upper", p, &t[t_offset], ldb, &rwork[1]); result[4] = resid / (real) max(1,*p) / ulp; return 0; /* End of SGQRTS */ } /* sgqrts_ */
/* Subroutine */ int sgegs_(char *jobvsl, char *jobvsr, integer *n, real *a, integer *lda, real *b, integer *ldb, real *alphar, real *alphai, real *beta, real *vsl, integer *ldvsl, real *vsr, integer *ldvsr, real * work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, vsr_dim1, vsr_offset, i__1, i__2; /* Local variables */ integer nb, nb1, nb2, nb3, ihi, ilo; real eps, anrm, bnrm; integer itau, lopt; extern logical lsame_(char *, char *); integer ileft, iinfo, icols; logical ilvsl; integer iwork; logical ilvsr; integer irows; extern /* Subroutine */ int sggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, integer * ), sggbal_(char *, integer *, real *, integer *, real *, integer *, integer *, integer *, real *, real *, real *, integer *); logical ilascl, ilbscl; extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); real safmin; extern /* Subroutine */ int sgghrd_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer * , real *, integer *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); real bignum; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *); integer ijobvl, iright; extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer *, real *, real *, integer *, integer *); integer ijobvr; extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *); real anrmto; integer lwkmin; real bnrmto; extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real * , real *, real *, real *, integer *, real *, integer *, real *, integer *, integer *); real smlnum; extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *); integer lwkopt; logical lquery; extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, integer *); /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* This routine is deprecated and has been replaced by routine SGGES. */ /* SGEGS computes the eigenvalues, real Schur form, and, optionally, */ /* left and or/right Schur vectors of a real matrix pair (A,B). */ /* Given two square matrices A and B, the generalized real Schur */ /* factorization has the form */ /* A = Q*S*Z**T, B = Q*T*Z**T */ /* where Q and Z are orthogonal matrices, T is upper triangular, and S */ /* is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal */ /* blocks, the 2-by-2 blocks corresponding to complex conjugate pairs */ /* of eigenvalues of (A,B). The columns of Q are the left Schur vectors */ /* and the columns of Z are the right Schur vectors. */ /* If only the eigenvalues of (A,B) are needed, the driver routine */ /* SGEGV should be used instead. See SGEGV for a description of the */ /* eigenvalues of the generalized nonsymmetric eigenvalue problem */ /* (GNEP). */ /* Arguments */ /* ========= */ /* JOBVSL (input) CHARACTER*1 */ /* = 'N': do not compute the left Schur vectors; */ /* = 'V': compute the left Schur vectors (returned in VSL). */ /* JOBVSR (input) CHARACTER*1 */ /* = 'N': do not compute the right Schur vectors; */ /* = 'V': compute the right Schur vectors (returned in VSR). */ /* N (input) INTEGER */ /* The order of the matrices A, B, VSL, and VSR. N >= 0. */ /* A (input/output) REAL array, dimension (LDA, N) */ /* On entry, the matrix A. */ /* On exit, the upper quasi-triangular matrix S from the */ /* generalized real Schur factorization. */ /* LDA (input) INTEGER */ /* The leading dimension of A. LDA >= max(1,N). */ /* B (input/output) REAL array, dimension (LDB, N) */ /* On entry, the matrix B. */ /* On exit, the upper triangular matrix T from the generalized */ /* real Schur factorization. */ /* LDB (input) INTEGER */ /* The leading dimension of B. LDB >= max(1,N). */ /* ALPHAR (output) REAL array, dimension (N) */ /* The real parts of each scalar alpha defining an eigenvalue */ /* of GNEP. */ /* ALPHAI (output) REAL array, dimension (N) */ /* The imaginary parts of each scalar alpha defining an */ /* eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th */ /* eigenvalue is real; if positive, then the j-th and (j+1)-st */ /* eigenvalues are a complex conjugate pair, with */ /* ALPHAI(j+1) = -ALPHAI(j). */ /* BETA (output) REAL array, dimension (N) */ /* The scalars beta that define the eigenvalues of GNEP. */ /* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */ /* beta = BETA(j) represent the j-th eigenvalue of the matrix */ /* pair (A,B), in one of the forms lambda = alpha/beta or */ /* mu = beta/alpha. Since either lambda or mu may overflow, */ /* they should not, in general, be computed. */ /* VSL (output) REAL array, dimension (LDVSL,N) */ /* If JOBVSL = 'V', the matrix of left Schur vectors Q. */ /* Not referenced if JOBVSL = 'N'. */ /* LDVSL (input) INTEGER */ /* The leading dimension of the matrix VSL. LDVSL >=1, and */ /* if JOBVSL = 'V', LDVSL >= N. */ /* VSR (output) REAL array, dimension (LDVSR,N) */ /* If JOBVSR = 'V', the matrix of right Schur vectors Z. */ /* Not referenced if JOBVSR = 'N'. */ /* LDVSR (input) INTEGER */ /* The leading dimension of the matrix VSR. LDVSR >= 1, and */ /* if JOBVSR = 'V', LDVSR >= N. */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,4*N). */ /* For good performance, LWORK must generally be larger. */ /* To compute the optimal value of LWORK, call ILAENV to get */ /* blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute: */ /* NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR */ /* The optimal LWORK is 2*N + N*(NB+1). */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* = 1,...,N: */ /* The QZ iteration failed. (A,B) are not in Schur */ /* form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */ /* be correct for j=INFO+1,...,N. */ /* > N: errors that usually indicate LAPACK problems: */ /* =N+1: error return from SGGBAL */ /* =N+2: error return from SGEQRF */ /* =N+3: error return from SORMQR */ /* =N+4: error return from SORGQR */ /* =N+5: error return from SGGHRD */ /* =N+6: error return from SHGEQZ (other than failed */ /* iteration) */ /* =N+7: error return from SGGBAK (computing VSL) */ /* =N+8: error return from SGGBAK (computing VSR) */ /* =N+9: error return from SLASCL (various places) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Decode the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --alphar; --alphai; --beta; vsl_dim1 = *ldvsl; vsl_offset = 1 + vsl_dim1; vsl -= vsl_offset; vsr_dim1 = *ldvsr; vsr_offset = 1 + vsr_dim1; vsr -= vsr_offset; --work; /* Function Body */ if (lsame_(jobvsl, "N")) { ijobvl = 1; ilvsl = FALSE_; } else if (lsame_(jobvsl, "V")) { ijobvl = 2; ilvsl = TRUE_; } else { ijobvl = -1; ilvsl = FALSE_; } if (lsame_(jobvsr, "N")) { ijobvr = 1; ilvsr = FALSE_; } else if (lsame_(jobvsr, "V")) { ijobvr = 2; ilvsr = TRUE_; } else { ijobvr = -1; ilvsr = FALSE_; } /* Test the input arguments */ /* Computing MAX */ i__1 = *n << 2; lwkmin = max(i__1,1); lwkopt = lwkmin; work[1] = (real) lwkopt; lquery = *lwork == -1; *info = 0; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) { *info = -12; } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) { *info = -14; } else if (*lwork < lwkmin && ! lquery) { *info = -16; } if (*info == 0) { nb1 = ilaenv_(&c__1, "SGEQRF", " ", n, n, &c_n1, &c_n1); nb2 = ilaenv_(&c__1, "SORMQR", " ", n, n, n, &c_n1); nb3 = ilaenv_(&c__1, "SORGQR", " ", n, n, n, &c_n1); /* Computing MAX */ i__1 = max(nb1,nb2); nb = max(i__1,nb3); lopt = (*n << 1) + *n * (nb + 1); work[1] = (real) lopt; } if (*info != 0) { i__1 = -(*info); xerbla_("SGEGS ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = slamch_("E") * slamch_("B"); safmin = slamch_("S"); smlnum = *n * safmin / eps; bignum = 1.f / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]); ilascl = FALSE_; if (anrm > 0.f && anrm < smlnum) { anrmto = smlnum; ilascl = TRUE_; } else if (anrm > bignum) { anrmto = bignum; ilascl = TRUE_; } if (ilascl) { slascl_("G", &c_n1, &c_n1, &anrm, &anrmto, n, n, &a[a_offset], lda, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } /* Scale B if max element outside range [SMLNUM,BIGNUM] */ bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]); ilbscl = FALSE_; if (bnrm > 0.f && bnrm < smlnum) { bnrmto = smlnum; ilbscl = TRUE_; } else if (bnrm > bignum) { bnrmto = bignum; ilbscl = TRUE_; } if (ilbscl) { slascl_("G", &c_n1, &c_n1, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } /* Permute the matrix to make it more nearly triangular */ /* Workspace layout: (2*N words -- "work..." not actually used) */ /* left_permutation, right_permutation, work... */ ileft = 1; iright = *n + 1; iwork = iright + *n; sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[ ileft], &work[iright], &work[iwork], &iinfo); if (iinfo != 0) { *info = *n + 1; goto L10; } /* Reduce B to triangular form, and initialize VSL and/or VSR */ /* Workspace layout: ("work..." must have at least N words) */ /* left_permutation, right_permutation, tau, work... */ irows = ihi + 1 - ilo; icols = *n + 1 - ilo; itau = iwork; iwork = itau + irows; i__1 = *lwork + 1 - iwork; sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[ iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 2; goto L10; } i__1 = *lwork + 1 - iwork; sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, & work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, & iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 3; goto L10; } if (ilvsl) { slaset_("Full", n, n, &c_b36, &c_b37, &vsl[vsl_offset], ldvsl); i__1 = irows - 1; i__2 = irows - 1; slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ilo + 1 + ilo * vsl_dim1], ldvsl); i__1 = *lwork + 1 - iwork; sorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, & work[itau], &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 4; goto L10; } } if (ilvsr) { slaset_("Full", n, n, &c_b36, &c_b37, &vsr[vsr_offset], ldvsr); } /* Reduce to generalized Hessenberg form */ sgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &iinfo); if (iinfo != 0) { *info = *n + 5; goto L10; } /* Perform QZ algorithm, computing Schur vectors if desired */ /* Workspace layout: ("work..." must have at least 1 word) */ /* left_permutation, right_permutation, work... */ iwork = itau; i__1 = *lwork + 1 - iwork; shgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset] , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { if (iinfo > 0 && iinfo <= *n) { *info = iinfo; } else if (iinfo > *n && iinfo <= *n << 1) { *info = iinfo - *n; } else { *info = *n + 6; } goto L10; } /* Apply permutation to VSL and VSR */ if (ilvsl) { sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[ vsl_offset], ldvsl, &iinfo); if (iinfo != 0) { *info = *n + 7; goto L10; } } if (ilvsr) { sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[ vsr_offset], ldvsr, &iinfo); if (iinfo != 0) { *info = *n + 8; goto L10; } } /* Undo scaling */ if (ilascl) { slascl_("H", &c_n1, &c_n1, &anrmto, &anrm, n, n, &a[a_offset], lda, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } slascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alphar[1], n, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } slascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alphai[1], n, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } if (ilbscl) { slascl_("U", &c_n1, &c_n1, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } slascl_("G", &c_n1, &c_n1, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } L10: work[1] = (real) lwkopt; return 0; /* End of SGEGS */ } /* sgegs_ */
/* Subroutine */ int serrqr_(char *path, integer *nunit) { /* Builtin functions */ integer s_wsle(cilist *), e_wsle(void); /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ static integer info; static real a[4] /* was [2][2] */, b[2]; static integer i__, j; static real w[2], x[2]; extern /* Subroutine */ int sgeqr2_(integer *, integer *, real *, integer *, real *, real *, integer *); static real af[4] /* was [2][2] */; extern /* Subroutine */ int sorg2r_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *), sorm2r_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real * , integer *, real *, integer *), alaesm_(char *, logical *, integer *), chkxer_(char *, integer *, integer *, logical *, logical *), sgeqrf_(integer *, integer *, real *, integer *, real *, real *, integer *, integer *), sgeqrs_( integer *, integer *, integer *, real *, integer *, real *, real * , integer *, real *, integer *, integer *), sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer * , integer *), sormqr_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___1 = { 0, 0, 0, 0, 0 }; #define a_ref(a_1,a_2) a[(a_2)*2 + a_1 - 3] #define af_ref(a_1,a_2) af[(a_2)*2 + a_1 - 3] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= SERRQR tests the error exits for the REAL routines that use the QR decomposition of a general matrix. Arguments ========= PATH (input) CHARACTER*3 The LAPACK path name for the routines to be tested. NUNIT (input) INTEGER The unit number for output. ===================================================================== */ infoc_1.nout = *nunit; io___1.ciunit = infoc_1.nout; s_wsle(&io___1); e_wsle(); /* Set the variables to innocuous values. */ for (j = 1; j <= 2; ++j) { for (i__ = 1; i__ <= 2; ++i__) { a_ref(i__, j) = 1.f / (real) (i__ + j); af_ref(i__, j) = 1.f / (real) (i__ + j); /* L10: */ } b[j - 1] = 0.f; w[j - 1] = 0.f; x[j - 1] = 0.f; /* L20: */ } infoc_1.ok = TRUE_; /* Error exits for QR factorization SGEQRF */ s_copy(srnamc_1.srnamt, "SGEQRF", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sgeqrf_(&c_n1, &c__0, a, &c__1, b, w, &c__1, &info); chkxer_("SGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgeqrf_(&c__0, &c_n1, a, &c__1, b, w, &c__1, &info); chkxer_("SGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgeqrf_(&c__2, &c__1, a, &c__1, b, w, &c__1, &info); chkxer_("SGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; sgeqrf_(&c__1, &c__2, a, &c__1, b, w, &c__1, &info); chkxer_("SGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGEQR2 */ s_copy(srnamc_1.srnamt, "SGEQR2", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sgeqr2_(&c_n1, &c__0, a, &c__1, b, w, &info); chkxer_("SGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgeqr2_(&c__0, &c_n1, a, &c__1, b, w, &info); chkxer_("SGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgeqr2_(&c__2, &c__1, a, &c__1, b, w, &info); chkxer_("SGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGEQRS */ s_copy(srnamc_1.srnamt, "SGEQRS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sgeqrs_(&c_n1, &c__0, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("SGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgeqrs_(&c__0, &c_n1, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("SGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgeqrs_(&c__1, &c__2, &c__0, a, &c__2, x, b, &c__2, w, &c__1, &info); chkxer_("SGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgeqrs_(&c__0, &c__0, &c_n1, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("SGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sgeqrs_(&c__2, &c__1, &c__0, a, &c__1, x, b, &c__2, w, &c__1, &info); chkxer_("SGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; sgeqrs_(&c__2, &c__1, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info); chkxer_("SGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; sgeqrs_(&c__1, &c__1, &c__2, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("SGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SORGQR */ s_copy(srnamc_1.srnamt, "SORGQR", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sorgqr_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("SORGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sorgqr_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("SORGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sorgqr_(&c__1, &c__2, &c__0, a, &c__1, x, w, &c__2, &info); chkxer_("SORGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sorgqr_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &c__1, &info); chkxer_("SORGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sorgqr_(&c__1, &c__1, &c__2, a, &c__1, x, w, &c__1, &info); chkxer_("SORGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sorgqr_(&c__2, &c__2, &c__0, a, &c__1, x, w, &c__2, &info); chkxer_("SORGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; sorgqr_(&c__2, &c__2, &c__0, a, &c__2, x, w, &c__1, &info); chkxer_("SORGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SORG2R */ s_copy(srnamc_1.srnamt, "SORG2R", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sorg2r_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &info); chkxer_("SORG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sorg2r_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &info); chkxer_("SORG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sorg2r_(&c__1, &c__2, &c__0, a, &c__1, x, w, &info); chkxer_("SORG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sorg2r_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &info); chkxer_("SORG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sorg2r_(&c__2, &c__1, &c__2, a, &c__2, x, w, &info); chkxer_("SORG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sorg2r_(&c__2, &c__1, &c__0, a, &c__1, x, w, &info); chkxer_("SORG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SORMQR */ s_copy(srnamc_1.srnamt, "SORMQR", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sormqr_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sormqr_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sormqr_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sormqr_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sormqr_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sormqr_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sormqr_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; sormqr_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; sormqr_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; sormqr_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; sormqr_("L", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; sormqr_("R", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SORM2R */ s_copy(srnamc_1.srnamt, "SORM2R", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sorm2r_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sorm2r_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sorm2r_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sorm2r_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sorm2r_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sorm2r_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sorm2r_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; sorm2r_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; sorm2r_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; sorm2r_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Print a summary line. */ alaesm_(path, &infoc_1.ok, &infoc_1.nout); return 0; /* End of SERRQR */ } /* serrqr_ */
/* Subroutine */ int sorgtr_(char *uplo, integer *n, real *a, integer *lda, real *tau, real *work, integer *lwork, integer *info) { /* -- LAPACK routine (version 2.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= SORGTR generates a real orthogonal matrix Q which is defined as the product of n-1 elementary reflectors of order N, as returned by SSYTRD: if UPLO = 'U', Q = H(n-1) . . . H(2) H(1), if UPLO = 'L', Q = H(1) H(2) . . . H(n-1). Arguments ========= UPLO (input) CHARACTER*1 = 'U': Upper triangle of A contains elementary reflectors from SSYTRD; = 'L': Lower triangle of A contains elementary reflectors from SSYTRD. N (input) INTEGER The order of the matrix Q. N >= 0. A (input/output) REAL array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by SSYTRD. On exit, the N-by-N orthogonal matrix Q. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). TAU (input) REAL array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by SSYTRD. WORK (workspace/output) REAL array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,N-1). For optimum performance LWORK >= (N-1)*NB, where NB is the optimal blocksize. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== Test the input arguments Parameter adjustments Function Body */ /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ static integer i, j; extern logical lsame_(char *, char *); static integer iinfo; static logical upper; extern /* Subroutine */ int xerbla_(char *, integer *), sorgql_( integer *, integer *, integer *, real *, integer *, real *, real * , integer *, integer *), sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *); #define TAU(I) tau[(I)-1] #define WORK(I) work[(I)-1] #define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)] *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = *n - 1; if (*lwork < max(i__1,i__2)) { *info = -7; } } if (*info != 0) { i__1 = -(*info); xerbla_("SORGTR", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { WORK(1) = 1.f; return 0; } if (upper) { /* Q was determined by a call to SSYTRD with UPLO = 'U' Shift the vectors which define the elementary reflectors one column to the left, and set the last row and column of Q to those of the unit matrix */ i__1 = *n - 1; for (j = 1; j <= *n-1; ++j) { i__2 = j - 1; for (i = 1; i <= j-1; ++i) { A(i,j) = A(i,j+1); /* L10: */ } A(*n,j) = 0.f; /* L20: */ } i__1 = *n - 1; for (i = 1; i <= *n-1; ++i) { A(i,*n) = 0.f; /* L30: */ } A(*n,*n) = 1.f; /* Generate Q(1:n-1,1:n-1) */ i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; sorgql_(&i__1, &i__2, &i__3, &A(1,1), lda, &TAU(1), &WORK(1), lwork, &iinfo); } else { /* Q was determined by a call to SSYTRD with UPLO = 'L'. Shift the vectors which define the elementary reflectors one column to the right, and set the first row and column of Q t o those of the unit matrix */ for (j = *n; j >= 2; --j) { A(1,j) = 0.f; i__1 = *n; for (i = j + 1; i <= *n; ++i) { A(i,j) = A(i,j-1); /* L40: */ } /* L50: */ } A(1,1) = 1.f; i__1 = *n; for (i = 2; i <= *n; ++i) { A(i,1) = 0.f; /* L60: */ } if (*n > 1) { /* Generate Q(2:n,2:n) */ i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; sorgqr_(&i__1, &i__2, &i__3, &A(2,2), lda, &TAU(1), &WORK(1), lwork, &iinfo); } } return 0; /* End of SORGTR */ } /* sorgtr_ */
/* Subroutine */ int sggesx_(char *jobvsl, char *jobvsr, char *sort, L_fp selctg, char *sense, integer *n, real *a, integer *lda, real *b, integer *ldb, integer *sdim, real *alphar, real *alphai, real *beta, real *vsl, integer *ldvsl, real *vsr, integer *ldvsr, real *rconde, real *rcondv, real *work, integer *lwork, integer *iwork, integer * liwork, logical *bwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, vsr_dim1, vsr_offset, i__1, i__2; real r__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, ip; real pl, pr, dif[2]; integer ihi, ilo; real eps; integer ijob; real anrm, bnrm; integer ierr, itau, iwrk, lwrk; extern logical lsame_(char *, char *); integer ileft, icols; logical cursl, ilvsl, ilvsr; integer irows; logical lst2sl; extern /* Subroutine */ int slabad_(real *, real *), sggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, integer *), sggbal_(char *, integer *, real *, integer *, real *, integer *, integer *, integer *, real *, real *, real *, integer *); logical ilascl, ilbscl; extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); real safmin; extern /* Subroutine */ int sgghrd_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer * , real *, integer *, integer *); real safmax; extern /* Subroutine */ int xerbla_(char *, integer *); real bignum; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer ijobvl, iright; extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer *, real *, real *, integer *, integer *); integer ijobvr; extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *); logical wantsb, wantse, lastsl; integer liwmin; real anrmto, bnrmto; integer minwrk, maxwrk; logical wantsn; real smlnum; extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real * , real *, real *, real *, integer *, real *, integer *, real *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), sorgqr_(integer *, integer *, integer *, real *, integer *, real * , real *, integer *, integer *), stgsen_(integer *, logical *, logical *, logical *, integer *, real *, integer *, real *, integer *, real *, real *, real *, real *, integer *, real *, integer *, integer *, real *, real *, real *, real *, integer *, integer *, integer *, integer *); logical wantst, lquery, wantsv; extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, integer *); /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* .. Function Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SGGESX computes for a pair of N-by-N real nonsymmetric matrices */ /* (A,B), the generalized eigenvalues, the real Schur form (S,T), and, */ /* optionally, the left and/or right matrices of Schur vectors (VSL and */ /* VSR). This gives the generalized Schur factorization */ /* (A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T ) */ /* Optionally, it also orders the eigenvalues so that a selected cluster */ /* of eigenvalues appears in the leading diagonal blocks of the upper */ /* quasi-triangular matrix S and the upper triangular matrix T; computes */ /* a reciprocal condition number for the average of the selected */ /* eigenvalues (RCONDE); and computes a reciprocal condition number for */ /* the right and left deflating subspaces corresponding to the selected */ /* eigenvalues (RCONDV). The leading columns of VSL and VSR then form */ /* an orthonormal basis for the corresponding left and right eigenspaces */ /* (deflating subspaces). */ /* A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */ /* or a ratio alpha/beta = w, such that A - w*B is singular. It is */ /* usually represented as the pair (alpha,beta), as there is a */ /* reasonable interpretation for beta=0 or for both being zero. */ /* A pair of matrices (S,T) is in generalized real Schur form if T is */ /* upper triangular with non-negative diagonal and S is block upper */ /* triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond */ /* to real generalized eigenvalues, while 2-by-2 blocks of S will be */ /* "standardized" by making the corresponding elements of T have the */ /* form: */ /* [ a 0 ] */ /* [ 0 b ] */ /* and the pair of corresponding 2-by-2 blocks in S and T will have a */ /* complex conjugate pair of generalized eigenvalues. */ /* Arguments */ /* ========= */ /* JOBVSL (input) CHARACTER*1 */ /* = 'N': do not compute the left Schur vectors; */ /* = 'V': compute the left Schur vectors. */ /* JOBVSR (input) CHARACTER*1 */ /* = 'N': do not compute the right Schur vectors; */ /* = 'V': compute the right Schur vectors. */ /* SORT (input) CHARACTER*1 */ /* Specifies whether or not to order the eigenvalues on the */ /* diagonal of the generalized Schur form. */ /* = 'N': Eigenvalues are not ordered; */ /* = 'S': Eigenvalues are ordered (see SELCTG). */ /* SELCTG (external procedure) LOGICAL FUNCTION of three REAL arguments */ /* SELCTG must be declared EXTERNAL in the calling subroutine. */ /* If SORT = 'N', SELCTG is not referenced. */ /* If SORT = 'S', SELCTG is used to select eigenvalues to sort */ /* to the top left of the Schur form. */ /* An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if */ /* SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either */ /* one of a complex conjugate pair of eigenvalues is selected, */ /* then both complex eigenvalues are selected. */ /* Note that a selected complex eigenvalue may no longer satisfy */ /* SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering, */ /* since ordering may change the value of complex eigenvalues */ /* (especially if the eigenvalue is ill-conditioned), in this */ /* case INFO is set to N+3. */ /* SENSE (input) CHARACTER*1 */ /* Determines which reciprocal condition numbers are computed. */ /* = 'N' : None are computed; */ /* = 'E' : Computed for average of selected eigenvalues only; */ /* = 'V' : Computed for selected deflating subspaces only; */ /* = 'B' : Computed for both. */ /* If SENSE = 'E', 'V', or 'B', SORT must equal 'S'. */ /* N (input) INTEGER */ /* The order of the matrices A, B, VSL, and VSR. N >= 0. */ /* A (input/output) REAL array, dimension (LDA, N) */ /* On entry, the first of the pair of matrices. */ /* On exit, A has been overwritten by its generalized Schur */ /* form S. */ /* LDA (input) INTEGER */ /* The leading dimension of A. LDA >= max(1,N). */ /* B (input/output) REAL array, dimension (LDB, N) */ /* On entry, the second of the pair of matrices. */ /* On exit, B has been overwritten by its generalized Schur */ /* form T. */ /* LDB (input) INTEGER */ /* The leading dimension of B. LDB >= max(1,N). */ /* SDIM (output) INTEGER */ /* If SORT = 'N', SDIM = 0. */ /* If SORT = 'S', SDIM = number of eigenvalues (after sorting) */ /* for which SELCTG is true. (Complex conjugate pairs for which */ /* SELCTG is true for either eigenvalue count as 2.) */ /* ALPHAR (output) REAL array, dimension (N) */ /* ALPHAI (output) REAL array, dimension (N) */ /* BETA (output) REAL array, dimension (N) */ /* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */ /* be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i */ /* and BETA(j),j=1,...,N are the diagonals of the complex Schur */ /* form (S,T) that would result if the 2-by-2 diagonal blocks of */ /* the real Schur form of (A,B) were further reduced to */ /* triangular form using 2-by-2 complex unitary transformations. */ /* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */ /* positive, then the j-th and (j+1)-st eigenvalues are a */ /* complex conjugate pair, with ALPHAI(j+1) negative. */ /* Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */ /* may easily over- or underflow, and BETA(j) may even be zero. */ /* Thus, the user should avoid naively computing the ratio. */ /* However, ALPHAR and ALPHAI will be always less than and */ /* usually comparable with norm(A) in magnitude, and BETA always */ /* less than and usually comparable with norm(B). */ /* VSL (output) REAL array, dimension (LDVSL,N) */ /* If JOBVSL = 'V', VSL will contain the left Schur vectors. */ /* Not referenced if JOBVSL = 'N'. */ /* LDVSL (input) INTEGER */ /* The leading dimension of the matrix VSL. LDVSL >=1, and */ /* if JOBVSL = 'V', LDVSL >= N. */ /* VSR (output) REAL array, dimension (LDVSR,N) */ /* If JOBVSR = 'V', VSR will contain the right Schur vectors. */ /* Not referenced if JOBVSR = 'N'. */ /* LDVSR (input) INTEGER */ /* The leading dimension of the matrix VSR. LDVSR >= 1, and */ /* if JOBVSR = 'V', LDVSR >= N. */ /* RCONDE (output) REAL array, dimension ( 2 ) */ /* If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the */ /* reciprocal condition numbers for the average of the selected */ /* eigenvalues. */ /* Not referenced if SENSE = 'N' or 'V'. */ /* RCONDV (output) REAL array, dimension ( 2 ) */ /* If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the */ /* reciprocal condition numbers for the selected deflating */ /* subspaces. */ /* Not referenced if SENSE = 'N' or 'E'. */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B', */ /* LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else */ /* LWORK >= max( 8*N, 6*N+16 ). */ /* Note that 2*SDIM*(N-SDIM) <= N*N/2. */ /* Note also that an error is only returned if */ /* LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B' */ /* this may not be large enough. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the bound on the optimal size of the WORK */ /* array and the minimum size of the IWORK array, returns these */ /* values as the first entries of the WORK and IWORK arrays, and */ /* no error message related to LWORK or LIWORK is issued by */ /* XERBLA. */ /* IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK)) */ /* On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */ /* LIWORK (input) INTEGER */ /* The dimension of the array IWORK. */ /* If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise */ /* LIWORK >= N+6. */ /* If LIWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the bound on the optimal size of the */ /* WORK array and the minimum size of the IWORK array, returns */ /* these values as the first entries of the WORK and IWORK */ /* arrays, and no error message related to LWORK or LIWORK is */ /* issued by XERBLA. */ /* BWORK (workspace) LOGICAL array, dimension (N) */ /* Not referenced if SORT = 'N'. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* = 1,...,N: */ /* The QZ iteration failed. (A,B) are not in Schur */ /* form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */ /* be correct for j=INFO+1,...,N. */ /* > N: =N+1: other than QZ iteration failed in SHGEQZ */ /* =N+2: after reordering, roundoff changed values of */ /* some complex eigenvalues so that leading */ /* eigenvalues in the Generalized Schur form no */ /* longer satisfy SELCTG=.TRUE. This could also */ /* be caused due to scaling. */ /* =N+3: reordering failed in STGSEN. */ /* Further details */ /* =============== */ /* An approximate (asymptotic) bound on the average absolute error of */ /* the selected eigenvalues is */ /* EPS * norm((A, B)) / RCONDE( 1 ). */ /* An approximate (asymptotic) bound on the maximum angular error in */ /* the computed deflating subspaces is */ /* EPS * norm((A, B)) / RCONDV( 2 ). */ /* See LAPACK User's Guide, section 4.11 for more information. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Decode the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --alphar; --alphai; --beta; vsl_dim1 = *ldvsl; vsl_offset = 1 + vsl_dim1; vsl -= vsl_offset; vsr_dim1 = *ldvsr; vsr_offset = 1 + vsr_dim1; vsr -= vsr_offset; --rconde; --rcondv; --work; --iwork; --bwork; /* Function Body */ if (lsame_(jobvsl, "N")) { ijobvl = 1; ilvsl = FALSE_; } else if (lsame_(jobvsl, "V")) { ijobvl = 2; ilvsl = TRUE_; } else { ijobvl = -1; ilvsl = FALSE_; } if (lsame_(jobvsr, "N")) { ijobvr = 1; ilvsr = FALSE_; } else if (lsame_(jobvsr, "V")) { ijobvr = 2; ilvsr = TRUE_; } else { ijobvr = -1; ilvsr = FALSE_; } wantst = lsame_(sort, "S"); wantsn = lsame_(sense, "N"); wantse = lsame_(sense, "E"); wantsv = lsame_(sense, "V"); wantsb = lsame_(sense, "B"); lquery = *lwork == -1 || *liwork == -1; if (wantsn) { ijob = 0; } else if (wantse) { ijob = 1; } else if (wantsv) { ijob = 2; } else if (wantsb) { ijob = 4; } /* Test the input arguments */ *info = 0; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (! wantst && ! lsame_(sort, "N")) { *info = -3; } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && ! wantsn) { *info = -5; } else if (*n < 0) { *info = -6; } else if (*lda < max(1,*n)) { *info = -8; } else if (*ldb < max(1,*n)) { *info = -10; } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) { *info = -16; } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) { *info = -18; } /* Compute workspace */ /* (Note: Comments in the code beginning "Workspace:" describe the */ /* minimal amount of workspace needed at that point in the code, */ /* as well as the preferred amount for good performance. */ /* NB refers to the optimal block size for the immediately */ /* following subroutine, as returned by ILAENV.) */ if (*info == 0) { if (*n > 0) { /* Computing MAX */ i__1 = *n << 3, i__2 = *n * 6 + 16; minwrk = max(i__1,i__2); maxwrk = minwrk - *n + *n * ilaenv_(&c__1, "SGEQRF", " ", n, & c__1, n, &c__0); /* Computing MAX */ i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "SORMQR", " ", n, &c__1, n, &c_n1); maxwrk = max(i__1,i__2); if (ilvsl) { /* Computing MAX */ i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "SOR" "GQR", " ", n, &c__1, n, &c_n1); maxwrk = max(i__1,i__2); } lwrk = maxwrk; if (ijob >= 1) { /* Computing MAX */ i__1 = lwrk, i__2 = *n * *n / 2; lwrk = max(i__1,i__2); } } else { minwrk = 1; maxwrk = 1; lwrk = 1; } work[1] = (real) lwrk; if (wantsn || *n == 0) { liwmin = 1; } else { liwmin = *n + 6; } iwork[1] = liwmin; if (*lwork < minwrk && ! lquery) { *info = -22; } else if (*liwork < liwmin && ! lquery) { *info = -24; } } if (*info != 0) { i__1 = -(*info); xerbla_("SGGESX", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { *sdim = 0; return 0; } /* Get machine constants */ eps = slamch_("P"); safmin = slamch_("S"); safmax = 1.f / safmin; slabad_(&safmin, &safmax); smlnum = sqrt(safmin) / eps; bignum = 1.f / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]); ilascl = FALSE_; if (anrm > 0.f && anrm < smlnum) { anrmto = smlnum; ilascl = TRUE_; } else if (anrm > bignum) { anrmto = bignum; ilascl = TRUE_; } if (ilascl) { slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, & ierr); } /* Scale B if max element outside range [SMLNUM,BIGNUM] */ bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]); ilbscl = FALSE_; if (bnrm > 0.f && bnrm < smlnum) { bnrmto = smlnum; ilbscl = TRUE_; } else if (bnrm > bignum) { bnrmto = bignum; ilbscl = TRUE_; } if (ilbscl) { slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & ierr); } /* Permute the matrix to make it more nearly triangular */ /* (Workspace: need 6*N + 2*N for permutation parameters) */ ileft = 1; iright = *n + 1; iwrk = iright + *n; sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[ ileft], &work[iright], &work[iwrk], &ierr); /* Reduce B to triangular form (QR decomposition of B) */ /* (Workspace: need N, prefer N*NB) */ irows = ihi + 1 - ilo; icols = *n + 1 - ilo; itau = iwrk; iwrk = itau + irows; i__1 = *lwork + 1 - iwrk; sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[ iwrk], &i__1, &ierr); /* Apply the orthogonal transformation to matrix A */ /* (Workspace: need N, prefer N*NB) */ i__1 = *lwork + 1 - iwrk; sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, & work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, & ierr); /* Initialize VSL */ /* (Workspace: need N, prefer N*NB) */ if (ilvsl) { slaset_("Full", n, n, &c_b42, &c_b43, &vsl[vsl_offset], ldvsl); if (irows > 1) { i__1 = irows - 1; i__2 = irows - 1; slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ ilo + 1 + ilo * vsl_dim1], ldvsl); } i__1 = *lwork + 1 - iwrk; sorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, & work[itau], &work[iwrk], &i__1, &ierr); } /* Initialize VSR */ if (ilvsr) { slaset_("Full", n, n, &c_b42, &c_b43, &vsr[vsr_offset], ldvsr); } /* Reduce to generalized Hessenberg form */ /* (Workspace: none needed) */ sgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr); *sdim = 0; /* Perform QZ algorithm, computing Schur vectors if desired */ /* (Workspace: need N) */ iwrk = itau; i__1 = *lwork + 1 - iwrk; shgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset] , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr); if (ierr != 0) { if (ierr > 0 && ierr <= *n) { *info = ierr; } else if (ierr > *n && ierr <= *n << 1) { *info = ierr - *n; } else { *info = *n + 1; } goto L50; } /* Sort eigenvalues ALPHA/BETA and compute the reciprocal of */ /* condition number(s) */ /* (Workspace: If IJOB >= 1, need MAX( 8*(N+1), 2*SDIM*(N-SDIM) ) */ /* otherwise, need 8*(N+1) ) */ if (wantst) { /* Undo scaling on eigenvalues before SELCTGing */ if (ilascl) { slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &ierr); slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &ierr); } if (ilbscl) { slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &ierr); } /* Select eigenvalues */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]); /* L10: */ } /* Reorder eigenvalues, transform Generalized Schur vectors, and */ /* compute reciprocal condition numbers */ i__1 = *lwork - iwrk + 1; stgsen_(&ijob, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[ b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[ vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pl, &pr, dif, &work[iwrk], &i__1, &iwork[1], liwork, &ierr); if (ijob >= 1) { /* Computing MAX */ i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim); maxwrk = max(i__1,i__2); } if (ierr == -22) { /* not enough real workspace */ *info = -22; } else { if (ijob == 1 || ijob == 4) { rconde[1] = pl; rconde[2] = pr; } if (ijob == 2 || ijob == 4) { rcondv[1] = dif[0]; rcondv[2] = dif[1]; } if (ierr == 1) { *info = *n + 3; } } } /* Apply permutation to VSL and VSR */ /* (Workspace: none needed) */ if (ilvsl) { sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[ vsl_offset], ldvsl, &ierr); } if (ilvsr) { sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[ vsr_offset], ldvsr, &ierr); } /* Check if unscaling would cause over/underflow, if so, rescale */ /* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of */ /* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */ if (ilascl) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (alphai[i__] != 0.f) { if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[ i__] > anrm / anrmto) { work[1] = (r__1 = a[i__ + i__ * a_dim1] / alphar[i__], dabs(r__1)); beta[i__] *= work[1]; alphar[i__] *= work[1]; alphai[i__] *= work[1]; } else if (alphai[i__] / safmax > anrmto / anrm || safmin / alphai[i__] > anrm / anrmto) { work[1] = (r__1 = a[i__ + (i__ + 1) * a_dim1] / alphai[ i__], dabs(r__1)); beta[i__] *= work[1]; alphar[i__] *= work[1]; alphai[i__] *= work[1]; } } /* L20: */ } } if (ilbscl) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (alphai[i__] != 0.f) { if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__] > bnrm / bnrmto) { work[1] = (r__1 = b[i__ + i__ * b_dim1] / beta[i__], dabs( r__1)); beta[i__] *= work[1]; alphar[i__] *= work[1]; alphai[i__] *= work[1]; } } /* L25: */ } } /* Undo scaling */ if (ilascl) { slascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, & ierr); slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, & ierr); slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, & ierr); } if (ilbscl) { slascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, & ierr); slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & ierr); } if (wantst) { /* Check if reordering is correct */ lastsl = TRUE_; lst2sl = TRUE_; *sdim = 0; ip = 0; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]); if (alphai[i__] == 0.f) { if (cursl) { ++(*sdim); } ip = 0; if (cursl && ! lastsl) { *info = *n + 2; } } else { if (ip == 1) { /* Last eigenvalue of conjugate pair */ cursl = cursl || lastsl; lastsl = cursl; if (cursl) { *sdim += 2; } ip = -1; if (cursl && ! lst2sl) { *info = *n + 2; } } else { /* First eigenvalue of conjugate pair */ ip = 1; } } lst2sl = lastsl; lastsl = cursl; /* L40: */ } } L50: work[1] = (real) maxwrk; iwork[1] = liwmin; return 0; /* End of SGGESX */ } /* sggesx_ */
/* Subroutine */ int sorgtr_(char *uplo, integer *n, real *a, integer *lda, real *tau, real *work, integer *lwork, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= SORGTR generates a real orthogonal matrix Q which is defined as the product of n-1 elementary reflectors of order N, as returned by SSYTRD: if UPLO = 'U', Q = H(n-1) . . . H(2) H(1), if UPLO = 'L', Q = H(1) H(2) . . . H(n-1). Arguments ========= UPLO (input) CHARACTER*1 = 'U': Upper triangle of A contains elementary reflectors from SSYTRD; = 'L': Lower triangle of A contains elementary reflectors from SSYTRD. N (input) INTEGER The order of the matrix Q. N >= 0. A (input/output) REAL array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by SSYTRD. On exit, the N-by-N orthogonal matrix Q. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). TAU (input) REAL array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by SSYTRD. WORK (workspace/output) REAL array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,N-1). For optimum performance LWORK >= (N-1)*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== Test the input arguments Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ static integer i__, j; extern logical lsame_(char *, char *); static integer iinfo; static logical upper; static integer nb; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int sorgql_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *), sorgqr_( integer *, integer *, integer *, real *, integer *, real *, real * , integer *, integer *); static logical lquery; static integer lwkopt; #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; lquery = *lwork == -1; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = *n - 1; if (*lwork < max(i__1,i__2) && ! lquery) { *info = -7; } } if (*info == 0) { if (upper) { i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; nb = ilaenv_(&c__1, "SORGQL", " ", &i__1, &i__2, &i__3, &c_n1, ( ftnlen)6, (ftnlen)1); } else { i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; nb = ilaenv_(&c__1, "SORGQR", " ", &i__1, &i__2, &i__3, &c_n1, ( ftnlen)6, (ftnlen)1); } /* Computing MAX */ i__1 = 1, i__2 = *n - 1; lwkopt = max(i__1,i__2) * nb; work[1] = (real) lwkopt; } if (*info != 0) { i__1 = -(*info); xerbla_("SORGTR", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { work[1] = 1.f; return 0; } if (upper) { /* Q was determined by a call to SSYTRD with UPLO = 'U' Shift the vectors which define the elementary reflectors one column to the left, and set the last row and column of Q to those of the unit matrix */ i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { a_ref(i__, j) = a_ref(i__, j + 1); /* L10: */ } a_ref(*n, j) = 0.f; /* L20: */ } i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { a_ref(i__, *n) = 0.f; /* L30: */ } a_ref(*n, *n) = 1.f; /* Generate Q(1:n-1,1:n-1) */ i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; sorgql_(&i__1, &i__2, &i__3, &a[a_offset], lda, &tau[1], &work[1], lwork, &iinfo); } else { /* Q was determined by a call to SSYTRD with UPLO = 'L'. Shift the vectors which define the elementary reflectors one column to the right, and set the first row and column of Q to those of the unit matrix */ for (j = *n; j >= 2; --j) { a_ref(1, j) = 0.f; i__1 = *n; for (i__ = j + 1; i__ <= i__1; ++i__) { a_ref(i__, j) = a_ref(i__, j - 1); /* L40: */ } /* L50: */ } a_ref(1, 1) = 1.f; i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { a_ref(i__, 1) = 0.f; /* L60: */ } if (*n > 1) { /* Generate Q(2:n,2:n) */ i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; sorgqr_(&i__1, &i__2, &i__3, &a_ref(2, 2), lda, &tau[1], &work[1], lwork, &iinfo); } } work[1] = (real) lwkopt; return 0; /* End of SORGTR */ } /* sorgtr_ */
/* Subroutine */ int sgegv_(char *jobvl, char *jobvr, integer *n, real *a, integer *lda, real *b, integer *ldb, real *alphar, real *alphai, real *beta, real *vl, integer *ldvl, real *vr, integer *ldvr, real *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2; real r__1, r__2, r__3, r__4; /* Local variables */ integer jc, nb, in, jr, nb1, nb2, nb3, ihi, ilo; real eps; logical ilv; real absb, anrm, bnrm; integer itau; real temp; logical ilvl, ilvr; integer lopt; real anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta; extern logical lsame_(char *, char *); integer ileft, iinfo, icols, iwork, irows; real salfai; extern /* Subroutine */ int sggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, integer * ), sggbal_(char *, integer *, real *, integer *, real *, integer *, integer *, integer *, real *, real *, real *, integer *); real salfar; extern real slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); real safmin; extern /* Subroutine */ int sgghrd_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer * , real *, integer *, integer *); real safmax; char chtemp[1]; logical ldumma[1]; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer ijobvl, iright; logical ilimit; extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer *, real *, real *, integer *, integer *); integer ijobvr; extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), stgevc_( char *, char *, logical *, integer *, real *, integer *, real *, integer *, real *, integer *, real *, integer *, integer *, integer *, real *, integer *); real onepls; integer lwkmin; extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real * , real *, real *, real *, integer *, real *, integer *, real *, integer *, integer *), sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer * , integer *); integer lwkopt; logical lquery; extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, integer *); /* -- LAPACK driver routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Decode the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --alphar; --alphai; --beta; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1; vr -= vr_offset; --work; /* Function Body */ if (lsame_(jobvl, "N")) { ijobvl = 1; ilvl = FALSE_; } else if (lsame_(jobvl, "V")) { ijobvl = 2; ilvl = TRUE_; } else { ijobvl = -1; ilvl = FALSE_; } if (lsame_(jobvr, "N")) { ijobvr = 1; ilvr = FALSE_; } else if (lsame_(jobvr, "V")) { ijobvr = 2; ilvr = TRUE_; } else { ijobvr = -1; ilvr = FALSE_; } ilv = ilvl || ilvr; /* Test the input arguments */ /* Computing MAX */ i__1 = *n << 3; lwkmin = max(i__1,1); lwkopt = lwkmin; work[1] = (real) lwkopt; lquery = *lwork == -1; *info = 0; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } else if (*ldvl < 1 || ilvl && *ldvl < *n) { *info = -12; } else if (*ldvr < 1 || ilvr && *ldvr < *n) { *info = -14; } else if (*lwork < lwkmin && ! lquery) { *info = -16; } if (*info == 0) { nb1 = ilaenv_(&c__1, "SGEQRF", " ", n, n, &c_n1, &c_n1); nb2 = ilaenv_(&c__1, "SORMQR", " ", n, n, n, &c_n1); nb3 = ilaenv_(&c__1, "SORGQR", " ", n, n, n, &c_n1); /* Computing MAX */ i__1 = max(nb1,nb2); nb = max(i__1,nb3); /* Computing MAX */ i__1 = *n * 6; i__2 = *n * (nb + 1); // , expr subst lopt = (*n << 1) + max(i__1,i__2); work[1] = (real) lopt; } if (*info != 0) { i__1 = -(*info); xerbla_("SGEGV ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = slamch_("E") * slamch_("B"); safmin = slamch_("S"); safmin += safmin; safmax = 1.f / safmin; onepls = eps * 4 + 1.f; /* Scale A */ anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]); anrm1 = anrm; anrm2 = 1.f; if (anrm < 1.f) { if (safmax * anrm < 1.f) { anrm1 = safmin; anrm2 = safmax * anrm; } } if (anrm > 0.f) { slascl_("G", &c_n1, &c_n1, &anrm, &c_b27, n, n, &a[a_offset], lda, & iinfo); if (iinfo != 0) { *info = *n + 10; return 0; } } /* Scale B */ bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]); bnrm1 = bnrm; bnrm2 = 1.f; if (bnrm < 1.f) { if (safmax * bnrm < 1.f) { bnrm1 = safmin; bnrm2 = safmax * bnrm; } } if (bnrm > 0.f) { slascl_("G", &c_n1, &c_n1, &bnrm, &c_b27, n, n, &b[b_offset], ldb, & iinfo); if (iinfo != 0) { *info = *n + 10; return 0; } } /* Permute the matrix to make it more nearly triangular */ /* Workspace layout: (8*N words -- "work" requires 6*N words) */ /* left_permutation, right_permutation, work... */ ileft = 1; iright = *n + 1; iwork = iright + *n; sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[ ileft], &work[iright], &work[iwork], &iinfo); if (iinfo != 0) { *info = *n + 1; goto L120; } /* Reduce B to triangular form, and initialize VL and/or VR */ /* Workspace layout: ("work..." must have at least N words) */ /* left_permutation, right_permutation, tau, work... */ irows = ihi + 1 - ilo; if (ilv) { icols = *n + 1 - ilo; } else { icols = irows; } itau = iwork; iwork = itau + irows; i__1 = *lwork + 1 - iwork; sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[ iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt; i__2 = (integer) work[iwork] + iwork - 1; // , expr subst lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 2; goto L120; } i__1 = *lwork + 1 - iwork; sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, & work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, & iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt; i__2 = (integer) work[iwork] + iwork - 1; // , expr subst lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 3; goto L120; } if (ilvl) { slaset_("Full", n, n, &c_b38, &c_b27, &vl[vl_offset], ldvl) ; i__1 = irows - 1; i__2 = irows - 1; slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[ilo + 1 + ilo * vl_dim1], ldvl); i__1 = *lwork + 1 - iwork; sorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[ itau], &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt; i__2 = (integer) work[iwork] + iwork - 1; // , expr subst lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 4; goto L120; } } if (ilvr) { slaset_("Full", n, n, &c_b38, &c_b27, &vr[vr_offset], ldvr) ; } /* Reduce to generalized Hessenberg form */ if (ilv) { /* Eigenvectors requested -- work on whole matrix. */ sgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo); } else { sgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda, &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[ vr_offset], ldvr, &iinfo); } if (iinfo != 0) { *info = *n + 5; goto L120; } /* Perform QZ algorithm */ /* Workspace layout: ("work..." must have at least 1 word) */ /* left_permutation, right_permutation, work... */ iwork = itau; if (ilv) { *(unsigned char *)chtemp = 'S'; } else { *(unsigned char *)chtemp = 'E'; } i__1 = *lwork + 1 - iwork; shgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt; i__2 = (integer) work[iwork] + iwork - 1; // , expr subst lwkopt = max(i__1,i__2); } if (iinfo != 0) { if (iinfo > 0 && iinfo <= *n) { *info = iinfo; } else if (iinfo > *n && iinfo <= *n << 1) { *info = iinfo - *n; } else { *info = *n + 6; } goto L120; } if (ilv) { /* Compute Eigenvectors (STGEVC requires 6*N words of workspace) */ if (ilvl) { if (ilvr) { *(unsigned char *)chtemp = 'B'; } else { *(unsigned char *)chtemp = 'L'; } } else { *(unsigned char *)chtemp = 'R'; } stgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[ iwork], &iinfo); if (iinfo != 0) { *info = *n + 7; goto L120; } /* Undo balancing on VL and VR, rescale */ if (ilvl) { sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, & vl[vl_offset], ldvl, &iinfo); if (iinfo != 0) { *info = *n + 8; goto L120; } i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { if (alphai[jc] < 0.f) { goto L50; } temp = 0.f; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__2 = temp; r__3 = (r__1 = vl[jr + jc * vl_dim1], f2c_abs(r__1)); // , expr subst temp = max(r__2,r__3); /* L10: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__3 = temp; r__4 = (r__1 = vl[jr + jc * vl_dim1], f2c_abs(r__1)) + (r__2 = vl[jr + (jc + 1) * vl_dim1], f2c_abs(r__2)); // , expr subst temp = max(r__3,r__4); /* L20: */ } } if (temp < safmin) { goto L50; } temp = 1.f / temp; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vl[jr + jc * vl_dim1] *= temp; /* L30: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vl[jr + jc * vl_dim1] *= temp; vl[jr + (jc + 1) * vl_dim1] *= temp; /* L40: */ } } L50: ; } } if (ilvr) { sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, & vr[vr_offset], ldvr, &iinfo); if (iinfo != 0) { *info = *n + 9; goto L120; } i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { if (alphai[jc] < 0.f) { goto L100; } temp = 0.f; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__2 = temp; r__3 = (r__1 = vr[jr + jc * vr_dim1], f2c_abs(r__1)); // , expr subst temp = max(r__2,r__3); /* L60: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__3 = temp; r__4 = (r__1 = vr[jr + jc * vr_dim1], f2c_abs(r__1)) + (r__2 = vr[jr + (jc + 1) * vr_dim1], f2c_abs(r__2)); // , expr subst temp = max(r__3,r__4); /* L70: */ } } if (temp < safmin) { goto L100; } temp = 1.f / temp; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vr[jr + jc * vr_dim1] *= temp; /* L80: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vr[jr + jc * vr_dim1] *= temp; vr[jr + (jc + 1) * vr_dim1] *= temp; /* L90: */ } } L100: ; } } /* End of eigenvector calculation */ } /* Undo scaling in alpha, beta */ /* Note: this does not give the alpha and beta for the unscaled */ /* problem. */ /* Un-scaling is limited to avoid underflow in alpha and beta */ /* if they are significant. */ i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { absar = (r__1 = alphar[jc], f2c_abs(r__1)); absai = (r__1 = alphai[jc], f2c_abs(r__1)); absb = (r__1 = beta[jc], f2c_abs(r__1)); salfar = anrm * alphar[jc]; salfai = anrm * alphai[jc]; sbeta = bnrm * beta[jc]; ilimit = FALSE_; scale = 1.f; /* Check for significant underflow in ALPHAI */ /* Computing MAX */ r__1 = safmin, r__2 = eps * absar; r__1 = max(r__1,r__2); r__2 = eps * absb; // ; expr subst if (f2c_abs(salfai) < safmin && absai >= max(r__1,r__2)) { ilimit = TRUE_; /* Computing MAX */ r__1 = onepls * safmin; r__2 = anrm2 * absai; // , expr subst scale = onepls * safmin / anrm1 / max(r__1,r__2); } else if (salfai == 0.f) { /* If insignificant underflow in ALPHAI, then make the */ /* conjugate eigenvalue real. */ if (alphai[jc] < 0.f && jc > 1) { alphai[jc - 1] = 0.f; } else if (alphai[jc] > 0.f && jc < *n) { alphai[jc + 1] = 0.f; } } /* Check for significant underflow in ALPHAR */ /* Computing MAX */ r__1 = safmin, r__2 = eps * absai; r__1 = max(r__1,r__2); r__2 = eps * absb; // ; expr subst if (f2c_abs(salfar) < safmin && absar >= max(r__1,r__2)) { ilimit = TRUE_; /* Computing MAX */ /* Computing MAX */ r__3 = onepls * safmin; r__4 = anrm2 * absar; // , expr subst r__1 = scale; r__2 = onepls * safmin / anrm1 / max(r__3,r__4); // , expr subst scale = max(r__1,r__2); } /* Check for significant underflow in BETA */ /* Computing MAX */ r__1 = safmin, r__2 = eps * absar; r__1 = max(r__1,r__2); r__2 = eps * absai; // ; expr subst if (f2c_abs(sbeta) < safmin && absb >= max(r__1,r__2)) { ilimit = TRUE_; /* Computing MAX */ /* Computing MAX */ r__3 = onepls * safmin; r__4 = bnrm2 * absb; // , expr subst r__1 = scale; r__2 = onepls * safmin / bnrm1 / max(r__3,r__4); // , expr subst scale = max(r__1,r__2); } /* Check for possible overflow when limiting scaling */ if (ilimit) { /* Computing MAX */ r__1 = f2c_abs(salfar), r__2 = f2c_abs(salfai); r__1 = max(r__1,r__2); r__2 = f2c_abs(sbeta); // ; expr subst temp = scale * safmin * max(r__1,r__2); if (temp > 1.f) { scale /= temp; } if (scale < 1.f) { ilimit = FALSE_; } } /* Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary. */ if (ilimit) { salfar = scale * alphar[jc] * anrm; salfai = scale * alphai[jc] * anrm; sbeta = scale * beta[jc] * bnrm; } alphar[jc] = salfar; alphai[jc] = salfai; beta[jc] = sbeta; /* L110: */ } L120: work[1] = (real) lwkopt; return 0; /* End of SGEGV */ }
/* Subroutine */ int sggev_(char *jobvl, char *jobvr, integer *n, real *a, integer *lda, real *b, integer *ldb, real *alphar, real *alphai, real *beta, real *vl, integer *ldvl, real *vr, integer *ldvr, real *work, integer *lwork, integer *info) { /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= SGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors. A generalized eigenvalue for a pair of matrices (A,B) is a scalar lambda or a ratio alpha/beta = lambda, such that A - lambda*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero. The right eigenvector v(j) corresponding to the eigenvalue lambda(j) of (A,B) satisfies A * v(j) = lambda(j) * B * v(j). The left eigenvector u(j) corresponding to the eigenvalue lambda(j) of (A,B) satisfies u(j)**H * A = lambda(j) * u(j)**H * B . where u(j)**H is the conjugate-transpose of u(j). Arguments ========= JOBVL (input) CHARACTER*1 = 'N': do not compute the left generalized eigenvectors; = 'V': compute the left generalized eigenvectors. JOBVR (input) CHARACTER*1 = 'N': do not compute the right generalized eigenvectors; = 'V': compute the right generalized eigenvectors. N (input) INTEGER The order of the matrices A, B, VL, and VR. N >= 0. A (input/output) REAL array, dimension (LDA, N) On entry, the matrix A in the pair (A,B). On exit, A has been overwritten. LDA (input) INTEGER The leading dimension of A. LDA >= max(1,N). B (input/output) REAL array, dimension (LDB, N) On entry, the matrix B in the pair (A,B). On exit, B has been overwritten. LDB (input) INTEGER The leading dimension of B. LDB >= max(1,N). ALPHAR (output) REAL array, dimension (N) ALPHAI (output) REAL array, dimension (N) BETA (output) REAL array, dimension (N) On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will be the generalized eigenvalues. If ALPHAI(j) is zero, then the j-th eigenvalue is real; if positive, then the j-th and (j+1)-st eigenvalues are a complex conjugate pair, with ALPHAI(j+1) negative. Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) may easily over- or underflow, and BETA(j) may even be zero. Thus, the user should avoid naively computing the ratio alpha/beta. However, ALPHAR and ALPHAI will be always less than and usually comparable with norm(A) in magnitude, and BETA always less than and usually comparable with norm(B). VL (output) REAL array, dimension (LDVL,N) If JOBVL = 'V', the left eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. If the j-th eigenvalue is real, then u(j) = VL(:,j), the j-th column of VL. If the j-th and (j+1)-th eigenvalues form a complex conjugate pair, then u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). Each eigenvector will be scaled so the largest component have abs(real part)+abs(imag. part)=1. Not referenced if JOBVL = 'N'. LDVL (input) INTEGER The leading dimension of the matrix VL. LDVL >= 1, and if JOBVL = 'V', LDVL >= N. VR (output) REAL array, dimension (LDVR,N) If JOBVR = 'V', the right eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. If the j-th eigenvalue is real, then v(j) = VR(:,j), the j-th column of VR. If the j-th and (j+1)-th eigenvalues form a complex conjugate pair, then v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). Each eigenvector will be scaled so the largest component have abs(real part)+abs(imag. part)=1. Not referenced if JOBVR = 'N'. LDVR (input) INTEGER The leading dimension of the matrix VR. LDVR >= 1, and if JOBVR = 'V', LDVR >= N. WORK (workspace/output) REAL array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,8*N). For good performance, LWORK must generally be larger. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. = 1,...,N: The QZ iteration failed. No eigenvectors have been calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) should be correct for j=INFO+1,...,N. > N: =N+1: other than QZ iteration failed in SHGEQZ. =N+2: error return from STGEVC. ===================================================================== Decode the input arguments Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c__0 = 0; static real c_b26 = 0.f; static real c_b27 = 1.f; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2; real r__1, r__2, r__3, r__4; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static real anrm, bnrm; static integer ierr, itau; static real temp; static logical ilvl, ilvr; static integer iwrk; extern logical lsame_(char *, char *); static integer ileft, icols, irows, jc; extern /* Subroutine */ int slabad_(real *, real *); static integer in, jr; extern /* Subroutine */ int sggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, integer * ), sggbal_(char *, integer *, real *, integer *, real *, integer *, integer *, integer *, real *, real *, real *, integer *); static logical ilascl, ilbscl; extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int xerbla_(char *, integer *), sgghrd_( char *, char *, integer *, integer *, integer *, real *, integer * , real *, integer *, real *, integer *, real *, integer *, integer *); static logical ldumma[1]; static char chtemp[1]; static real bignum; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); static integer ijobvl, iright; extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer *, real *, real *, integer *, integer *); static integer ijobvr; extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), stgevc_( char *, char *, logical *, integer *, real *, integer *, real *, integer *, real *, integer *, real *, integer *, integer *, integer *, real *, integer *); static real anrmto, bnrmto; extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real * , real *, real *, real *, integer *, real *, integer *, real *, integer *, integer *); static integer minwrk, maxwrk; static real smlnum; extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *); static logical lquery; extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, integer *); static integer ihi, ilo; static real eps; static logical ilv; #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] #define vl_ref(a_1,a_2) vl[(a_2)*vl_dim1 + a_1] #define vr_ref(a_1,a_2) vr[(a_2)*vr_dim1 + a_1] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --alphar; --alphai; --beta; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1 * 1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1 * 1; vr -= vr_offset; --work; /* Function Body */ if (lsame_(jobvl, "N")) { ijobvl = 1; ilvl = FALSE_; } else if (lsame_(jobvl, "V")) { ijobvl = 2; ilvl = TRUE_; } else { ijobvl = -1; ilvl = FALSE_; } if (lsame_(jobvr, "N")) { ijobvr = 1; ilvr = FALSE_; } else if (lsame_(jobvr, "V")) { ijobvr = 2; ilvr = TRUE_; } else { ijobvr = -1; ilvr = FALSE_; } ilv = ilvl || ilvr; /* Test the input arguments */ *info = 0; lquery = *lwork == -1; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } else if (*ldvl < 1 || ilvl && *ldvl < *n) { *info = -12; } else if (*ldvr < 1 || ilvr && *ldvr < *n) { *info = -14; } /* Compute workspace (Note: Comments in the code beginning "Workspace:" describe the minimal amount of workspace needed at that point in the code, as well as the preferred amount for good performance. NB refers to the optimal block size for the immediately following subroutine, as returned by ILAENV. The workspace is computed assuming ILO = 1 and IHI = N, the worst case.) */ minwrk = 1; if (*info == 0 && (*lwork >= 1 || lquery)) { maxwrk = *n * 7 + *n * ilaenv_(&c__1, "SGEQRF", " ", n, &c__1, n, & c__0, (ftnlen)6, (ftnlen)1); /* Computing MAX */ i__1 = 1, i__2 = *n << 3; minwrk = max(i__1,i__2); work[1] = (real) maxwrk; } if (*lwork < minwrk && ! lquery) { *info = -16; } if (*info != 0) { i__1 = -(*info); xerbla_("SGGEV ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = slamch_("P"); smlnum = slamch_("S"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); smlnum = sqrt(smlnum) / eps; bignum = 1.f / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]); ilascl = FALSE_; if (anrm > 0.f && anrm < smlnum) { anrmto = smlnum; ilascl = TRUE_; } else if (anrm > bignum) { anrmto = bignum; ilascl = TRUE_; } if (ilascl) { slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, & ierr); } /* Scale B if max element outside range [SMLNUM,BIGNUM] */ bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]); ilbscl = FALSE_; if (bnrm > 0.f && bnrm < smlnum) { bnrmto = smlnum; ilbscl = TRUE_; } else if (bnrm > bignum) { bnrmto = bignum; ilbscl = TRUE_; } if (ilbscl) { slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & ierr); } /* Permute the matrices A, B to isolate eigenvalues if possible (Workspace: need 6*N) */ ileft = 1; iright = *n + 1; iwrk = iright + *n; sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[ ileft], &work[iright], &work[iwrk], &ierr); /* Reduce B to triangular form (QR decomposition of B) (Workspace: need N, prefer N*NB) */ irows = ihi + 1 - ilo; if (ilv) { icols = *n + 1 - ilo; } else { icols = irows; } itau = iwrk; iwrk = itau + irows; i__1 = *lwork + 1 - iwrk; sgeqrf_(&irows, &icols, &b_ref(ilo, ilo), ldb, &work[itau], &work[iwrk], & i__1, &ierr); /* Apply the orthogonal transformation to matrix A (Workspace: need N, prefer N*NB) */ i__1 = *lwork + 1 - iwrk; sormqr_("L", "T", &irows, &icols, &irows, &b_ref(ilo, ilo), ldb, &work[ itau], &a_ref(ilo, ilo), lda, &work[iwrk], &i__1, &ierr); /* Initialize VL (Workspace: need N, prefer N*NB) */ if (ilvl) { slaset_("Full", n, n, &c_b26, &c_b27, &vl[vl_offset], ldvl) ; i__1 = irows - 1; i__2 = irows - 1; slacpy_("L", &i__1, &i__2, &b_ref(ilo + 1, ilo), ldb, &vl_ref(ilo + 1, ilo), ldvl); i__1 = *lwork + 1 - iwrk; sorgqr_(&irows, &irows, &irows, &vl_ref(ilo, ilo), ldvl, &work[itau], &work[iwrk], &i__1, &ierr); } /* Initialize VR */ if (ilvr) { slaset_("Full", n, n, &c_b26, &c_b27, &vr[vr_offset], ldvr) ; } /* Reduce to generalized Hessenberg form (Workspace: none needed) */ if (ilv) { /* Eigenvectors requested -- work on whole matrix. */ sgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr); } else { sgghrd_("N", "N", &irows, &c__1, &irows, &a_ref(ilo, ilo), lda, & b_ref(ilo, ilo), ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr); } /* Perform QZ algorithm (Compute eigenvalues, and optionally, the Schur forms and Schur vectors) (Workspace: need N) */ iwrk = itau; if (ilv) { *(unsigned char *)chtemp = 'S'; } else { *(unsigned char *)chtemp = 'E'; } i__1 = *lwork + 1 - iwrk; shgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[iwrk], &i__1, &ierr); if (ierr != 0) { if (ierr > 0 && ierr <= *n) { *info = ierr; } else if (ierr > *n && ierr <= *n << 1) { *info = ierr - *n; } else { *info = *n + 1; } goto L110; } /* Compute Eigenvectors (Workspace: need 6*N) */ if (ilv) { if (ilvl) { if (ilvr) { *(unsigned char *)chtemp = 'B'; } else { *(unsigned char *)chtemp = 'L'; } } else { *(unsigned char *)chtemp = 'R'; } stgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[ iwrk], &ierr); if (ierr != 0) { *info = *n + 2; goto L110; } /* Undo balancing on VL and VR and normalization (Workspace: none needed) */ if (ilvl) { sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, & vl[vl_offset], ldvl, &ierr); i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { if (alphai[jc] < 0.f) { goto L50; } temp = 0.f; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__2 = temp, r__3 = (r__1 = vl_ref(jr, jc), dabs(r__1) ); temp = dmax(r__2,r__3); /* L10: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__3 = temp, r__4 = (r__1 = vl_ref(jr, jc), dabs(r__1) ) + (r__2 = vl_ref(jr, jc + 1), dabs(r__2)); temp = dmax(r__3,r__4); /* L20: */ } } if (temp < smlnum) { goto L50; } temp = 1.f / temp; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vl_ref(jr, jc) = vl_ref(jr, jc) * temp; /* L30: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vl_ref(jr, jc) = vl_ref(jr, jc) * temp; vl_ref(jr, jc + 1) = vl_ref(jr, jc + 1) * temp; /* L40: */ } } L50: ; } } if (ilvr) { sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, & vr[vr_offset], ldvr, &ierr); i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { if (alphai[jc] < 0.f) { goto L100; } temp = 0.f; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__2 = temp, r__3 = (r__1 = vr_ref(jr, jc), dabs(r__1) ); temp = dmax(r__2,r__3); /* L60: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__3 = temp, r__4 = (r__1 = vr_ref(jr, jc), dabs(r__1) ) + (r__2 = vr_ref(jr, jc + 1), dabs(r__2)); temp = dmax(r__3,r__4); /* L70: */ } } if (temp < smlnum) { goto L100; } temp = 1.f / temp; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vr_ref(jr, jc) = vr_ref(jr, jc) * temp; /* L80: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vr_ref(jr, jc) = vr_ref(jr, jc) * temp; vr_ref(jr, jc + 1) = vr_ref(jr, jc + 1) * temp; /* L90: */ } } L100: ; } } /* End of eigenvector calculation */ } /* Undo scaling if necessary */ if (ilascl) { slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, & ierr); slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, & ierr); } if (ilbscl) { slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & ierr); } L110: work[1] = (real) maxwrk; return 0; /* End of SGGEV */ } /* sggev_ */
/* Subroutine */ int sgegs_(char *jobvsl, char *jobvsr, integer *n, real *a, integer *lda, real *b, integer *ldb, real *alphar, real *alphai, real *beta, real *vsl, integer *ldvsl, real *vsr, integer *ldvsr, real * work, integer *lwork, integer *info) { /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= This routine is deprecated and has been replaced by routine SGGES. SGEGS computes for a pair of N-by-N real nonsymmetric matrices A, B: the generalized eigenvalues (alphar +/- alphai*i, beta), the real Schur form (A, B), and optionally left and/or right Schur vectors (VSL and VSR). (If only the generalized eigenvalues are needed, use the driver SGEGV instead.) A generalized eigenvalue for a pair of matrices (A,B) is, roughly speaking, a scalar w or a ratio alpha/beta = w, such that A - w*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero. A good beginning reference is the book, "Matrix Computations", by G. Golub & C. van Loan (Johns Hopkins U. Press) The (generalized) Schur form of a pair of matrices is the result of multiplying both matrices on the left by one orthogonal matrix and both on the right by another orthogonal matrix, these two orthogonal matrices being chosen so as to bring the pair of matrices into (real) Schur form. A pair of matrices A, B is in generalized real Schur form if B is upper triangular with non-negative diagonal and A is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized eigenvalues, while 2-by-2 blocks of A will be "standardized" by making the corresponding elements of B have the form: [ a 0 ] [ 0 b ] and the pair of corresponding 2-by-2 blocks in A and B will have a complex conjugate pair of generalized eigenvalues. The left and right Schur vectors are the columns of VSL and VSR, respectively, where VSL and VSR are the orthogonal matrices which reduce A and B to Schur form: Schur form of (A,B) = ( (VSL)**T A (VSR), (VSL)**T B (VSR) ) Arguments ========= JOBVSL (input) CHARACTER*1 = 'N': do not compute the left Schur vectors; = 'V': compute the left Schur vectors. JOBVSR (input) CHARACTER*1 = 'N': do not compute the right Schur vectors; = 'V': compute the right Schur vectors. N (input) INTEGER The order of the matrices A, B, VSL, and VSR. N >= 0. A (input/output) REAL array, dimension (LDA, N) On entry, the first of the pair of matrices whose generalized eigenvalues and (optionally) Schur vectors are to be computed. On exit, the generalized Schur form of A. Note: to avoid overflow, the Frobenius norm of the matrix A should be less than the overflow threshold. LDA (input) INTEGER The leading dimension of A. LDA >= max(1,N). B (input/output) REAL array, dimension (LDB, N) On entry, the second of the pair of matrices whose generalized eigenvalues and (optionally) Schur vectors are to be computed. On exit, the generalized Schur form of B. Note: to avoid overflow, the Frobenius norm of the matrix B should be less than the overflow threshold. LDB (input) INTEGER The leading dimension of B. LDB >= max(1,N). ALPHAR (output) REAL array, dimension (N) ALPHAI (output) REAL array, dimension (N) BETA (output) REAL array, dimension (N) On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i, j=1,...,N and BETA(j),j=1,...,N are the diagonals of the complex Schur form (A,B) that would result if the 2-by-2 diagonal blocks of the real Schur form of (A,B) were further reduced to triangular form using 2-by-2 complex unitary transformations. If ALPHAI(j) is zero, then the j-th eigenvalue is real; if positive, then the j-th and (j+1)-st eigenvalues are a complex conjugate pair, with ALPHAI(j+1) negative. Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) may easily over- or underflow, and BETA(j) may even be zero. Thus, the user should avoid naively computing the ratio alpha/beta. However, ALPHAR and ALPHAI will be always less than and usually comparable with norm(A) in magnitude, and BETA always less than and usually comparable with norm(B). VSL (output) REAL array, dimension (LDVSL,N) If JOBVSL = 'V', VSL will contain the left Schur vectors. (See "Purpose", above.) Not referenced if JOBVSL = 'N'. LDVSL (input) INTEGER The leading dimension of the matrix VSL. LDVSL >=1, and if JOBVSL = 'V', LDVSL >= N. VSR (output) REAL array, dimension (LDVSR,N) If JOBVSR = 'V', VSR will contain the right Schur vectors. (See "Purpose", above.) Not referenced if JOBVSR = 'N'. LDVSR (input) INTEGER The leading dimension of the matrix VSR. LDVSR >= 1, and if JOBVSR = 'V', LDVSR >= N. WORK (workspace/output) REAL array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,4*N). For good performance, LWORK must generally be larger. To compute the optimal value of LWORK, call ILAENV to get blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute: NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR The optimal LWORK is 2*N + N*(NB+1). If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. = 1,...,N: The QZ iteration failed. (A,B) are not in Schur form, but ALPHAR(j), ALPHAI(j), and BETA(j) should be correct for j=INFO+1,...,N. > N: errors that usually indicate LAPACK problems: =N+1: error return from SGGBAL =N+2: error return from SGEQRF =N+3: error return from SORMQR =N+4: error return from SORGQR =N+5: error return from SGGHRD =N+6: error return from SHGEQZ (other than failed iteration) =N+7: error return from SGGBAK (computing VSL) =N+8: error return from SGGBAK (computing VSR) =N+9: error return from SLASCL (various places) ===================================================================== Decode the input arguments Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static real c_b36 = 0.f; static real c_b37 = 1.f; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, vsr_dim1, vsr_offset, i__1, i__2; /* Local variables */ static real anrm, bnrm; static integer itau, lopt; extern logical lsame_(char *, char *); static integer ileft, iinfo, icols; static logical ilvsl; static integer iwork; static logical ilvsr; static integer irows, nb; extern /* Subroutine */ int sggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, integer * ), sggbal_(char *, integer *, real *, integer *, real *, integer *, integer *, integer *, real *, real *, real *, integer *); static logical ilascl, ilbscl; extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); static real safmin; extern /* Subroutine */ int sgghrd_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer * , real *, integer *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); static real bignum; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *); static integer ijobvl, iright; extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer *, real *, real *, integer *, integer *); static integer ijobvr; extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *); static real anrmto; static integer lwkmin, nb1, nb2, nb3; static real bnrmto; extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real * , real *, real *, real *, integer *, real *, integer *, real *, integer *, integer *); static real smlnum; extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *); static integer lwkopt; static logical lquery; extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, integer *); static integer ihi, ilo; static real eps; #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] #define vsl_ref(a_1,a_2) vsl[(a_2)*vsl_dim1 + a_1] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --alphar; --alphai; --beta; vsl_dim1 = *ldvsl; vsl_offset = 1 + vsl_dim1 * 1; vsl -= vsl_offset; vsr_dim1 = *ldvsr; vsr_offset = 1 + vsr_dim1 * 1; vsr -= vsr_offset; --work; /* Function Body */ if (lsame_(jobvsl, "N")) { ijobvl = 1; ilvsl = FALSE_; } else if (lsame_(jobvsl, "V")) { ijobvl = 2; ilvsl = TRUE_; } else { ijobvl = -1; ilvsl = FALSE_; } if (lsame_(jobvsr, "N")) { ijobvr = 1; ilvsr = FALSE_; } else if (lsame_(jobvsr, "V")) { ijobvr = 2; ilvsr = TRUE_; } else { ijobvr = -1; ilvsr = FALSE_; } /* Test the input arguments Computing MAX */ i__1 = *n << 2; lwkmin = max(i__1,1); lwkopt = lwkmin; work[1] = (real) lwkopt; lquery = *lwork == -1; *info = 0; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) { *info = -12; } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) { *info = -14; } else if (*lwork < lwkmin && ! lquery) { *info = -16; } if (*info == 0) { nb1 = ilaenv_(&c__1, "SGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); nb2 = ilaenv_(&c__1, "SORMQR", " ", n, n, n, &c_n1, (ftnlen)6, ( ftnlen)1); nb3 = ilaenv_(&c__1, "SORGQR", " ", n, n, n, &c_n1, (ftnlen)6, ( ftnlen)1); /* Computing MAX */ i__1 = max(nb1,nb2); nb = max(i__1,nb3); lopt = (*n << 1) + *n * (nb + 1); work[1] = (real) lopt; } if (*info != 0) { i__1 = -(*info); xerbla_("SGEGS ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = slamch_("E") * slamch_("B"); safmin = slamch_("S"); smlnum = *n * safmin / eps; bignum = 1.f / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]); ilascl = FALSE_; if (anrm > 0.f && anrm < smlnum) { anrmto = smlnum; ilascl = TRUE_; } else if (anrm > bignum) { anrmto = bignum; ilascl = TRUE_; } if (ilascl) { slascl_("G", &c_n1, &c_n1, &anrm, &anrmto, n, n, &a[a_offset], lda, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } /* Scale B if max element outside range [SMLNUM,BIGNUM] */ bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]); ilbscl = FALSE_; if (bnrm > 0.f && bnrm < smlnum) { bnrmto = smlnum; ilbscl = TRUE_; } else if (bnrm > bignum) { bnrmto = bignum; ilbscl = TRUE_; } if (ilbscl) { slascl_("G", &c_n1, &c_n1, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } /* Permute the matrix to make it more nearly triangular Workspace layout: (2*N words -- "work..." not actually used) left_permutation, right_permutation, work... */ ileft = 1; iright = *n + 1; iwork = iright + *n; sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[ ileft], &work[iright], &work[iwork], &iinfo); if (iinfo != 0) { *info = *n + 1; goto L10; } /* Reduce B to triangular form, and initialize VSL and/or VSR Workspace layout: ("work..." must have at least N words) left_permutation, right_permutation, tau, work... */ irows = ihi + 1 - ilo; icols = *n + 1 - ilo; itau = iwork; iwork = itau + irows; i__1 = *lwork + 1 - iwork; sgeqrf_(&irows, &icols, &b_ref(ilo, ilo), ldb, &work[itau], &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 2; goto L10; } i__1 = *lwork + 1 - iwork; sormqr_("L", "T", &irows, &icols, &irows, &b_ref(ilo, ilo), ldb, &work[ itau], &a_ref(ilo, ilo), lda, &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 3; goto L10; } if (ilvsl) { slaset_("Full", n, n, &c_b36, &c_b37, &vsl[vsl_offset], ldvsl); i__1 = irows - 1; i__2 = irows - 1; slacpy_("L", &i__1, &i__2, &b_ref(ilo + 1, ilo), ldb, &vsl_ref(ilo + 1, ilo), ldvsl); i__1 = *lwork + 1 - iwork; sorgqr_(&irows, &irows, &irows, &vsl_ref(ilo, ilo), ldvsl, &work[itau] , &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 4; goto L10; } } if (ilvsr) { slaset_("Full", n, n, &c_b36, &c_b37, &vsr[vsr_offset], ldvsr); } /* Reduce to generalized Hessenberg form */ sgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &iinfo); if (iinfo != 0) { *info = *n + 5; goto L10; } /* Perform QZ algorithm, computing Schur vectors if desired Workspace layout: ("work..." must have at least 1 word) left_permutation, right_permutation, work... */ iwork = itau; i__1 = *lwork + 1 - iwork; shgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset] , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { if (iinfo > 0 && iinfo <= *n) { *info = iinfo; } else if (iinfo > *n && iinfo <= *n << 1) { *info = iinfo - *n; } else { *info = *n + 6; } goto L10; } /* Apply permutation to VSL and VSR */ if (ilvsl) { sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[ vsl_offset], ldvsl, &iinfo); if (iinfo != 0) { *info = *n + 7; goto L10; } } if (ilvsr) { sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[ vsr_offset], ldvsr, &iinfo); if (iinfo != 0) { *info = *n + 8; goto L10; } } /* Undo scaling */ if (ilascl) { slascl_("H", &c_n1, &c_n1, &anrmto, &anrm, n, n, &a[a_offset], lda, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } slascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alphar[1], n, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } slascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alphai[1], n, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } if (ilbscl) { slascl_("U", &c_n1, &c_n1, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } slascl_("G", &c_n1, &c_n1, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } L10: work[1] = (real) lwkopt; return 0; /* End of SGEGS */ } /* sgegs_ */
GURLS_EXPORT void orgqr(int *m, int *n, int *k, float *a, int *lda, float *tau, float *work, int *lwork, int *info) { sorgqr_(m, n, k, a, lda, tau, work, lwork, info); }
/* Subroutine */ int sorgbr_(char *vect, integer *m, integer *n, integer *k, real *a, integer *lda, real *tau, real *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j, nb, mn; extern logical lsame_(char *, char *); integer iinfo; logical wantq; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int sorglq_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *), sorgqr_( integer *, integer *, integer *, real *, integer *, real *, real * , integer *, integer *); integer lwkopt; logical lquery; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SORGBR generates one of the real orthogonal matrices Q or P**T */ /* determined by SGEBRD when reducing a real matrix A to bidiagonal */ /* form: A = Q * B * P**T. Q and P**T are defined as products of */ /* elementary reflectors H(i) or G(i) respectively. */ /* If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q */ /* is of order M: */ /* if m >= k, Q = H(1) H(2) . . . H(k) and SORGBR returns the first n */ /* columns of Q, where m >= n >= k; */ /* if m < k, Q = H(1) H(2) . . . H(m-1) and SORGBR returns Q as an */ /* M-by-M matrix. */ /* If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T */ /* is of order N: */ /* if k < n, P**T = G(k) . . . G(2) G(1) and SORGBR returns the first m */ /* rows of P**T, where n >= m >= k; */ /* if k >= n, P**T = G(n-1) . . . G(2) G(1) and SORGBR returns P**T as */ /* an N-by-N matrix. */ /* Arguments */ /* ========= */ /* VECT (input) CHARACTER*1 */ /* Specifies whether the matrix Q or the matrix P**T is */ /* required, as defined in the transformation applied by SGEBRD: */ /* = 'Q': generate Q; */ /* = 'P': generate P**T. */ /* M (input) INTEGER */ /* The number of rows of the matrix Q or P**T to be returned. */ /* M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix Q or P**T to be returned. */ /* N >= 0. */ /* If VECT = 'Q', M >= N >= min(M,K); */ /* if VECT = 'P', N >= M >= min(N,K). */ /* K (input) INTEGER */ /* If VECT = 'Q', the number of columns in the original M-by-K */ /* matrix reduced by SGEBRD. */ /* If VECT = 'P', the number of rows in the original K-by-N */ /* matrix reduced by SGEBRD. */ /* K >= 0. */ /* A (input/output) REAL array, dimension (LDA,N) */ /* On entry, the vectors which define the elementary reflectors, */ /* as returned by SGEBRD. */ /* On exit, the M-by-N matrix Q or P**T. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* TAU (input) REAL array, dimension */ /* (min(M,K)) if VECT = 'Q' */ /* (min(N,K)) if VECT = 'P' */ /* TAU(i) must contain the scalar factor of the elementary */ /* reflector H(i) or G(i), which determines Q or P**T, as */ /* returned by SGEBRD in its array argument TAUQ or TAUP. */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,min(M,N)). */ /* For optimum performance LWORK >= min(M,N)*NB, where NB */ /* is the optimal blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; wantq = lsame_(vect, "Q"); mn = min(*m,*n); lquery = *lwork == -1; if (! wantq && ! lsame_(vect, "P")) { *info = -1; } else if (*m < 0) { *info = -2; } else if (*n < 0 || wantq && (*n > *m || *n < min(*m,*k)) || ! wantq && ( *m > *n || *m < min(*n,*k))) { *info = -3; } else if (*k < 0) { *info = -4; } else if (*lda < max(1,*m)) { *info = -6; } else if (*lwork < max(1,mn) && ! lquery) { *info = -9; } if (*info == 0) { if (wantq) { nb = ilaenv_(&c__1, "SORGQR", " ", m, n, k, &c_n1); } else { nb = ilaenv_(&c__1, "SORGLQ", " ", m, n, k, &c_n1); } lwkopt = max(1,mn) * nb; work[1] = (real) lwkopt; } if (*info != 0) { i__1 = -(*info); xerbla_("SORGBR", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { work[1] = 1.f; return 0; } if (wantq) { /* Form Q, determined by a call to SGEBRD to reduce an m-by-k */ /* matrix */ if (*m >= *k) { /* If m >= k, assume m >= n >= k */ sorgqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, & iinfo); } else { /* If m < k, assume m = n */ /* Shift the vectors which define the elementary reflectors one */ /* column to the right, and set the first row and column of Q */ /* to those of the unit matrix */ for (j = *m; j >= 2; --j) { a[j * a_dim1 + 1] = 0.f; i__1 = *m; for (i__ = j + 1; i__ <= i__1; ++i__) { a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1]; /* L10: */ } /* L20: */ } a[a_dim1 + 1] = 1.f; i__1 = *m; for (i__ = 2; i__ <= i__1; ++i__) { a[i__ + a_dim1] = 0.f; /* L30: */ } if (*m > 1) { /* Form Q(2:m,2:m) */ i__1 = *m - 1; i__2 = *m - 1; i__3 = *m - 1; sorgqr_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[ 1], &work[1], lwork, &iinfo); } } } else { /* Form P', determined by a call to SGEBRD to reduce a k-by-n */ /* matrix */ if (*k < *n) { /* If k < n, assume k <= m <= n */ sorglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, & iinfo); } else { /* If k >= n, assume m = n */ /* Shift the vectors which define the elementary reflectors one */ /* row downward, and set the first row and column of P' to */ /* those of the unit matrix */ a[a_dim1 + 1] = 1.f; i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { a[i__ + a_dim1] = 0.f; /* L40: */ } i__1 = *n; for (j = 2; j <= i__1; ++j) { for (i__ = j - 1; i__ >= 2; --i__) { a[i__ + j * a_dim1] = a[i__ - 1 + j * a_dim1]; /* L50: */ } a[j * a_dim1 + 1] = 0.f; /* L60: */ } if (*n > 1) { /* Form P'(2:n,2:n) */ i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; sorglq_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[ 1], &work[1], lwork, &iinfo); } } } work[1] = (real) lwkopt; return 0; /* End of SORGBR */ } /* sorgbr_ */
/* Subroutine */ int sgges_(char *jobvsl, char *jobvsr, char *sort, L_fp selctg, integer *n, real *a, integer *lda, real *b, integer *ldb, integer *sdim, real *alphar, real *alphai, real *beta, real *vsl, integer *ldvsl, real *vsr, integer *ldvsr, real *work, integer *lwork, logical *bwork, integer *info) { /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= SGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B), the generalized eigenvalues, the generalized real Schur form (S,T), optionally, the left and/or right matrices of Schur vectors (VSL and VSR). This gives the generalized Schur factorization (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T ) Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix S and the upper triangular matrix T.The leading columns of VSL and VSR then form an orthonormal basis for the corresponding left and right eigenspaces (deflating subspaces). (If only the generalized eigenvalues are needed, use the driver SGGEV instead, which is faster.) A generalized eigenvalue for a pair of matrices (A,B) is a scalar w or a ratio alpha/beta = w, such that A - w*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0 or both being zero. A pair of matrices (S,T) is in generalized real Schur form if T is upper triangular with non-negative diagonal and S is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized eigenvalues, while 2-by-2 blocks of S will be "standardized" by making the corresponding elements of T have the form: [ a 0 ] [ 0 b ] and the pair of corresponding 2-by-2 blocks in S and T will have a complex conjugate pair of generalized eigenvalues. Arguments ========= JOBVSL (input) CHARACTER*1 = 'N': do not compute the left Schur vectors; = 'V': compute the left Schur vectors. JOBVSR (input) CHARACTER*1 = 'N': do not compute the right Schur vectors; = 'V': compute the right Schur vectors. SORT (input) CHARACTER*1 Specifies whether or not to order the eigenvalues on the diagonal of the generalized Schur form. = 'N': Eigenvalues are not ordered; = 'S': Eigenvalues are ordered (see SELCTG); SELCTG (input) LOGICAL FUNCTION of three REAL arguments SELCTG must be declared EXTERNAL in the calling subroutine. If SORT = 'N', SELCTG is not referenced. If SORT = 'S', SELCTG is used to select eigenvalues to sort to the top left of the Schur form. An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected. Note that in the ill-conditioned case, a selected complex eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j), BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2 in this case. N (input) INTEGER The order of the matrices A, B, VSL, and VSR. N >= 0. A (input/output) REAL array, dimension (LDA, N) On entry, the first of the pair of matrices. On exit, A has been overwritten by its generalized Schur form S. LDA (input) INTEGER The leading dimension of A. LDA >= max(1,N). B (input/output) REAL array, dimension (LDB, N) On entry, the second of the pair of matrices. On exit, B has been overwritten by its generalized Schur form T. LDB (input) INTEGER The leading dimension of B. LDB >= max(1,N). SDIM (output) INTEGER If SORT = 'N', SDIM = 0. If SORT = 'S', SDIM = number of eigenvalues (after sorting) for which SELCTG is true. (Complex conjugate pairs for which SELCTG is true for either eigenvalue count as 2.) ALPHAR (output) REAL array, dimension (N) ALPHAI (output) REAL array, dimension (N) BETA (output) REAL array, dimension (N) On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i, and BETA(j),j=1,...,N are the diagonals of the complex Schur form (S,T) that would result if the 2-by-2 diagonal blocks of the real Schur form of (A,B) were further reduced to triangular form using 2-by-2 complex unitary transformations. If ALPHAI(j) is zero, then the j-th eigenvalue is real; if positive, then the j-th and (j+1)-st eigenvalues are a complex conjugate pair, with ALPHAI(j+1) negative. Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) may easily over- or underflow, and BETA(j) may even be zero. Thus, the user should avoid naively computing the ratio. However, ALPHAR and ALPHAI will be always less than and usually comparable with norm(A) in magnitude, and BETA always less than and usually comparable with norm(B). VSL (output) REAL array, dimension (LDVSL,N) If JOBVSL = 'V', VSL will contain the left Schur vectors. Not referenced if JOBVSL = 'N'. LDVSL (input) INTEGER The leading dimension of the matrix VSL. LDVSL >=1, and if JOBVSL = 'V', LDVSL >= N. VSR (output) REAL array, dimension (LDVSR,N) If JOBVSR = 'V', VSR will contain the right Schur vectors. Not referenced if JOBVSR = 'N'. LDVSR (input) INTEGER The leading dimension of the matrix VSR. LDVSR >= 1, and if JOBVSR = 'V', LDVSR >= N. WORK (workspace/output) REAL array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= 8*N+16. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. BWORK (workspace) LOGICAL array, dimension (N) Not referenced if SORT = 'N'. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. = 1,...,N: The QZ iteration failed. (A,B) are not in Schur form, but ALPHAR(j), ALPHAI(j), and BETA(j) should be correct for j=INFO+1,...,N. > N: =N+1: other than QZ iteration failed in SHGEQZ. =N+2: after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the Generalized Schur form no longer satisfy SELCTG=.TRUE. This could also be caused due to scaling. =N+3: reordering failed in STGSEN. ===================================================================== Decode the input arguments Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c__0 = 0; static integer c_n1 = -1; static real c_b33 = 0.f; static real c_b34 = 1.f; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, vsr_dim1, vsr_offset, i__1, i__2; real r__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static real anrm, bnrm; static integer idum[1], ierr, itau, iwrk; static real pvsl, pvsr; static integer i__; extern logical lsame_(char *, char *); static integer ileft, icols; static logical cursl, ilvsl, ilvsr; static integer irows; static logical lst2sl; extern /* Subroutine */ int slabad_(real *, real *); static integer ip; extern /* Subroutine */ int sggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, integer * ), sggbal_(char *, integer *, real *, integer *, real *, integer *, integer *, integer *, real *, real *, real *, integer *); static logical ilascl, ilbscl; extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); static real safmin; extern /* Subroutine */ int sgghrd_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer * , real *, integer *, integer *); static real safmax; extern /* Subroutine */ int xerbla_(char *, integer *); static real bignum; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); static integer ijobvl, iright; extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer *, real *, real *, integer *, integer *); static integer ijobvr; extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *); static real anrmto, bnrmto; static logical lastsl; extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real * , real *, real *, real *, integer *, real *, integer *, real *, integer *, integer *), stgsen_(integer *, logical *, logical *, logical *, integer *, real *, integer *, real *, integer *, real *, real *, real *, real *, integer *, real *, integer *, integer *, real *, real *, real *, real *, integer *, integer *, integer *, integer *); static integer minwrk, maxwrk; static real smlnum; extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *); static logical wantst, lquery; extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, integer *); static real dif[2]; static integer ihi, ilo; static real eps; #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] #define vsl_ref(a_1,a_2) vsl[(a_2)*vsl_dim1 + a_1] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --alphar; --alphai; --beta; vsl_dim1 = *ldvsl; vsl_offset = 1 + vsl_dim1 * 1; vsl -= vsl_offset; vsr_dim1 = *ldvsr; vsr_offset = 1 + vsr_dim1 * 1; vsr -= vsr_offset; --work; --bwork; /* Function Body */ if (lsame_(jobvsl, "N")) { ijobvl = 1; ilvsl = FALSE_; } else if (lsame_(jobvsl, "V")) { ijobvl = 2; ilvsl = TRUE_; } else { ijobvl = -1; ilvsl = FALSE_; } if (lsame_(jobvsr, "N")) { ijobvr = 1; ilvsr = FALSE_; } else if (lsame_(jobvsr, "V")) { ijobvr = 2; ilvsr = TRUE_; } else { ijobvr = -1; ilvsr = FALSE_; } wantst = lsame_(sort, "S"); /* Test the input arguments */ *info = 0; lquery = *lwork == -1; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (! wantst && ! lsame_(sort, "N")) { *info = -3; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,*n)) { *info = -7; } else if (*ldb < max(1,*n)) { *info = -9; } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) { *info = -15; } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) { *info = -17; } /* Compute workspace (Note: Comments in the code beginning "Workspace:" describe the minimal amount of workspace needed at that point in the code, as well as the preferred amount for good performance. NB refers to the optimal block size for the immediately following subroutine, as returned by ILAENV.) */ minwrk = 1; if (*info == 0 && (*lwork >= 1 || lquery)) { minwrk = (*n + 1) * 7 + 16; maxwrk = (*n + 1) * 7 + *n * ilaenv_(&c__1, "SGEQRF", " ", n, &c__1, n, &c__0, (ftnlen)6, (ftnlen)1) + 16; if (ilvsl) { /* Computing MAX */ i__1 = maxwrk, i__2 = (*n + 1) * 7 + *n * ilaenv_(&c__1, "SORGQR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1); maxwrk = max(i__1,i__2); } work[1] = (real) maxwrk; } if (*lwork < minwrk && ! lquery) { *info = -19; } if (*info != 0) { i__1 = -(*info); xerbla_("SGGES ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { *sdim = 0; return 0; } /* Get machine constants */ eps = slamch_("P"); safmin = slamch_("S"); safmax = 1.f / safmin; slabad_(&safmin, &safmax); smlnum = sqrt(safmin) / eps; bignum = 1.f / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]); ilascl = FALSE_; if (anrm > 0.f && anrm < smlnum) { anrmto = smlnum; ilascl = TRUE_; } else if (anrm > bignum) { anrmto = bignum; ilascl = TRUE_; } if (ilascl) { slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, & ierr); } /* Scale B if max element outside range [SMLNUM,BIGNUM] */ bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]); ilbscl = FALSE_; if (bnrm > 0.f && bnrm < smlnum) { bnrmto = smlnum; ilbscl = TRUE_; } else if (bnrm > bignum) { bnrmto = bignum; ilbscl = TRUE_; } if (ilbscl) { slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & ierr); } /* Permute the matrix to make it more nearly triangular (Workspace: need 6*N + 2*N space for storing balancing factors) */ ileft = 1; iright = *n + 1; iwrk = iright + *n; sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[ ileft], &work[iright], &work[iwrk], &ierr); /* Reduce B to triangular form (QR decomposition of B) (Workspace: need N, prefer N*NB) */ irows = ihi + 1 - ilo; icols = *n + 1 - ilo; itau = iwrk; iwrk = itau + irows; i__1 = *lwork + 1 - iwrk; sgeqrf_(&irows, &icols, &b_ref(ilo, ilo), ldb, &work[itau], &work[iwrk], & i__1, &ierr); /* Apply the orthogonal transformation to matrix A (Workspace: need N, prefer N*NB) */ i__1 = *lwork + 1 - iwrk; sormqr_("L", "T", &irows, &icols, &irows, &b_ref(ilo, ilo), ldb, &work[ itau], &a_ref(ilo, ilo), lda, &work[iwrk], &i__1, &ierr); /* Initialize VSL (Workspace: need N, prefer N*NB) */ if (ilvsl) { slaset_("Full", n, n, &c_b33, &c_b34, &vsl[vsl_offset], ldvsl); i__1 = irows - 1; i__2 = irows - 1; slacpy_("L", &i__1, &i__2, &b_ref(ilo + 1, ilo), ldb, &vsl_ref(ilo + 1, ilo), ldvsl); i__1 = *lwork + 1 - iwrk; sorgqr_(&irows, &irows, &irows, &vsl_ref(ilo, ilo), ldvsl, &work[itau] , &work[iwrk], &i__1, &ierr); } /* Initialize VSR */ if (ilvsr) { slaset_("Full", n, n, &c_b33, &c_b34, &vsr[vsr_offset], ldvsr); } /* Reduce to generalized Hessenberg form (Workspace: none needed) */ sgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr); /* Perform QZ algorithm, computing Schur vectors if desired (Workspace: need N) */ iwrk = itau; i__1 = *lwork + 1 - iwrk; shgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset] , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr); if (ierr != 0) { if (ierr > 0 && ierr <= *n) { *info = ierr; } else if (ierr > *n && ierr <= *n << 1) { *info = ierr - *n; } else { *info = *n + 1; } goto L40; } /* Sort eigenvalues ALPHA/BETA if desired (Workspace: need 4*N+16 ) */ *sdim = 0; if (wantst) { /* Undo scaling on eigenvalues before SELCTGing */ if (ilascl) { slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &ierr); slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &ierr); } if (ilbscl) { slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &ierr); } /* Select eigenvalues */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]); /* L10: */ } i__1 = *lwork - iwrk + 1; stgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[ b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[ vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pvsl, & pvsr, dif, &work[iwrk], &i__1, idum, &c__1, &ierr); if (ierr == 1) { *info = *n + 3; } } /* Apply back-permutation to VSL and VSR (Workspace: none needed) */ if (ilvsl) { sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[ vsl_offset], ldvsl, &ierr); } if (ilvsr) { sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[ vsr_offset], ldvsr, &ierr); } /* Check if unscaling would cause over/underflow, if so, rescale (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */ if (ilascl) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (alphai[i__] != 0.f) { if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[ i__] > anrm / anrmto) { work[1] = (r__1 = a_ref(i__, i__) / alphar[i__], dabs( r__1)); beta[i__] *= work[1]; alphar[i__] *= work[1]; alphai[i__] *= work[1]; } else if (alphai[i__] / safmax > anrmto / anrm || safmin / alphai[i__] > anrm / anrmto) { work[1] = (r__1 = a_ref(i__, i__ + 1) / alphai[i__], dabs( r__1)); beta[i__] *= work[1]; alphar[i__] *= work[1]; alphai[i__] *= work[1]; } } /* L50: */ } } if (ilbscl) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (alphai[i__] != 0.f) { if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__] > bnrm / bnrmto) { work[1] = (r__1 = b_ref(i__, i__) / beta[i__], dabs(r__1)) ; beta[i__] *= work[1]; alphar[i__] *= work[1]; alphai[i__] *= work[1]; } } /* L60: */ } } /* Undo scaling */ if (ilascl) { slascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, & ierr); slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, & ierr); slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, & ierr); } if (ilbscl) { slascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, & ierr); slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & ierr); } if (wantst) { /* Check if reordering is correct */ lastsl = TRUE_; lst2sl = TRUE_; *sdim = 0; ip = 0; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]); if (alphai[i__] == 0.f) { if (cursl) { ++(*sdim); } ip = 0; if (cursl && ! lastsl) { *info = *n + 2; } } else { if (ip == 1) { /* Last eigenvalue of conjugate pair */ cursl = cursl || lastsl; lastsl = cursl; if (cursl) { *sdim += 2; } ip = -1; if (cursl && ! lst2sl) { *info = *n + 2; } } else { /* First eigenvalue of conjugate pair */ ip = 1; } } lst2sl = lastsl; lastsl = cursl; /* L30: */ } } L40: work[1] = (real) maxwrk; return 0; /* End of SGGES */ } /* sgges_ */
/* Subroutine */ int sgqrts_(integer *n, integer *m, integer *p, real *a, real *af, real *q, real *r__, integer *lda, real *taua, real *b, real *bf, real *z__, real *t, real *bwk, integer *ldb, real *taub, real * work, integer *lwork, real *rwork, real *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, r_dim1, r_offset, q_dim1, q_offset, b_dim1, b_offset, bf_dim1, bf_offset, t_dim1, t_offset, z_dim1, z_offset, bwk_dim1, bwk_offset, i__1, i__2; real r__1; /* Local variables */ real ulp; integer info; real unfl, resid; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); real anorm, bnorm; extern /* Subroutine */ int ssyrk_(char *, char *, integer *, integer *, real *, real *, integer *, real *, real *, integer *); extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int sggqrf_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, real *, integer * , integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *); extern doublereal slansy_(char *, char *, integer *, real *, integer *, real *); extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *), sorgrq_( integer *, integer *, integer *, real *, integer *, real *, real * , integer *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SGQRTS tests SGGQRF, which computes the GQR factorization of an */ /* N-by-M matrix A and a N-by-P matrix B: A = Q*R and B = Q*T*Z. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The number of rows of the matrices A and B. N >= 0. */ /* M (input) INTEGER */ /* The number of columns of the matrix A. M >= 0. */ /* P (input) INTEGER */ /* The number of columns of the matrix B. P >= 0. */ /* A (input) REAL array, dimension (LDA,M) */ /* The N-by-M matrix A. */ /* AF (output) REAL array, dimension (LDA,N) */ /* Details of the GQR factorization of A and B, as returned */ /* by SGGQRF, see SGGQRF for further details. */ /* Q (output) REAL array, dimension (LDA,N) */ /* The M-by-M orthogonal matrix Q. */ /* R (workspace) REAL array, dimension (LDA,MAX(M,N)) */ /* LDA (input) INTEGER */ /* The leading dimension of the arrays A, AF, R and Q. */ /* LDA >= max(M,N). */ /* TAUA (output) REAL array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors, as returned */ /* by SGGQRF. */ /* B (input) REAL array, dimension (LDB,P) */ /* On entry, the N-by-P matrix A. */ /* BF (output) REAL array, dimension (LDB,N) */ /* Details of the GQR factorization of A and B, as returned */ /* by SGGQRF, see SGGQRF for further details. */ /* Z (output) REAL array, dimension (LDB,P) */ /* The P-by-P orthogonal matrix Z. */ /* T (workspace) REAL array, dimension (LDB,max(P,N)) */ /* BWK (workspace) REAL array, dimension (LDB,N) */ /* LDB (input) INTEGER */ /* The leading dimension of the arrays B, BF, Z and T. */ /* LDB >= max(P,N). */ /* TAUB (output) REAL array, dimension (min(P,N)) */ /* The scalar factors of the elementary reflectors, as returned */ /* by SGGRQF. */ /* WORK (workspace) REAL array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK, LWORK >= max(N,M,P)**2. */ /* RWORK (workspace) REAL array, dimension (max(N,M,P)) */ /* RESULT (output) REAL array, dimension (4) */ /* The test ratios: */ /* RESULT(1) = norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP) */ /* RESULT(2) = norm( T*Z - Q'*B ) / (MAX(P,N)*norm(B)*ULP) */ /* RESULT(3) = norm( I - Q'*Q ) / ( M*ULP ) */ /* RESULT(4) = norm( I - Z'*Z ) / ( P*ULP ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ r_dim1 = *lda; r_offset = 1 + r_dim1; r__ -= r_offset; q_dim1 = *lda; q_offset = 1 + q_dim1; q -= q_offset; af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --taua; bwk_dim1 = *ldb; bwk_offset = 1 + bwk_dim1; bwk -= bwk_offset; t_dim1 = *ldb; t_offset = 1 + t_dim1; t -= t_offset; z_dim1 = *ldb; z_offset = 1 + z_dim1; z__ -= z_offset; bf_dim1 = *ldb; bf_offset = 1 + bf_dim1; bf -= bf_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --taub; --work; --rwork; --result; /* Function Body */ ulp = slamch_("Precision"); unfl = slamch_("Safe minimum"); /* Copy the matrix A to the array AF. */ slacpy_("Full", n, m, &a[a_offset], lda, &af[af_offset], lda); slacpy_("Full", n, p, &b[b_offset], ldb, &bf[bf_offset], ldb); /* Computing MAX */ r__1 = slange_("1", n, m, &a[a_offset], lda, &rwork[1]); anorm = dmax(r__1,unfl); /* Computing MAX */ r__1 = slange_("1", n, p, &b[b_offset], ldb, &rwork[1]); bnorm = dmax(r__1,unfl); /* Factorize the matrices A and B in the arrays AF and BF. */ sggqrf_(n, m, p, &af[af_offset], lda, &taua[1], &bf[bf_offset], ldb, & taub[1], &work[1], lwork, &info); /* Generate the N-by-N matrix Q */ slaset_("Full", n, n, &c_b9, &c_b9, &q[q_offset], lda); i__1 = *n - 1; slacpy_("Lower", &i__1, m, &af[af_dim1 + 2], lda, &q[q_dim1 + 2], lda); i__1 = min(*n,*m); sorgqr_(n, n, &i__1, &q[q_offset], lda, &taua[1], &work[1], lwork, &info); /* Generate the P-by-P matrix Z */ slaset_("Full", p, p, &c_b9, &c_b9, &z__[z_offset], ldb); if (*n <= *p) { if (*n > 0 && *n < *p) { i__1 = *p - *n; slacpy_("Full", n, &i__1, &bf[bf_offset], ldb, &z__[*p - *n + 1 + z_dim1], ldb); } if (*n > 1) { i__1 = *n - 1; i__2 = *n - 1; slacpy_("Lower", &i__1, &i__2, &bf[(*p - *n + 1) * bf_dim1 + 2], ldb, &z__[*p - *n + 2 + (*p - *n + 1) * z_dim1], ldb); } } else { if (*p > 1) { i__1 = *p - 1; i__2 = *p - 1; slacpy_("Lower", &i__1, &i__2, &bf[*n - *p + 2 + bf_dim1], ldb, & z__[z_dim1 + 2], ldb); } } i__1 = min(*n,*p); sorgrq_(p, p, &i__1, &z__[z_offset], ldb, &taub[1], &work[1], lwork, & info); /* Copy R */ slaset_("Full", n, m, &c_b19, &c_b19, &r__[r_offset], lda); slacpy_("Upper", n, m, &af[af_offset], lda, &r__[r_offset], lda); /* Copy T */ slaset_("Full", n, p, &c_b19, &c_b19, &t[t_offset], ldb); if (*n <= *p) { slacpy_("Upper", n, n, &bf[(*p - *n + 1) * bf_dim1 + 1], ldb, &t[(*p - *n + 1) * t_dim1 + 1], ldb); } else { i__1 = *n - *p; slacpy_("Full", &i__1, p, &bf[bf_offset], ldb, &t[t_offset], ldb); slacpy_("Upper", p, p, &bf[*n - *p + 1 + bf_dim1], ldb, &t[*n - *p + 1 + t_dim1], ldb); } /* Compute R - Q'*A */ sgemm_("Transpose", "No transpose", n, m, n, &c_b30, &q[q_offset], lda, & a[a_offset], lda, &c_b31, &r__[r_offset], lda); /* Compute norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP ) . */ resid = slange_("1", n, m, &r__[r_offset], lda, &rwork[1]); if (anorm > 0.f) { /* Computing MAX */ i__1 = max(1,*m); result[1] = resid / (real) max(i__1,*n) / anorm / ulp; } else { result[1] = 0.f; } /* Compute T*Z - Q'*B */ sgemm_("No Transpose", "No transpose", n, p, p, &c_b31, &t[t_offset], ldb, &z__[z_offset], ldb, &c_b19, &bwk[bwk_offset], ldb); sgemm_("Transpose", "No transpose", n, p, n, &c_b30, &q[q_offset], lda, & b[b_offset], ldb, &c_b31, &bwk[bwk_offset], ldb); /* Compute norm( T*Z - Q'*B ) / ( MAX(P,N)*norm(A)*ULP ) . */ resid = slange_("1", n, p, &bwk[bwk_offset], ldb, &rwork[1]); if (bnorm > 0.f) { /* Computing MAX */ i__1 = max(1,*p); result[2] = resid / (real) max(i__1,*n) / bnorm / ulp; } else { result[2] = 0.f; } /* Compute I - Q'*Q */ slaset_("Full", n, n, &c_b19, &c_b31, &r__[r_offset], lda); ssyrk_("Upper", "Transpose", n, n, &c_b30, &q[q_offset], lda, &c_b31, & r__[r_offset], lda); /* Compute norm( I - Q'*Q ) / ( N * ULP ) . */ resid = slansy_("1", "Upper", n, &r__[r_offset], lda, &rwork[1]); result[3] = resid / (real) max(1,*n) / ulp; /* Compute I - Z'*Z */ slaset_("Full", p, p, &c_b19, &c_b31, &t[t_offset], ldb); ssyrk_("Upper", "Transpose", p, p, &c_b30, &z__[z_offset], ldb, &c_b31, & t[t_offset], ldb); /* Compute norm( I - Z'*Z ) / ( P*ULP ) . */ resid = slansy_("1", "Upper", p, &t[t_offset], ldb, &rwork[1]); result[4] = resid / (real) max(1,*p) / ulp; return 0; /* End of SGQRTS */ } /* sgqrts_ */
/* Subroutine */ int sqrt03_(integer *m, integer *n, integer *k, real *af, real *c__, real *cc, real *q, integer *lda, real *tau, real *work, integer *lwork, real *rwork, real *result) { /* Initialized data */ static integer iseed[4] = { 1988,1989,1990,1991 }; /* System generated locals */ integer af_dim1, af_offset, c_dim1, c_offset, cc_dim1, cc_offset, q_dim1, q_offset, i__1; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ integer j, mc, nc; real eps; char side[1]; integer info, iside; extern logical lsame_(char *, char *); real resid; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); real cnorm; char trans[1]; extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *); integer itrans; extern /* Subroutine */ int slarnv_(integer *, integer *, integer *, real *), sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *), sormqr_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real * , integer *, real *, integer *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SQRT03 tests SORMQR, which computes Q*C, Q'*C, C*Q or C*Q'. */ /* SQRT03 compares the results of a call to SORMQR with the results of */ /* forming Q explicitly by a call to SORGQR and then performing matrix */ /* multiplication by a call to SGEMM. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The order of the orthogonal matrix Q. M >= 0. */ /* N (input) INTEGER */ /* The number of rows or columns of the matrix C; C is m-by-n if */ /* Q is applied from the left, or n-by-m if Q is applied from */ /* the right. N >= 0. */ /* K (input) INTEGER */ /* The number of elementary reflectors whose product defines the */ /* orthogonal matrix Q. M >= K >= 0. */ /* AF (input) REAL array, dimension (LDA,N) */ /* Details of the QR factorization of an m-by-n matrix, as */ /* returnedby SGEQRF. See SGEQRF for further details. */ /* C (workspace) REAL array, dimension (LDA,N) */ /* CC (workspace) REAL array, dimension (LDA,N) */ /* Q (workspace) REAL array, dimension (LDA,M) */ /* LDA (input) INTEGER */ /* The leading dimension of the arrays AF, C, CC, and Q. */ /* TAU (input) REAL array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors corresponding */ /* to the QR factorization in AF. */ /* WORK (workspace) REAL array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The length of WORK. LWORK must be at least M, and should be */ /* M*NB, where NB is the blocksize for this environment. */ /* RWORK (workspace) REAL array, dimension (M) */ /* RESULT (output) REAL array, dimension (4) */ /* The test ratios compare two techniques for multiplying a */ /* random matrix C by an m-by-m orthogonal matrix Q. */ /* RESULT(1) = norm( Q*C - Q*C ) / ( M * norm(C) * EPS ) */ /* RESULT(2) = norm( C*Q - C*Q ) / ( M * norm(C) * EPS ) */ /* RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS ) */ /* RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ q_dim1 = *lda; q_offset = 1 + q_dim1; q -= q_offset; cc_dim1 = *lda; cc_offset = 1 + cc_dim1; cc -= cc_offset; c_dim1 = *lda; c_offset = 1 + c_dim1; c__ -= c_offset; af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; --tau; --work; --rwork; --result; /* Function Body */ /* .. */ /* .. Executable Statements .. */ eps = slamch_("Epsilon"); /* Copy the first k columns of the factorization to the array Q */ slaset_("Full", m, m, &c_b4, &c_b4, &q[q_offset], lda); i__1 = *m - 1; slacpy_("Lower", &i__1, k, &af[af_dim1 + 2], lda, &q[q_dim1 + 2], lda); /* Generate the m-by-m matrix Q */ s_copy(srnamc_1.srnamt, "SORGQR", (ftnlen)6, (ftnlen)6); sorgqr_(m, m, k, &q[q_offset], lda, &tau[1], &work[1], lwork, &info); for (iside = 1; iside <= 2; ++iside) { if (iside == 1) { *(unsigned char *)side = 'L'; mc = *m; nc = *n; } else { *(unsigned char *)side = 'R'; mc = *n; nc = *m; } /* Generate MC by NC matrix C */ i__1 = nc; for (j = 1; j <= i__1; ++j) { slarnv_(&c__2, iseed, &mc, &c__[j * c_dim1 + 1]); /* L10: */ } cnorm = slange_("1", &mc, &nc, &c__[c_offset], lda, &rwork[1]); if (cnorm == 0.f) { cnorm = 1.f; } for (itrans = 1; itrans <= 2; ++itrans) { if (itrans == 1) { *(unsigned char *)trans = 'N'; } else { *(unsigned char *)trans = 'T'; } /* Copy C */ slacpy_("Full", &mc, &nc, &c__[c_offset], lda, &cc[cc_offset], lda); /* Apply Q or Q' to C */ s_copy(srnamc_1.srnamt, "SORMQR", (ftnlen)6, (ftnlen)6); sormqr_(side, trans, &mc, &nc, k, &af[af_offset], lda, &tau[1], & cc[cc_offset], lda, &work[1], lwork, &info); /* Form explicit product and subtract */ if (lsame_(side, "L")) { sgemm_(trans, "No transpose", &mc, &nc, &mc, &c_b21, &q[ q_offset], lda, &c__[c_offset], lda, &c_b22, &cc[ cc_offset], lda); } else { sgemm_("No transpose", trans, &mc, &nc, &nc, &c_b21, &c__[ c_offset], lda, &q[q_offset], lda, &c_b22, &cc[ cc_offset], lda); } /* Compute error in the difference */ resid = slange_("1", &mc, &nc, &cc[cc_offset], lda, &rwork[1]); result[(iside - 1 << 1) + itrans] = resid / ((real) max(1,*m) * cnorm * eps); /* L20: */ } /* L30: */ } return 0; /* End of SQRT03 */ } /* sqrt03_ */
/* Subroutine */ int sgegv_(char *jobvl, char *jobvr, integer *n, real *a, integer *lda, real *b, integer *ldb, real *alphar, real *alphai, real *beta, real *vl, integer *ldvl, real *vr, integer *ldvr, real *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2; real r__1, r__2, r__3, r__4; /* Local variables */ integer jc, nb, in, jr, nb1, nb2, nb3, ihi, ilo; real eps; logical ilv; real absb, anrm, bnrm; integer itau; real temp; logical ilvl, ilvr; integer lopt; real anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta; integer ileft, iinfo, icols, iwork, irows; real salfai; real salfar; real safmin; real safmax; char chtemp[1]; logical ldumma[1]; integer ijobvl, iright; logical ilimit; integer ijobvr; real onepls; integer lwkmin; integer lwkopt; logical lquery; /* -- LAPACK driver routine (version 3.2) -- */ /* November 2006 */ /* Purpose */ /* ======= */ /* This routine is deprecated and has been replaced by routine SGGEV. */ /* SGEGV computes the eigenvalues and, optionally, the left and/or right */ /* eigenvectors of a real matrix pair (A,B). */ /* Given two square matrices A and B, */ /* the generalized nonsymmetric eigenvalue problem (GNEP) is to find the */ /* eigenvalues lambda and corresponding (non-zero) eigenvectors x such */ /* that */ /* A*x = lambda*B*x. */ /* An alternate form is to find the eigenvalues mu and corresponding */ /* eigenvectors y such that */ /* mu*A*y = B*y. */ /* These two forms are equivalent with mu = 1/lambda and x = y if */ /* neither lambda nor mu is zero. In order to deal with the case that */ /* lambda or mu is zero or small, two values alpha and beta are returned */ /* for each eigenvalue, such that lambda = alpha/beta and */ /* mu = beta/alpha. */ /* The vectors x and y in the above equations are right eigenvectors of */ /* the matrix pair (A,B). Vectors u and v satisfying */ /* u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B */ /* are left eigenvectors of (A,B). */ /* Note: this routine performs "full balancing" on A and B -- see */ /* "Further Details", below. */ /* Arguments */ /* ========= */ /* JOBVL (input) CHARACTER*1 */ /* = 'N': do not compute the left generalized eigenvectors; */ /* = 'V': compute the left generalized eigenvectors (returned */ /* in VL). */ /* JOBVR (input) CHARACTER*1 */ /* = 'N': do not compute the right generalized eigenvectors; */ /* = 'V': compute the right generalized eigenvectors (returned */ /* in VR). */ /* N (input) INTEGER */ /* The order of the matrices A, B, VL, and VR. N >= 0. */ /* A (input/output) REAL array, dimension (LDA, N) */ /* On entry, the matrix A. */ /* If JOBVL = 'V' or JOBVR = 'V', then on exit A */ /* contains the real Schur form of A from the generalized Schur */ /* factorization of the pair (A,B) after balancing. */ /* If no eigenvectors were computed, then only the diagonal */ /* blocks from the Schur form will be correct. See SGGHRD and */ /* SHGEQZ for details. */ /* LDA (input) INTEGER */ /* The leading dimension of A. LDA >= max(1,N). */ /* B (input/output) REAL array, dimension (LDB, N) */ /* On entry, the matrix B. */ /* If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the */ /* upper triangular matrix obtained from B in the generalized */ /* Schur factorization of the pair (A,B) after balancing. */ /* If no eigenvectors were computed, then only those elements of */ /* B corresponding to the diagonal blocks from the Schur form of */ /* A will be correct. See SGGHRD and SHGEQZ for details. */ /* LDB (input) INTEGER */ /* The leading dimension of B. LDB >= max(1,N). */ /* ALPHAR (output) REAL array, dimension (N) */ /* The real parts of each scalar alpha defining an eigenvalue of */ /* GNEP. */ /* ALPHAI (output) REAL array, dimension (N) */ /* The imaginary parts of each scalar alpha defining an */ /* eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th */ /* eigenvalue is real; if positive, then the j-th and */ /* (j+1)-st eigenvalues are a complex conjugate pair, with */ /* ALPHAI(j+1) = -ALPHAI(j). */ /* BETA (output) REAL array, dimension (N) */ /* The scalars beta that define the eigenvalues of GNEP. */ /* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */ /* beta = BETA(j) represent the j-th eigenvalue of the matrix */ /* pair (A,B), in one of the forms lambda = alpha/beta or */ /* mu = beta/alpha. Since either lambda or mu may overflow, */ /* they should not, in general, be computed. */ /* VL (output) REAL array, dimension (LDVL,N) */ /* If JOBVL = 'V', the left eigenvectors u(j) are stored */ /* in the columns of VL, in the same order as their eigenvalues. */ /* If the j-th eigenvalue is real, then u(j) = VL(:,j). */ /* If the j-th and (j+1)-st eigenvalues form a complex conjugate */ /* pair, then */ /* u(j) = VL(:,j) + i*VL(:,j+1) */ /* and */ /* u(j+1) = VL(:,j) - i*VL(:,j+1). */ /* Each eigenvector is scaled so that its largest component has */ /* abs(real part) + abs(imag. part) = 1, except for eigenvectors */ /* corresponding to an eigenvalue with alpha = beta = 0, which */ /* are set to zero. */ /* Not referenced if JOBVL = 'N'. */ /* LDVL (input) INTEGER */ /* The leading dimension of the matrix VL. LDVL >= 1, and */ /* if JOBVL = 'V', LDVL >= N. */ /* VR (output) REAL array, dimension (LDVR,N) */ /* If JOBVR = 'V', the right eigenvectors x(j) are stored */ /* in the columns of VR, in the same order as their eigenvalues. */ /* If the j-th eigenvalue is real, then x(j) = VR(:,j). */ /* If the j-th and (j+1)-st eigenvalues form a complex conjugate */ /* pair, then */ /* x(j) = VR(:,j) + i*VR(:,j+1) */ /* and */ /* x(j+1) = VR(:,j) - i*VR(:,j+1). */ /* Each eigenvector is scaled so that its largest component has */ /* abs(real part) + abs(imag. part) = 1, except for eigenvalues */ /* corresponding to an eigenvalue with alpha = beta = 0, which */ /* are set to zero. */ /* Not referenced if JOBVR = 'N'. */ /* LDVR (input) INTEGER */ /* The leading dimension of the matrix VR. LDVR >= 1, and */ /* if JOBVR = 'V', LDVR >= N. */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,8*N). */ /* For good performance, LWORK must generally be larger. */ /* To compute the optimal value of LWORK, call ILAENV to get */ /* blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute: */ /* NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR; */ /* The optimal LWORK is: */ /* 2*N + MAX( 6*N, N*(NB+1) ). */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* The QZ iteration failed. No eigenvectors have been */ /* calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */ /* > N: errors that usually indicate LAPACK problems: */ /* =N+1: error return from SGGBAL */ /* =N+2: error return from SGEQRF */ /* =N+3: error return from SORMQR */ /* =N+4: error return from SORGQR */ /* =N+5: error return from SGGHRD */ /* =N+6: error return from SHGEQZ (other than failed */ /* iteration) */ /* =N+7: error return from STGEVC */ /* =N+8: error return from SGGBAK (computing VL) */ /* =N+9: error return from SGGBAK (computing VR) */ /* =N+10: error return from SLASCL (various calls) */ /* Further Details */ /* =============== */ /* Balancing */ /* --------- */ /* This driver calls SGGBAL to both permute and scale rows and columns */ /* of A and B. The permutations PL and PR are chosen so that PL*A*PR */ /* and PL*B*R will be upper triangular except for the diagonal blocks */ /* A(i:j,i:j) and B(i:j,i:j), with i and j as close together as */ /* possible. The diagonal scaling matrices DL and DR are chosen so */ /* that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to */ /* one (except for the elements that start out zero.) */ /* After the eigenvalues and eigenvectors of the balanced matrices */ /* have been computed, SGGBAK transforms the eigenvectors back to what */ /* they would have been (in perfect arithmetic) if they had not been */ /* balanced. */ /* Contents of A and B on Exit */ /* -------- -- - --- - -- ---- */ /* If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or */ /* both), then on exit the arrays A and B will contain the real Schur */ /* form[*] of the "balanced" versions of A and B. If no eigenvectors */ /* are computed, then only the diagonal blocks will be correct. */ /* [*] See SHGEQZ, SGEGS, or read the book "Matrix Computations", */ /* by Golub & van Loan, pub. by Johns Hopkins U. Press. */ /* ===================================================================== */ /* Decode the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --alphar; --alphai; --beta; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1; vr -= vr_offset; --work; /* Function Body */ if (lsame_(jobvl, "N")) { ijobvl = 1; ilvl = FALSE_; } else if (lsame_(jobvl, "V")) { ijobvl = 2; ilvl = TRUE_; } else { ijobvl = -1; ilvl = FALSE_; } if (lsame_(jobvr, "N")) { ijobvr = 1; ilvr = FALSE_; } else if (lsame_(jobvr, "V")) { ijobvr = 2; ilvr = TRUE_; } else { ijobvr = -1; ilvr = FALSE_; } ilv = ilvl || ilvr; /* Test the input arguments */ /* Computing MAX */ i__1 = *n << 3; lwkmin = max(i__1,1); lwkopt = lwkmin; work[1] = (real) lwkopt; lquery = *lwork == -1; *info = 0; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } else if (*ldvl < 1 || ilvl && *ldvl < *n) { *info = -12; } else if (*ldvr < 1 || ilvr && *ldvr < *n) { *info = -14; } else if (*lwork < lwkmin && ! lquery) { *info = -16; } if (*info == 0) { nb1 = ilaenv_(&c__1, "SGEQRF", " ", n, n, &c_n1, &c_n1); nb2 = ilaenv_(&c__1, "SORMQR", " ", n, n, n, &c_n1); nb3 = ilaenv_(&c__1, "SORGQR", " ", n, n, n, &c_n1); /* Computing MAX */ i__1 = max(nb1,nb2); nb = max(i__1,nb3); /* Computing MAX */ i__1 = *n * 6, i__2 = *n * (nb + 1); lopt = (*n << 1) + max(i__1,i__2); work[1] = (real) lopt; } if (*info != 0) { i__1 = -(*info); xerbla_("SGEGV ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = slamch_("E") * slamch_("B"); safmin = slamch_("S"); safmin += safmin; safmax = 1.f / safmin; onepls = eps * 4 + 1.f; /* Scale A */ anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]); anrm1 = anrm; anrm2 = 1.f; if (anrm < 1.f) { if (safmax * anrm < 1.f) { anrm1 = safmin; anrm2 = safmax * anrm; } } if (anrm > 0.f) { slascl_("G", &c_n1, &c_n1, &anrm, &c_b27, n, n, &a[a_offset], lda, & iinfo); if (iinfo != 0) { *info = *n + 10; return 0; } } /* Scale B */ bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]); bnrm1 = bnrm; bnrm2 = 1.f; if (bnrm < 1.f) { if (safmax * bnrm < 1.f) { bnrm1 = safmin; bnrm2 = safmax * bnrm; } } if (bnrm > 0.f) { slascl_("G", &c_n1, &c_n1, &bnrm, &c_b27, n, n, &b[b_offset], ldb, & iinfo); if (iinfo != 0) { *info = *n + 10; return 0; } } /* Permute the matrix to make it more nearly triangular */ /* Workspace layout: (8*N words -- "work" requires 6*N words) */ ileft = 1; iright = *n + 1; iwork = iright + *n; sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[ ileft], &work[iright], &work[iwork], &iinfo); if (iinfo != 0) { *info = *n + 1; goto L120; } /* Reduce B to triangular form, and initialize VL and/or VR */ irows = ihi + 1 - ilo; if (ilv) { icols = *n + 1 - ilo; } else { icols = irows; } itau = iwork; iwork = itau + irows; i__1 = *lwork + 1 - iwork; sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[ iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 2; goto L120; } i__1 = *lwork + 1 - iwork; sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, & work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, & iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 3; goto L120; } if (ilvl) { slaset_("Full", n, n, &c_b38, &c_b27, &vl[vl_offset], ldvl) ; i__1 = irows - 1; i__2 = irows - 1; slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[ilo + 1 + ilo * vl_dim1], ldvl); i__1 = *lwork + 1 - iwork; sorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[ itau], &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 4; goto L120; } } if (ilvr) { slaset_("Full", n, n, &c_b38, &c_b27, &vr[vr_offset], ldvr) ; } /* Reduce to generalized Hessenberg form */ if (ilv) { /* Eigenvectors requested -- work on whole matrix. */ sgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo); } else { sgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda, &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[ vr_offset], ldvr, &iinfo); } if (iinfo != 0) { *info = *n + 5; goto L120; } /* Perform QZ algorithm */ iwork = itau; if (ilv) { *(unsigned char *)chtemp = 'S'; } else { *(unsigned char *)chtemp = 'E'; } i__1 = *lwork + 1 - iwork; shgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { if (iinfo > 0 && iinfo <= *n) { *info = iinfo; } else if (iinfo > *n && iinfo <= *n << 1) { *info = iinfo - *n; } else { *info = *n + 6; } goto L120; } if (ilv) { /* Compute Eigenvectors (STGEVC requires 6*N words of workspace) */ if (ilvl) { if (ilvr) { *(unsigned char *)chtemp = 'B'; } else { *(unsigned char *)chtemp = 'L'; } } else { *(unsigned char *)chtemp = 'R'; } stgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[ iwork], &iinfo); if (iinfo != 0) { *info = *n + 7; goto L120; } /* Undo balancing on VL and VR, rescale */ if (ilvl) { sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, & vl[vl_offset], ldvl, &iinfo); if (iinfo != 0) { *info = *n + 8; goto L120; } i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { if (alphai[jc] < 0.f) { goto L50; } temp = 0.f; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__2 = temp, r__3 = (r__1 = vl[jr + jc * vl_dim1], dabs(r__1)); temp = dmax(r__2,r__3); } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__3 = temp, r__4 = (r__1 = vl[jr + jc * vl_dim1], dabs(r__1)) + (r__2 = vl[jr + (jc + 1) * vl_dim1], dabs(r__2)); temp = dmax(r__3,r__4); } } if (temp < safmin) { goto L50; } temp = 1.f / temp; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vl[jr + jc * vl_dim1] *= temp; } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vl[jr + jc * vl_dim1] *= temp; vl[jr + (jc + 1) * vl_dim1] *= temp; } } L50: ; } } if (ilvr) { sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, & vr[vr_offset], ldvr, &iinfo); if (iinfo != 0) { *info = *n + 9; goto L120; } i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { if (alphai[jc] < 0.f) { goto L100; } temp = 0.f; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__2 = temp, r__3 = (r__1 = vr[jr + jc * vr_dim1], dabs(r__1)); temp = dmax(r__2,r__3); } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__3 = temp, r__4 = (r__1 = vr[jr + jc * vr_dim1], dabs(r__1)) + (r__2 = vr[jr + (jc + 1) * vr_dim1], dabs(r__2)); temp = dmax(r__3,r__4); } } if (temp < safmin) { goto L100; } temp = 1.f / temp; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vr[jr + jc * vr_dim1] *= temp; } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vr[jr + jc * vr_dim1] *= temp; vr[jr + (jc + 1) * vr_dim1] *= temp; } } L100: ; } } /* End of eigenvector calculation */ } /* Undo scaling in alpha, beta */ /* Note: this does not give the alpha and beta for the unscaled */ /* problem. */ /* Un-scaling is limited to avoid underflow in alpha and beta */ /* if they are significant. */ i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { absar = (r__1 = alphar[jc], dabs(r__1)); absai = (r__1 = alphai[jc], dabs(r__1)); absb = (r__1 = beta[jc], dabs(r__1)); salfar = anrm * alphar[jc]; salfai = anrm * alphai[jc]; sbeta = bnrm * beta[jc]; ilimit = FALSE_; scale = 1.f; /* Check for significant underflow in ALPHAI */ /* Computing MAX */ r__1 = safmin, r__2 = eps * absar, r__1 = max(r__1,r__2), r__2 = eps * absb; if (dabs(salfai) < safmin && absai >= dmax(r__1,r__2)) { ilimit = TRUE_; /* Computing MAX */ r__1 = onepls * safmin, r__2 = anrm2 * absai; scale = onepls * safmin / anrm1 / dmax(r__1,r__2); } else if (salfai == 0.f) { /* If insignificant underflow in ALPHAI, then make the */ /* conjugate eigenvalue real. */ if (alphai[jc] < 0.f && jc > 1) { alphai[jc - 1] = 0.f; } else if (alphai[jc] > 0.f && jc < *n) { alphai[jc + 1] = 0.f; } } /* Check for significant underflow in ALPHAR */ /* Computing MAX */ r__1 = safmin, r__2 = eps * absai, r__1 = max(r__1,r__2), r__2 = eps * absb; if (dabs(salfar) < safmin && absar >= dmax(r__1,r__2)) { ilimit = TRUE_; /* Computing MAX */ /* Computing MAX */ r__3 = onepls * safmin, r__4 = anrm2 * absar; r__1 = scale, r__2 = onepls * safmin / anrm1 / dmax(r__3,r__4); scale = dmax(r__1,r__2); } /* Check for significant underflow in BETA */ /* Computing MAX */ r__1 = safmin, r__2 = eps * absar, r__1 = max(r__1,r__2), r__2 = eps * absai; if (dabs(sbeta) < safmin && absb >= dmax(r__1,r__2)) { ilimit = TRUE_; /* Computing MAX */ /* Computing MAX */ r__3 = onepls * safmin, r__4 = bnrm2 * absb; r__1 = scale, r__2 = onepls * safmin / bnrm1 / dmax(r__3,r__4); scale = dmax(r__1,r__2); } /* Check for possible overflow when limiting scaling */ if (ilimit) { /* Computing MAX */ r__1 = dabs(salfar), r__2 = dabs(salfai), r__1 = max(r__1,r__2), r__2 = dabs(sbeta); temp = scale * safmin * dmax(r__1,r__2); if (temp > 1.f) { scale /= temp; } if (scale < 1.f) { ilimit = FALSE_; } } /* Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary. */ if (ilimit) { salfar = scale * alphar[jc] * anrm; salfai = scale * alphai[jc] * anrm; sbeta = scale * beta[jc] * bnrm; } alphar[jc] = salfar; alphai[jc] = salfai; beta[jc] = sbeta; } L120: work[1] = (real) lwkopt; return 0; /* End of SGEGV */ } /* sgegv_ */
/* Subroutine */ int sorghr_(integer *n, integer *ilo, integer *ihi, real *a, integer *lda, real *tau, real *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ integer i__, j, nb, nh, iinfo; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *); integer lwkopt; logical lquery; /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SORGHR generates a real orthogonal matrix Q which is defined as the */ /* product of IHI-ILO elementary reflectors of order N, as returned by */ /* SGEHRD: */ /* Q = H(ilo) H(ilo+1) . . . H(ihi-1). */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the matrix Q. N >= 0. */ /* ILO (input) INTEGER */ /* IHI (input) INTEGER */ /* ILO and IHI must have the same values as in the previous call */ /* of SGEHRD. Q is equal to the unit matrix except in the */ /* submatrix Q(ilo+1:ihi,ilo+1:ihi). */ /* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */ /* A (input/output) REAL array, dimension (LDA,N) */ /* On entry, the vectors which define the elementary reflectors, */ /* as returned by SGEHRD. */ /* On exit, the N-by-N orthogonal matrix Q. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* TAU (input) REAL array, dimension (N-1) */ /* TAU(i) must contain the scalar factor of the elementary */ /* reflector H(i), as returned by SGEHRD. */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= IHI-ILO. */ /* For optimum performance LWORK >= (IHI-ILO)*NB, where NB is */ /* the optimal blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; nh = *ihi - *ilo; lquery = *lwork == -1; if (*n < 0) { *info = -1; } else if (*ilo < 1 || *ilo > max(1,*n)) { *info = -2; } else if (*ihi < min(*ilo,*n) || *ihi > *n) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*lwork < max(1,nh) && ! lquery) { *info = -8; } if (*info == 0) { nb = ilaenv_(&c__1, "SORGQR", " ", &nh, &nh, &nh, &c_n1); lwkopt = max(1,nh) * nb; work[1] = (real) lwkopt; } if (*info != 0) { i__1 = -(*info); xerbla_("SORGHR", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { work[1] = 1.f; return 0; } /* Shift the vectors which define the elementary reflectors one */ /* column to the right, and set the first ilo and the last n-ihi */ /* rows and columns to those of the unit matrix */ i__1 = *ilo + 1; for (j = *ihi; j >= i__1; --j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = 0.f; /* L10: */ } i__2 = *ihi; for (i__ = j + 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1]; /* L20: */ } i__2 = *n; for (i__ = *ihi + 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = 0.f; /* L30: */ } /* L40: */ } i__1 = *ilo; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = 0.f; /* L50: */ } a[j + j * a_dim1] = 1.f; /* L60: */ } i__1 = *n; for (j = *ihi + 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = 0.f; /* L70: */ } a[j + j * a_dim1] = 1.f; /* L80: */ } if (nh > 0) { /* Generate Q(ilo+1:ihi,ilo+1:ihi) */ sorgqr_(&nh, &nh, &nh, &a[*ilo + 1 + (*ilo + 1) * a_dim1], lda, &tau[* ilo], &work[1], lwork, &iinfo); } work[1] = (real) lwkopt; return 0; /* End of SORGHR */ } /* sorghr_ */
/* Subroutine */ int sorghr_(integer *n, integer *ilo, integer *ihi, real *a, integer *lda, real *tau, real *work, integer *lwork, integer *info) { /* -- LAPACK routine (version 2.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= SORGHR generates a real orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by SGEHRD: Q = H(ilo) H(ilo+1) . . . H(ihi-1). Arguments ========= N (input) INTEGER The order of the matrix Q. N >= 0. ILO (input) INTEGER IHI (input) INTEGER ILO and IHI must have the same values as in the previous call of SGEHRD. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. A (input/output) REAL array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by SGEHRD. On exit, the N-by-N orthogonal matrix Q. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). TAU (input) REAL array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by SGEHRD. WORK (workspace/output) REAL array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= IHI-ILO. For optimum performance LWORK >= (IHI-ILO)*NB, where NB is the optimal blocksize. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== Test the input arguments Parameter adjustments Function Body */ /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ static integer i, j, iinfo, nh; extern /* Subroutine */ int xerbla_(char *, integer *), sorgqr_( integer *, integer *, integer *, real *, integer *, real *, real * , integer *, integer *); #define TAU(I) tau[(I)-1] #define WORK(I) work[(I)-1] #define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)] *info = 0; if (*n < 0) { *info = -1; } else if (*ilo < 1 || *ilo > max(1,*n)) { *info = -2; } else if (*ihi < min(*ilo,*n) || *ihi > *n) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = *ihi - *ilo; if (*lwork < max(i__1,i__2)) { *info = -8; } } if (*info != 0) { i__1 = -(*info); xerbla_("SORGHR", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { WORK(1) = 1.f; return 0; } /* Shift the vectors which define the elementary reflectors one column to the right, and set the first ilo and the last n-ihi rows and columns to those of the unit matrix */ i__1 = *ilo + 1; for (j = *ihi; j >= *ilo+1; --j) { i__2 = j - 1; for (i = 1; i <= j-1; ++i) { A(i,j) = 0.f; /* L10: */ } i__2 = *ihi; for (i = j + 1; i <= *ihi; ++i) { A(i,j) = A(i,j-1); /* L20: */ } i__2 = *n; for (i = *ihi + 1; i <= *n; ++i) { A(i,j) = 0.f; /* L30: */ } /* L40: */ } i__1 = *ilo; for (j = 1; j <= *ilo; ++j) { i__2 = *n; for (i = 1; i <= *n; ++i) { A(i,j) = 0.f; /* L50: */ } A(j,j) = 1.f; /* L60: */ } i__1 = *n; for (j = *ihi + 1; j <= *n; ++j) { i__2 = *n; for (i = 1; i <= *n; ++i) { A(i,j) = 0.f; /* L70: */ } A(j,j) = 1.f; /* L80: */ } nh = *ihi - *ilo; if (nh > 0) { /* Generate Q(ilo+1:ihi,ilo+1:ihi) */ sorgqr_(&nh, &nh, &nh, &A(*ilo+1,*ilo+1), lda, &TAU(* ilo), &WORK(1), lwork, &iinfo); } return 0; /* End of SORGHR */ } /* sorghr_ */
int sggevx_(char *balanc, char *jobvl, char *jobvr, char * sense, int *n, float *a, int *lda, float *b, int *ldb, float *alphar, float *alphai, float *beta, float *vl, int *ldvl, float *vr, int *ldvr, int *ilo, int *ihi, float *lscale, float *rscale, float *abnrm, float *bbnrm, float *rconde, float *rcondv, float *work, int *lwork, int *iwork, int *bwork, int *info) { /* System generated locals */ int a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2; float r__1, r__2, r__3, r__4; /* Builtin functions */ double sqrt(double); /* Local variables */ int i__, j, m, jc, in, mm, jr; float eps; int ilv, pair; float anrm, bnrm; int ierr, itau; float temp; int ilvl, ilvr; int iwrk, iwrk1; extern int lsame_(char *, char *); int icols; int noscl; int irows; extern int slabad_(float *, float *), sggbak_(char *, char *, int *, int *, int *, float *, float *, int *, float *, int *, int *), sggbal_(char *, int *, float *, int *, float *, int *, int *, int *, float *, float *, float *, int *); int ilascl, ilbscl; extern double slamch_(char *); extern int xerbla_(char *, int *), sgghrd_( char *, char *, int *, int *, int *, float *, int * , float *, int *, float *, int *, float *, int *, int *); int ldumma[1]; char chtemp[1]; float bignum; extern int slascl_(char *, int *, int *, float *, float *, int *, int *, float *, int *, int *); extern int ilaenv_(int *, char *, char *, int *, int *, int *, int *); extern double slange_(char *, int *, int *, float *, int *, float *); int ijobvl; extern int sgeqrf_(int *, int *, float *, int *, float *, float *, int *, int *); int ijobvr; extern int slacpy_(char *, int *, int *, float *, int *, float *, int *); int wantsb; extern int slaset_(char *, int *, int *, float *, float *, float *, int *); float anrmto; int wantse; float bnrmto; extern int shgeqz_(char *, char *, char *, int *, int *, int *, float *, int *, float *, int *, float * , float *, float *, float *, int *, float *, int *, float *, int *, int *), stgevc_(char *, char *, int *, int *, float *, int *, float *, int * , float *, int *, float *, int *, int *, int *, float *, int *), stgsna_(char *, char *, int *, int *, float *, int *, float *, int *, float * , int *, float *, int *, float *, float *, int *, int *, float *, int *, int *, int *); int minwrk, maxwrk; int wantsn; float smlnum; extern int sorgqr_(int *, int *, int *, float *, int *, float *, float *, int *, int *); int lquery, wantsv; extern int sormqr_(char *, char *, int *, int *, int *, float *, int *, float *, float *, int *, float *, int *, int *); /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SGGEVX computes for a pair of N-by-N float nonsymmetric matrices (A,B) */ /* the generalized eigenvalues, and optionally, the left and/or right */ /* generalized eigenvectors. */ /* Optionally also, it computes a balancing transformation to improve */ /* the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */ /* LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for */ /* the eigenvalues (RCONDE), and reciprocal condition numbers for the */ /* right eigenvectors (RCONDV). */ /* A generalized eigenvalue for a pair of matrices (A,B) is a scalar */ /* lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */ /* singular. It is usually represented as the pair (alpha,beta), as */ /* there is a reasonable interpretation for beta=0, and even for both */ /* being zero. */ /* The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */ /* of (A,B) satisfies */ /* A * v(j) = lambda(j) * B * v(j) . */ /* The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */ /* of (A,B) satisfies */ /* u(j)**H * A = lambda(j) * u(j)**H * B. */ /* where u(j)**H is the conjugate-transpose of u(j). */ /* Arguments */ /* ========= */ /* BALANC (input) CHARACTER*1 */ /* Specifies the balance option to be performed. */ /* = 'N': do not diagonally scale or permute; */ /* = 'P': permute only; */ /* = 'S': scale only; */ /* = 'B': both permute and scale. */ /* Computed reciprocal condition numbers will be for the */ /* matrices after permuting and/or balancing. Permuting does */ /* not change condition numbers (in exact arithmetic), but */ /* balancing does. */ /* JOBVL (input) CHARACTER*1 */ /* = 'N': do not compute the left generalized eigenvectors; */ /* = 'V': compute the left generalized eigenvectors. */ /* JOBVR (input) CHARACTER*1 */ /* = 'N': do not compute the right generalized eigenvectors; */ /* = 'V': compute the right generalized eigenvectors. */ /* SENSE (input) CHARACTER*1 */ /* Determines which reciprocal condition numbers are computed. */ /* = 'N': none are computed; */ /* = 'E': computed for eigenvalues only; */ /* = 'V': computed for eigenvectors only; */ /* = 'B': computed for eigenvalues and eigenvectors. */ /* N (input) INTEGER */ /* The order of the matrices A, B, VL, and VR. N >= 0. */ /* A (input/output) REAL array, dimension (LDA, N) */ /* On entry, the matrix A in the pair (A,B). */ /* On exit, A has been overwritten. If JOBVL='V' or JOBVR='V' */ /* or both, then A contains the first part of the float Schur */ /* form of the "balanced" versions of the input A and B. */ /* LDA (input) INTEGER */ /* The leading dimension of A. LDA >= MAX(1,N). */ /* B (input/output) REAL array, dimension (LDB, N) */ /* On entry, the matrix B in the pair (A,B). */ /* On exit, B has been overwritten. If JOBVL='V' or JOBVR='V' */ /* or both, then B contains the second part of the float Schur */ /* form of the "balanced" versions of the input A and B. */ /* LDB (input) INTEGER */ /* The leading dimension of B. LDB >= MAX(1,N). */ /* ALPHAR (output) REAL array, dimension (N) */ /* ALPHAI (output) REAL array, dimension (N) */ /* BETA (output) REAL array, dimension (N) */ /* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */ /* be the generalized eigenvalues. If ALPHAI(j) is zero, then */ /* the j-th eigenvalue is float; if positive, then the j-th and */ /* (j+1)-st eigenvalues are a complex conjugate pair, with */ /* ALPHAI(j+1) negative. */ /* Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */ /* may easily over- or underflow, and BETA(j) may even be zero. */ /* Thus, the user should avoid naively computing the ratio */ /* ALPHA/BETA. However, ALPHAR and ALPHAI will be always less */ /* than and usually comparable with norm(A) in magnitude, and */ /* BETA always less than and usually comparable with norm(B). */ /* VL (output) REAL array, dimension (LDVL,N) */ /* If JOBVL = 'V', the left eigenvectors u(j) are stored one */ /* after another in the columns of VL, in the same order as */ /* their eigenvalues. If the j-th eigenvalue is float, then */ /* u(j) = VL(:,j), the j-th column of VL. If the j-th and */ /* (j+1)-th eigenvalues form a complex conjugate pair, then */ /* u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). */ /* Each eigenvector will be scaled so the largest component have */ /* ABS(float part) + ABS(imag. part) = 1. */ /* Not referenced if JOBVL = 'N'. */ /* LDVL (input) INTEGER */ /* The leading dimension of the matrix VL. LDVL >= 1, and */ /* if JOBVL = 'V', LDVL >= N. */ /* VR (output) REAL array, dimension (LDVR,N) */ /* If JOBVR = 'V', the right eigenvectors v(j) are stored one */ /* after another in the columns of VR, in the same order as */ /* their eigenvalues. If the j-th eigenvalue is float, then */ /* v(j) = VR(:,j), the j-th column of VR. If the j-th and */ /* (j+1)-th eigenvalues form a complex conjugate pair, then */ /* v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). */ /* Each eigenvector will be scaled so the largest component have */ /* ABS(float part) + ABS(imag. part) = 1. */ /* Not referenced if JOBVR = 'N'. */ /* LDVR (input) INTEGER */ /* The leading dimension of the matrix VR. LDVR >= 1, and */ /* if JOBVR = 'V', LDVR >= N. */ /* ILO (output) INTEGER */ /* IHI (output) INTEGER */ /* ILO and IHI are int values such that on exit */ /* A(i,j) = 0 and B(i,j) = 0 if i > j and */ /* j = 1,...,ILO-1 or i = IHI+1,...,N. */ /* If BALANC = 'N' or 'S', ILO = 1 and IHI = N. */ /* LSCALE (output) REAL array, dimension (N) */ /* Details of the permutations and scaling factors applied */ /* to the left side of A and B. If PL(j) is the index of the */ /* row interchanged with row j, and DL(j) is the scaling */ /* factor applied to row j, then */ /* LSCALE(j) = PL(j) for j = 1,...,ILO-1 */ /* = DL(j) for j = ILO,...,IHI */ /* = PL(j) for j = IHI+1,...,N. */ /* The order in which the interchanges are made is N to IHI+1, */ /* then 1 to ILO-1. */ /* RSCALE (output) REAL array, dimension (N) */ /* Details of the permutations and scaling factors applied */ /* to the right side of A and B. If PR(j) is the index of the */ /* column interchanged with column j, and DR(j) is the scaling */ /* factor applied to column j, then */ /* RSCALE(j) = PR(j) for j = 1,...,ILO-1 */ /* = DR(j) for j = ILO,...,IHI */ /* = PR(j) for j = IHI+1,...,N */ /* The order in which the interchanges are made is N to IHI+1, */ /* then 1 to ILO-1. */ /* ABNRM (output) REAL */ /* The one-norm of the balanced matrix A. */ /* BBNRM (output) REAL */ /* The one-norm of the balanced matrix B. */ /* RCONDE (output) REAL array, dimension (N) */ /* If SENSE = 'E' or 'B', the reciprocal condition numbers of */ /* the eigenvalues, stored in consecutive elements of the array. */ /* For a complex conjugate pair of eigenvalues two consecutive */ /* elements of RCONDE are set to the same value. Thus RCONDE(j), */ /* RCONDV(j), and the j-th columns of VL and VR all correspond */ /* to the j-th eigenpair. */ /* If SENSE = 'N' or 'V', RCONDE is not referenced. */ /* RCONDV (output) REAL array, dimension (N) */ /* If SENSE = 'V' or 'B', the estimated reciprocal condition */ /* numbers of the eigenvectors, stored in consecutive elements */ /* of the array. For a complex eigenvector two consecutive */ /* elements of RCONDV are set to the same value. If the */ /* eigenvalues cannot be reordered to compute RCONDV(j), */ /* RCONDV(j) is set to 0; this can only occur when the true */ /* value would be very small anyway. */ /* If SENSE = 'N' or 'E', RCONDV is not referenced. */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= MAX(1,2*N). */ /* If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V', */ /* LWORK >= MAX(1,6*N). */ /* If SENSE = 'E', LWORK >= MAX(1,10*N). */ /* If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* IWORK (workspace) INTEGER array, dimension (N+6) */ /* If SENSE = 'E', IWORK is not referenced. */ /* BWORK (workspace) LOGICAL array, dimension (N) */ /* If SENSE = 'N', BWORK is not referenced. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* = 1,...,N: */ /* The QZ iteration failed. No eigenvectors have been */ /* calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */ /* should be correct for j=INFO+1,...,N. */ /* > N: =N+1: other than QZ iteration failed in SHGEQZ. */ /* =N+2: error return from STGEVC. */ /* Further Details */ /* =============== */ /* Balancing a matrix pair (A,B) includes, first, permuting rows and */ /* columns to isolate eigenvalues, second, applying diagonal similarity */ /* transformation to the rows and columns to make the rows and columns */ /* as close in norm as possible. The computed reciprocal condition */ /* numbers correspond to the balanced matrix. Permuting rows and columns */ /* will not change the condition numbers (in exact arithmetic) but */ /* diagonal scaling will. For further explanation of balancing, see */ /* section 4.11.1.2 of LAPACK Users' Guide. */ /* An approximate error bound on the chordal distance between the i-th */ /* computed generalized eigenvalue w and the corresponding exact */ /* eigenvalue lambda is */ /* chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I) */ /* An approximate error bound for the angle between the i-th computed */ /* eigenvector VL(i) or VR(i) is given by */ /* EPS * norm(ABNRM, BBNRM) / DIF(i). */ /* For further explanation of the reciprocal condition numbers RCONDE */ /* and RCONDV, see section 4.11 of LAPACK User's Guide. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Decode the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --alphar; --alphai; --beta; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1; vr -= vr_offset; --lscale; --rscale; --rconde; --rcondv; --work; --iwork; --bwork; /* Function Body */ if (lsame_(jobvl, "N")) { ijobvl = 1; ilvl = FALSE; } else if (lsame_(jobvl, "V")) { ijobvl = 2; ilvl = TRUE; } else { ijobvl = -1; ilvl = FALSE; } if (lsame_(jobvr, "N")) { ijobvr = 1; ilvr = FALSE; } else if (lsame_(jobvr, "V")) { ijobvr = 2; ilvr = TRUE; } else { ijobvr = -1; ilvr = FALSE; } ilv = ilvl || ilvr; noscl = lsame_(balanc, "N") || lsame_(balanc, "P"); wantsn = lsame_(sense, "N"); wantse = lsame_(sense, "E"); wantsv = lsame_(sense, "V"); wantsb = lsame_(sense, "B"); /* Test the input arguments */ *info = 0; lquery = *lwork == -1; if (! (noscl || lsame_(balanc, "S") || lsame_( balanc, "B"))) { *info = -1; } else if (ijobvl <= 0) { *info = -2; } else if (ijobvr <= 0) { *info = -3; } else if (! (wantsn || wantse || wantsb || wantsv)) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*lda < MAX(1,*n)) { *info = -7; } else if (*ldb < MAX(1,*n)) { *info = -9; } else if (*ldvl < 1 || ilvl && *ldvl < *n) { *info = -14; } else if (*ldvr < 1 || ilvr && *ldvr < *n) { *info = -16; } /* Compute workspace */ /* (Note: Comments in the code beginning "Workspace:" describe the */ /* minimal amount of workspace needed at that point in the code, */ /* as well as the preferred amount for good performance. */ /* NB refers to the optimal block size for the immediately */ /* following subroutine, as returned by ILAENV. The workspace is */ /* computed assuming ILO = 1 and IHI = N, the worst case.) */ if (*info == 0) { if (*n == 0) { minwrk = 1; maxwrk = 1; } else { if (noscl && ! ilv) { minwrk = *n << 1; } else { minwrk = *n * 6; } if (wantse) { minwrk = *n * 10; } else if (wantsv || wantsb) { minwrk = (*n << 1) * (*n + 4) + 16; } maxwrk = minwrk; /* Computing MAX */ i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SGEQRF", " ", n, & c__1, n, &c__0); maxwrk = MAX(i__1,i__2); /* Computing MAX */ i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SORMQR", " ", n, & c__1, n, &c__0); maxwrk = MAX(i__1,i__2); if (ilvl) { /* Computing MAX */ i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SORGQR", " ", n, &c__1, n, &c__0); maxwrk = MAX(i__1,i__2); } } work[1] = (float) maxwrk; if (*lwork < minwrk && ! lquery) { *info = -26; } } if (*info != 0) { i__1 = -(*info); xerbla_("SGGEVX", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = slamch_("P"); smlnum = slamch_("S"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); smlnum = sqrt(smlnum) / eps; bignum = 1.f / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]); ilascl = FALSE; if (anrm > 0.f && anrm < smlnum) { anrmto = smlnum; ilascl = TRUE; } else if (anrm > bignum) { anrmto = bignum; ilascl = TRUE; } if (ilascl) { slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, & ierr); } /* Scale B if max element outside range [SMLNUM,BIGNUM] */ bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]); ilbscl = FALSE; if (bnrm > 0.f && bnrm < smlnum) { bnrmto = smlnum; ilbscl = TRUE; } else if (bnrm > bignum) { bnrmto = bignum; ilbscl = TRUE; } if (ilbscl) { slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & ierr); } /* Permute and/or balance the matrix pair (A,B) */ /* (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise) */ sggbal_(balanc, n, &a[a_offset], lda, &b[b_offset], ldb, ilo, ihi, & lscale[1], &rscale[1], &work[1], &ierr); /* Compute ABNRM and BBNRM */ *abnrm = slange_("1", n, n, &a[a_offset], lda, &work[1]); if (ilascl) { work[1] = *abnrm; slascl_("G", &c__0, &c__0, &anrmto, &anrm, &c__1, &c__1, &work[1], & c__1, &ierr); *abnrm = work[1]; } *bbnrm = slange_("1", n, n, &b[b_offset], ldb, &work[1]); if (ilbscl) { work[1] = *bbnrm; slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, &c__1, &c__1, &work[1], & c__1, &ierr); *bbnrm = work[1]; } /* Reduce B to triangular form (QR decomposition of B) */ /* (Workspace: need N, prefer N*NB ) */ irows = *ihi + 1 - *ilo; if (ilv || ! wantsn) { icols = *n + 1 - *ilo; } else { icols = irows; } itau = 1; iwrk = itau + irows; i__1 = *lwork + 1 - iwrk; sgeqrf_(&irows, &icols, &b[*ilo + *ilo * b_dim1], ldb, &work[itau], &work[ iwrk], &i__1, &ierr); /* Apply the orthogonal transformation to A */ /* (Workspace: need N, prefer N*NB) */ i__1 = *lwork + 1 - iwrk; sormqr_("L", "T", &irows, &icols, &irows, &b[*ilo + *ilo * b_dim1], ldb, & work[itau], &a[*ilo + *ilo * a_dim1], lda, &work[iwrk], &i__1, & ierr); /* Initialize VL and/or VR */ /* (Workspace: need N, prefer N*NB) */ if (ilvl) { slaset_("Full", n, n, &c_b57, &c_b58, &vl[vl_offset], ldvl) ; if (irows > 1) { i__1 = irows - 1; i__2 = irows - 1; slacpy_("L", &i__1, &i__2, &b[*ilo + 1 + *ilo * b_dim1], ldb, &vl[ *ilo + 1 + *ilo * vl_dim1], ldvl); } i__1 = *lwork + 1 - iwrk; sorgqr_(&irows, &irows, &irows, &vl[*ilo + *ilo * vl_dim1], ldvl, & work[itau], &work[iwrk], &i__1, &ierr); } if (ilvr) { slaset_("Full", n, n, &c_b57, &c_b58, &vr[vr_offset], ldvr) ; } /* Reduce to generalized Hessenberg form */ /* (Workspace: none needed) */ if (ilv || ! wantsn) { /* Eigenvectors requested -- work on whole matrix. */ sgghrd_(jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr); } else { sgghrd_("N", "N", &irows, &c__1, &irows, &a[*ilo + *ilo * a_dim1], lda, &b[*ilo + *ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[ vr_offset], ldvr, &ierr); } /* Perform QZ algorithm (Compute eigenvalues, and optionally, the */ /* Schur forms and Schur vectors) */ /* (Workspace: need N) */ if (ilv || ! wantsn) { *(unsigned char *)chtemp = 'S'; } else { *(unsigned char *)chtemp = 'E'; } shgeqz_(chtemp, jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset] , ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], ldvl, & vr[vr_offset], ldvr, &work[1], lwork, &ierr); if (ierr != 0) { if (ierr > 0 && ierr <= *n) { *info = ierr; } else if (ierr > *n && ierr <= *n << 1) { *info = ierr - *n; } else { *info = *n + 1; } goto L130; } /* Compute Eigenvectors and estimate condition numbers if desired */ /* (Workspace: STGEVC: need 6*N */ /* STGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B', */ /* need N otherwise ) */ if (ilv || ! wantsn) { if (ilv) { if (ilvl) { if (ilvr) { *(unsigned char *)chtemp = 'B'; } else { *(unsigned char *)chtemp = 'L'; } } else { *(unsigned char *)chtemp = 'R'; } stgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, & work[1], &ierr); if (ierr != 0) { *info = *n + 2; goto L130; } } if (! wantsn) { /* compute eigenvectors (STGEVC) and estimate condition */ /* numbers (STGSNA). Note that the definition of the condition */ /* number is not invariant under transformation (u,v) to */ /* (Q*u, Z*v), where (u,v) are eigenvectors of the generalized */ /* Schur form (S,T), Q and Z are orthogonal matrices. In order */ /* to avoid using extra 2*N*N workspace, we have to recalculate */ /* eigenvectors and estimate one condition numbers at a time. */ pair = FALSE; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (pair) { pair = FALSE; goto L20; } mm = 1; if (i__ < *n) { if (a[i__ + 1 + i__ * a_dim1] != 0.f) { pair = TRUE; mm = 2; } } i__2 = *n; for (j = 1; j <= i__2; ++j) { bwork[j] = FALSE; /* L10: */ } if (mm == 1) { bwork[i__] = TRUE; } else if (mm == 2) { bwork[i__] = TRUE; bwork[i__ + 1] = TRUE; } iwrk = mm * *n + 1; iwrk1 = iwrk + mm * *n; /* Compute a pair of left and right eigenvectors. */ /* (compute workspace: need up to 4*N + 6*N) */ if (wantse || wantsb) { stgevc_("B", "S", &bwork[1], n, &a[a_offset], lda, &b[ b_offset], ldb, &work[1], n, &work[iwrk], n, &mm, &m, &work[iwrk1], &ierr); if (ierr != 0) { *info = *n + 2; goto L130; } } i__2 = *lwork - iwrk1 + 1; stgsna_(sense, "S", &bwork[1], n, &a[a_offset], lda, &b[ b_offset], ldb, &work[1], n, &work[iwrk], n, &rconde[ i__], &rcondv[i__], &mm, &m, &work[iwrk1], &i__2, & iwork[1], &ierr); L20: ; } } } /* Undo balancing on VL and VR and normalization */ /* (Workspace: none needed) */ if (ilvl) { sggbak_(balanc, "L", n, ilo, ihi, &lscale[1], &rscale[1], n, &vl[ vl_offset], ldvl, &ierr); i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { if (alphai[jc] < 0.f) { goto L70; } temp = 0.f; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__2 = temp, r__3 = (r__1 = vl[jr + jc * vl_dim1], ABS( r__1)); temp = MAX(r__2,r__3); /* L30: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__3 = temp, r__4 = (r__1 = vl[jr + jc * vl_dim1], ABS( r__1)) + (r__2 = vl[jr + (jc + 1) * vl_dim1], ABS(r__2)); temp = MAX(r__3,r__4); /* L40: */ } } if (temp < smlnum) { goto L70; } temp = 1.f / temp; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vl[jr + jc * vl_dim1] *= temp; /* L50: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vl[jr + jc * vl_dim1] *= temp; vl[jr + (jc + 1) * vl_dim1] *= temp; /* L60: */ } } L70: ; } } if (ilvr) { sggbak_(balanc, "R", n, ilo, ihi, &lscale[1], &rscale[1], n, &vr[ vr_offset], ldvr, &ierr); i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { if (alphai[jc] < 0.f) { goto L120; } temp = 0.f; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__2 = temp, r__3 = (r__1 = vr[jr + jc * vr_dim1], ABS( r__1)); temp = MAX(r__2,r__3); /* L80: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__3 = temp, r__4 = (r__1 = vr[jr + jc * vr_dim1], ABS( r__1)) + (r__2 = vr[jr + (jc + 1) * vr_dim1], ABS(r__2)); temp = MAX(r__3,r__4); /* L90: */ } } if (temp < smlnum) { goto L120; } temp = 1.f / temp; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vr[jr + jc * vr_dim1] *= temp; /* L100: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vr[jr + jc * vr_dim1] *= temp; vr[jr + (jc + 1) * vr_dim1] *= temp; /* L110: */ } } L120: ; } } /* Undo scaling if necessary */ if (ilascl) { slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, & ierr); slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, & ierr); } if (ilbscl) { slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & ierr); } L130: work[1] = (float) maxwrk; return 0; /* End of SGGEVX */ } /* sggevx_ */
/* Subroutine */ int sorghr_(integer *n, integer *ilo, integer *ihi, real *a, integer *lda, real *tau, real *work, integer *lwork, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= SORGHR generates a real orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by SGEHRD: Q = H(ilo) H(ilo+1) . . . H(ihi-1). Arguments ========= N (input) INTEGER The order of the matrix Q. N >= 0. ILO (input) INTEGER IHI (input) INTEGER ILO and IHI must have the same values as in the previous call of SGEHRD. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. A (input/output) REAL array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by SGEHRD. On exit, the N-by-N orthogonal matrix Q. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). TAU (input) REAL array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by SGEHRD. WORK (workspace/output) REAL array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= IHI-ILO. For optimum performance LWORK >= (IHI-ILO)*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== Test the input arguments Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ static integer i__, j, iinfo, nb, nh; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *); static integer lwkopt; static logical lquery; #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; nh = *ihi - *ilo; lquery = *lwork == -1; if (*n < 0) { *info = -1; } else if (*ilo < 1 || *ilo > max(1,*n)) { *info = -2; } else if (*ihi < min(*ilo,*n) || *ihi > *n) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*lwork < max(1,nh) && ! lquery) { *info = -8; } if (*info == 0) { nb = ilaenv_(&c__1, "SORGQR", " ", &nh, &nh, &nh, &c_n1, (ftnlen)6, ( ftnlen)1); lwkopt = max(1,nh) * nb; work[1] = (real) lwkopt; } if (*info != 0) { i__1 = -(*info); xerbla_("SORGHR", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { work[1] = 1.f; return 0; } /* Shift the vectors which define the elementary reflectors one column to the right, and set the first ilo and the last n-ihi rows and columns to those of the unit matrix */ i__1 = *ilo + 1; for (j = *ihi; j >= i__1; --j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { a_ref(i__, j) = 0.f; /* L10: */ } i__2 = *ihi; for (i__ = j + 1; i__ <= i__2; ++i__) { a_ref(i__, j) = a_ref(i__, j - 1); /* L20: */ } i__2 = *n; for (i__ = *ihi + 1; i__ <= i__2; ++i__) { a_ref(i__, j) = 0.f; /* L30: */ } /* L40: */ } i__1 = *ilo; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { a_ref(i__, j) = 0.f; /* L50: */ } a_ref(j, j) = 1.f; /* L60: */ } i__1 = *n; for (j = *ihi + 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { a_ref(i__, j) = 0.f; /* L70: */ } a_ref(j, j) = 1.f; /* L80: */ } if (nh > 0) { /* Generate Q(ilo+1:ihi,ilo+1:ihi) */ sorgqr_(&nh, &nh, &nh, &a_ref(*ilo + 1, *ilo + 1), lda, &tau[*ilo], & work[1], lwork, &iinfo); } work[1] = (real) lwkopt; return 0; /* End of SORGHR */ } /* sorghr_ */
/* Subroutine */ int serrqr_(char *path, integer *nunit) { /* Local variables */ real a[4] /* was [2][2] */, b[2]; integer i__, j; real w[2], x[2], af[4] /* was [2][2] */; integer info; /* Fortran I/O blocks */ static cilist io___1 = { 0, 0, 0, 0, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SERRQR tests the error exits for the REAL routines */ /* that use the QR decomposition of a general matrix. */ /* Arguments */ /* ========= */ /* PATH (input) CHARACTER*3 */ /* The LAPACK path name for the routines to be tested. */ /* NUNIT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ infoc_1.nout = *nunit; io___1.ciunit = infoc_1.nout; s_wsle(&io___1); e_wsle(); /* Set the variables to innocuous values. */ for (j = 1; j <= 2; ++j) { for (i__ = 1; i__ <= 2; ++i__) { a[i__ + (j << 1) - 3] = 1.f / (real) (i__ + j); af[i__ + (j << 1) - 3] = 1.f / (real) (i__ + j); /* L10: */ } b[j - 1] = 0.f; w[j - 1] = 0.f; x[j - 1] = 0.f; /* L20: */ } infoc_1.ok = TRUE_; /* Error exits for QR factorization */ /* SGEQRF */ s_copy(srnamc_1.srnamt, "SGEQRF", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sgeqrf_(&c_n1, &c__0, a, &c__1, b, w, &c__1, &info); chkxer_("SGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgeqrf_(&c__0, &c_n1, a, &c__1, b, w, &c__1, &info); chkxer_("SGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgeqrf_(&c__2, &c__1, a, &c__1, b, w, &c__1, &info); chkxer_("SGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; sgeqrf_(&c__1, &c__2, a, &c__1, b, w, &c__1, &info); chkxer_("SGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGEQR2 */ s_copy(srnamc_1.srnamt, "SGEQR2", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sgeqr2_(&c_n1, &c__0, a, &c__1, b, w, &info); chkxer_("SGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgeqr2_(&c__0, &c_n1, a, &c__1, b, w, &info); chkxer_("SGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgeqr2_(&c__2, &c__1, a, &c__1, b, w, &info); chkxer_("SGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGEQRS */ s_copy(srnamc_1.srnamt, "SGEQRS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sgeqrs_(&c_n1, &c__0, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("SGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgeqrs_(&c__0, &c_n1, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("SGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgeqrs_(&c__1, &c__2, &c__0, a, &c__2, x, b, &c__2, w, &c__1, &info); chkxer_("SGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgeqrs_(&c__0, &c__0, &c_n1, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("SGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sgeqrs_(&c__2, &c__1, &c__0, a, &c__1, x, b, &c__2, w, &c__1, &info); chkxer_("SGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; sgeqrs_(&c__2, &c__1, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info); chkxer_("SGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; sgeqrs_(&c__1, &c__1, &c__2, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("SGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SORGQR */ s_copy(srnamc_1.srnamt, "SORGQR", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sorgqr_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("SORGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sorgqr_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("SORGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sorgqr_(&c__1, &c__2, &c__0, a, &c__1, x, w, &c__2, &info); chkxer_("SORGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sorgqr_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &c__1, &info); chkxer_("SORGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sorgqr_(&c__1, &c__1, &c__2, a, &c__1, x, w, &c__1, &info); chkxer_("SORGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sorgqr_(&c__2, &c__2, &c__0, a, &c__1, x, w, &c__2, &info); chkxer_("SORGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; sorgqr_(&c__2, &c__2, &c__0, a, &c__2, x, w, &c__1, &info); chkxer_("SORGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SORG2R */ s_copy(srnamc_1.srnamt, "SORG2R", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sorg2r_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &info); chkxer_("SORG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sorg2r_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &info); chkxer_("SORG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sorg2r_(&c__1, &c__2, &c__0, a, &c__1, x, w, &info); chkxer_("SORG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sorg2r_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &info); chkxer_("SORG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sorg2r_(&c__2, &c__1, &c__2, a, &c__2, x, w, &info); chkxer_("SORG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sorg2r_(&c__2, &c__1, &c__0, a, &c__1, x, w, &info); chkxer_("SORG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SORMQR */ s_copy(srnamc_1.srnamt, "SORMQR", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sormqr_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sormqr_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sormqr_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sormqr_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sormqr_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sormqr_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sormqr_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; sormqr_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; sormqr_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; sormqr_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; sormqr_("L", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; sormqr_("R", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("SORMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SORM2R */ s_copy(srnamc_1.srnamt, "SORM2R", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sorm2r_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sorm2r_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sorm2r_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sorm2r_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sorm2r_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sorm2r_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sorm2r_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; sorm2r_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; sorm2r_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; sorm2r_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &info); chkxer_("SORM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Print a summary line. */ alaesm_(path, &infoc_1.ok, &infoc_1.nout); return 0; /* End of SERRQR */ } /* serrqr_ */
/* Subroutine */ int sggevx_(char *balanc, char *jobvl, char *jobvr, char * sense, integer *n, real *a, integer *lda, real *b, integer *ldb, real *alphar, real *alphai, real *beta, real *vl, integer *ldvl, real *vr, integer *ldvr, integer *ilo, integer *ihi, real *lscale, real *rscale, real *abnrm, real *bbnrm, real *rconde, real *rcondv, real *work, integer *lwork, integer *iwork, logical *bwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2; real r__1, r__2, r__3, r__4; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j, m, jc, in, mm, jr; real eps; logical ilv, pair; real anrm, bnrm; integer ierr, itau; real temp; logical ilvl, ilvr; integer iwrk, iwrk1; extern logical lsame_(char *, char *); integer icols; logical noscl; integer irows; extern /* Subroutine */ int slabad_(real *, real *), sggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, integer *), sggbal_(char *, integer *, real *, integer *, real *, integer *, integer *, integer *, real *, real *, real *, integer *); logical ilascl, ilbscl; extern real slamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *), sgghrd_( char *, char *, integer *, integer *, integer *, real *, integer * , real *, integer *, real *, integer *, real *, integer *, integer *); logical ldumma[1]; char chtemp[1]; real bignum; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern real slange_(char *, integer *, integer *, real *, integer *, real *); integer ijobvl; extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer *, real *, real *, integer *, integer *); integer ijobvr; extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *); logical wantsb; extern /* Subroutine */ int slaset_(char *, integer *, integer *, real *, real *, real *, integer *); real anrmto; logical wantse; real bnrmto; extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real * , real *, real *, real *, integer *, real *, integer *, real *, integer *, integer *), stgevc_(char *, char *, logical *, integer *, real *, integer *, real *, integer * , real *, integer *, real *, integer *, integer *, integer *, real *, integer *), stgsna_(char *, char *, logical *, integer *, real *, integer *, real *, integer *, real * , integer *, real *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *, integer *); integer minwrk, maxwrk; logical wantsn; real smlnum; extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *); logical lquery, wantsv; extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, integer *); /* -- LAPACK driver routine (version 3.4.1) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* April 2012 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Decode the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --alphar; --alphai; --beta; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1; vr -= vr_offset; --lscale; --rscale; --rconde; --rcondv; --work; --iwork; --bwork; /* Function Body */ if (lsame_(jobvl, "N")) { ijobvl = 1; ilvl = FALSE_; } else if (lsame_(jobvl, "V")) { ijobvl = 2; ilvl = TRUE_; } else { ijobvl = -1; ilvl = FALSE_; } if (lsame_(jobvr, "N")) { ijobvr = 1; ilvr = FALSE_; } else if (lsame_(jobvr, "V")) { ijobvr = 2; ilvr = TRUE_; } else { ijobvr = -1; ilvr = FALSE_; } ilv = ilvl || ilvr; noscl = lsame_(balanc, "N") || lsame_(balanc, "P"); wantsn = lsame_(sense, "N"); wantse = lsame_(sense, "E"); wantsv = lsame_(sense, "V"); wantsb = lsame_(sense, "B"); /* Test the input arguments */ *info = 0; lquery = *lwork == -1; if (! (noscl || lsame_(balanc, "S") || lsame_( balanc, "B"))) { *info = -1; } else if (ijobvl <= 0) { *info = -2; } else if (ijobvr <= 0) { *info = -3; } else if (! (wantsn || wantse || wantsb || wantsv)) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,*n)) { *info = -7; } else if (*ldb < max(1,*n)) { *info = -9; } else if (*ldvl < 1 || ilvl && *ldvl < *n) { *info = -14; } else if (*ldvr < 1 || ilvr && *ldvr < *n) { *info = -16; } /* Compute workspace */ /* (Note: Comments in the code beginning "Workspace:" describe the */ /* minimal amount of workspace needed at that point in the code, */ /* as well as the preferred amount for good performance. */ /* NB refers to the optimal block size for the immediately */ /* following subroutine, as returned by ILAENV. The workspace is */ /* computed assuming ILO = 1 and IHI = N, the worst case.) */ if (*info == 0) { if (*n == 0) { minwrk = 1; maxwrk = 1; } else { if (noscl && ! ilv) { minwrk = *n << 1; } else { minwrk = *n * 6; } if (wantse) { minwrk = *n * 10; } else if (wantsv || wantsb) { minwrk = (*n << 1) * (*n + 4) + 16; } maxwrk = minwrk; /* Computing MAX */ i__1 = maxwrk; i__2 = *n + *n * ilaenv_(&c__1, "SGEQRF", " ", n, & c__1, n, &c__0); // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = *n + *n * ilaenv_(&c__1, "SORMQR", " ", n, & c__1, n, &c__0); // , expr subst maxwrk = max(i__1,i__2); if (ilvl) { /* Computing MAX */ i__1 = maxwrk; i__2 = *n + *n * ilaenv_(&c__1, "SORGQR", " ", n, &c__1, n, &c__0); // , expr subst maxwrk = max(i__1,i__2); } } work[1] = (real) maxwrk; if (*lwork < minwrk && ! lquery) { *info = -26; } } if (*info != 0) { i__1 = -(*info); xerbla_("SGGEVX", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = slamch_("P"); smlnum = slamch_("S"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); smlnum = sqrt(smlnum) / eps; bignum = 1.f / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]); ilascl = FALSE_; if (anrm > 0.f && anrm < smlnum) { anrmto = smlnum; ilascl = TRUE_; } else if (anrm > bignum) { anrmto = bignum; ilascl = TRUE_; } if (ilascl) { slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, & ierr); } /* Scale B if max element outside range [SMLNUM,BIGNUM] */ bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]); ilbscl = FALSE_; if (bnrm > 0.f && bnrm < smlnum) { bnrmto = smlnum; ilbscl = TRUE_; } else if (bnrm > bignum) { bnrmto = bignum; ilbscl = TRUE_; } if (ilbscl) { slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & ierr); } /* Permute and/or balance the matrix pair (A,B) */ /* (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise) */ sggbal_(balanc, n, &a[a_offset], lda, &b[b_offset], ldb, ilo, ihi, & lscale[1], &rscale[1], &work[1], &ierr); /* Compute ABNRM and BBNRM */ *abnrm = slange_("1", n, n, &a[a_offset], lda, &work[1]); if (ilascl) { work[1] = *abnrm; slascl_("G", &c__0, &c__0, &anrmto, &anrm, &c__1, &c__1, &work[1], & c__1, &ierr); *abnrm = work[1]; } *bbnrm = slange_("1", n, n, &b[b_offset], ldb, &work[1]); if (ilbscl) { work[1] = *bbnrm; slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, &c__1, &c__1, &work[1], & c__1, &ierr); *bbnrm = work[1]; } /* Reduce B to triangular form (QR decomposition of B) */ /* (Workspace: need N, prefer N*NB ) */ irows = *ihi + 1 - *ilo; if (ilv || ! wantsn) { icols = *n + 1 - *ilo; } else { icols = irows; } itau = 1; iwrk = itau + irows; i__1 = *lwork + 1 - iwrk; sgeqrf_(&irows, &icols, &b[*ilo + *ilo * b_dim1], ldb, &work[itau], &work[ iwrk], &i__1, &ierr); /* Apply the orthogonal transformation to A */ /* (Workspace: need N, prefer N*NB) */ i__1 = *lwork + 1 - iwrk; sormqr_("L", "T", &irows, &icols, &irows, &b[*ilo + *ilo * b_dim1], ldb, & work[itau], &a[*ilo + *ilo * a_dim1], lda, &work[iwrk], &i__1, & ierr); /* Initialize VL and/or VR */ /* (Workspace: need N, prefer N*NB) */ if (ilvl) { slaset_("Full", n, n, &c_b57, &c_b58, &vl[vl_offset], ldvl) ; if (irows > 1) { i__1 = irows - 1; i__2 = irows - 1; slacpy_("L", &i__1, &i__2, &b[*ilo + 1 + *ilo * b_dim1], ldb, &vl[ *ilo + 1 + *ilo * vl_dim1], ldvl); } i__1 = *lwork + 1 - iwrk; sorgqr_(&irows, &irows, &irows, &vl[*ilo + *ilo * vl_dim1], ldvl, & work[itau], &work[iwrk], &i__1, &ierr); } if (ilvr) { slaset_("Full", n, n, &c_b57, &c_b58, &vr[vr_offset], ldvr) ; } /* Reduce to generalized Hessenberg form */ /* (Workspace: none needed) */ if (ilv || ! wantsn) { /* Eigenvectors requested -- work on whole matrix. */ sgghrd_(jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr); } else { sgghrd_("N", "N", &irows, &c__1, &irows, &a[*ilo + *ilo * a_dim1], lda, &b[*ilo + *ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[ vr_offset], ldvr, &ierr); } /* Perform QZ algorithm (Compute eigenvalues, and optionally, the */ /* Schur forms and Schur vectors) */ /* (Workspace: need N) */ if (ilv || ! wantsn) { *(unsigned char *)chtemp = 'S'; } else { *(unsigned char *)chtemp = 'E'; } shgeqz_(chtemp, jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset] , ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], ldvl, & vr[vr_offset], ldvr, &work[1], lwork, &ierr); if (ierr != 0) { if (ierr > 0 && ierr <= *n) { *info = ierr; } else if (ierr > *n && ierr <= *n << 1) { *info = ierr - *n; } else { *info = *n + 1; } goto L130; } /* Compute Eigenvectors and estimate condition numbers if desired */ /* (Workspace: STGEVC: need 6*N */ /* STGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B', */ /* need N otherwise ) */ if (ilv || ! wantsn) { if (ilv) { if (ilvl) { if (ilvr) { *(unsigned char *)chtemp = 'B'; } else { *(unsigned char *)chtemp = 'L'; } } else { *(unsigned char *)chtemp = 'R'; } stgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, & work[1], &ierr); if (ierr != 0) { *info = *n + 2; goto L130; } } if (! wantsn) { /* compute eigenvectors (STGEVC) and estimate condition */ /* numbers (STGSNA). Note that the definition of the condition */ /* number is not invariant under transformation (u,v) to */ /* (Q*u, Z*v), where (u,v) are eigenvectors of the generalized */ /* Schur form (S,T), Q and Z are orthogonal matrices. In order */ /* to avoid using extra 2*N*N workspace, we have to recalculate */ /* eigenvectors and estimate one condition numbers at a time. */ pair = FALSE_; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (pair) { pair = FALSE_; goto L20; } mm = 1; if (i__ < *n) { if (a[i__ + 1 + i__ * a_dim1] != 0.f) { pair = TRUE_; mm = 2; } } i__2 = *n; for (j = 1; j <= i__2; ++j) { bwork[j] = FALSE_; /* L10: */ } if (mm == 1) { bwork[i__] = TRUE_; } else if (mm == 2) { bwork[i__] = TRUE_; bwork[i__ + 1] = TRUE_; } iwrk = mm * *n + 1; iwrk1 = iwrk + mm * *n; /* Compute a pair of left and right eigenvectors. */ /* (compute workspace: need up to 4*N + 6*N) */ if (wantse || wantsb) { stgevc_("B", "S", &bwork[1], n, &a[a_offset], lda, &b[ b_offset], ldb, &work[1], n, &work[iwrk], n, &mm, &m, &work[iwrk1], &ierr); if (ierr != 0) { *info = *n + 2; goto L130; } } i__2 = *lwork - iwrk1 + 1; stgsna_(sense, "S", &bwork[1], n, &a[a_offset], lda, &b[ b_offset], ldb, &work[1], n, &work[iwrk], n, &rconde[ i__], &rcondv[i__], &mm, &m, &work[iwrk1], &i__2, & iwork[1], &ierr); L20: ; } } } /* Undo balancing on VL and VR and normalization */ /* (Workspace: none needed) */ if (ilvl) { sggbak_(balanc, "L", n, ilo, ihi, &lscale[1], &rscale[1], n, &vl[ vl_offset], ldvl, &ierr); i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { if (alphai[jc] < 0.f) { goto L70; } temp = 0.f; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__2 = temp; r__3 = (r__1 = vl[jr + jc * vl_dim1], abs( r__1)); // , expr subst temp = max(r__2,r__3); /* L30: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__3 = temp; r__4 = (r__1 = vl[jr + jc * vl_dim1], abs( r__1)) + (r__2 = vl[jr + (jc + 1) * vl_dim1], abs( r__2)); // , expr subst temp = max(r__3,r__4); /* L40: */ } } if (temp < smlnum) { goto L70; } temp = 1.f / temp; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vl[jr + jc * vl_dim1] *= temp; /* L50: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vl[jr + jc * vl_dim1] *= temp; vl[jr + (jc + 1) * vl_dim1] *= temp; /* L60: */ } } L70: ; } } if (ilvr) { sggbak_(balanc, "R", n, ilo, ihi, &lscale[1], &rscale[1], n, &vr[ vr_offset], ldvr, &ierr); i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { if (alphai[jc] < 0.f) { goto L120; } temp = 0.f; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__2 = temp; r__3 = (r__1 = vr[jr + jc * vr_dim1], abs( r__1)); // , expr subst temp = max(r__2,r__3); /* L80: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ r__3 = temp; r__4 = (r__1 = vr[jr + jc * vr_dim1], abs( r__1)) + (r__2 = vr[jr + (jc + 1) * vr_dim1], abs( r__2)); // , expr subst temp = max(r__3,r__4); /* L90: */ } } if (temp < smlnum) { goto L120; } temp = 1.f / temp; if (alphai[jc] == 0.f) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vr[jr + jc * vr_dim1] *= temp; /* L100: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vr[jr + jc * vr_dim1] *= temp; vr[jr + (jc + 1) * vr_dim1] *= temp; /* L110: */ } } L120: ; } } /* Undo scaling if necessary */ L130: if (ilascl) { slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, & ierr); slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, & ierr); } if (ilbscl) { slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & ierr); } work[1] = (real) maxwrk; return 0; /* End of SGGEVX */ }