Beispiel #1
0
/* Subroutine */ int schkbb_(integer *nsizes, integer *mval, integer *nval, 
	integer *nwdths, integer *kk, integer *ntypes, logical *dotype, 
	integer *nrhs, integer *iseed, real *thresh, integer *nounit, real *a, 
	 integer *lda, real *ab, integer *ldab, real *bd, real *be, real *q, 
	integer *ldq, real *p, integer *ldp, real *c__, integer *ldc, real *
	cc, real *work, integer *lwork, real *result, integer *info)
{
    /* Initialized data */

    static integer ktype[15] = { 1,2,4,4,4,4,4,6,6,6,6,6,9,9,9 };
    static integer kmagn[15] = { 1,1,1,1,1,2,3,1,1,1,2,3,1,2,3 };
    static integer kmode[15] = { 0,0,4,3,1,4,4,4,3,1,4,4,0,0,0 };

    /* Format strings */
    static char fmt_9999[] = "(\002 SCHKBB: \002,a,\002 returned INFO=\002,i"
	    "5,\002.\002,/9x,\002M=\002,i5,\002 N=\002,i5,\002 K=\002,i5,\002"
	    ", JTYPE=\002,i5,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9998[] = "(\002 M =\002,i4,\002 N=\002,i4,\002, K=\002,i"
	    "3,\002, seed=\002,4(i4,\002,\002),\002 type \002,i2,\002, test"
	    "(\002,i2,\002)=\002,g10.3)";

    /* System generated locals */
    integer a_dim1, a_offset, ab_dim1, ab_offset, c_dim1, c_offset, cc_dim1, 
	    cc_offset, p_dim1, p_offset, q_dim1, q_offset, i__1, i__2, i__3, 
	    i__4, i__5, i__6, i__7, i__8, i__9;

    /* Builtin functions */
    double sqrt(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, k, m, n, kl, jr, ku;
    real ulp, cond;
    integer jcol, kmax, mmax, nmax;
    real unfl, ovfl;
    logical badmm, badnn;
    integer imode;
    extern /* Subroutine */ int sbdt01_(integer *, integer *, integer *, real 
	    *, integer *, real *, integer *, real *, real *, real *, integer *
, real *, real *), sbdt02_(integer *, integer *, real *, integer *
, real *, integer *, real *, integer *, real *, real *);
    integer iinfo;
    real anorm;
    integer mnmin, mnmax, nmats, jsize;
    extern /* Subroutine */ int sort01_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *, real *);
    integer nerrs, itype, jtype, ntest;
    extern /* Subroutine */ int slahd2_(integer *, char *);
    logical badnnb;
    extern /* Subroutine */ int sgbbrd_(char *, integer *, integer *, integer 
	    *, integer *, integer *, real *, integer *, real *, real *, real *
, integer *, real *, integer *, real *, integer *, real *, 
	    integer *);
    extern doublereal slamch_(char *);
    integer idumma[1];
    extern /* Subroutine */ int xerbla_(char *, integer *);
    integer ioldsd[4];
    real amninv;
    integer jwidth;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), slaset_(char *, integer *, 
	    integer *, real *, real *, real *, integer *), slatmr_(
	    integer *, integer *, char *, integer *, char *, real *, integer *
, real *, real *, char *, char *, real *, integer *, real *, real 
	    *, integer *, real *, char *, integer *, integer *, integer *, 
	    real *, real *, char *, real *, integer *, integer *, integer *), slatms_(integer *
, integer *, char *, integer *, char *, real *, integer *, real *, 
	     real *, integer *, integer *, char *, real *, integer *, real *, 
	    integer *), slasum_(char *, integer *, 
	    integer *, integer *);
    real rtunfl, rtovfl, ulpinv;
    integer mtypes, ntestt;

    /* Fortran I/O blocks */
    static cilist io___41 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (release 2.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SCHKBB tests the reduction of a general real rectangular band */
/*  matrix to bidiagonal form. */

/*  SGBBRD factors a general band matrix A as  Q B P* , where * means */
/*  transpose, B is upper bidiagonal, and Q and P are orthogonal; */
/*  SGBBRD can also overwrite a given matrix C with Q* C . */

/*  For each pair of matrix dimensions (M,N) and each selected matrix */
/*  type, an M by N matrix A and an M by NRHS matrix C are generated. */
/*  The problem dimensions are as follows */
/*     A:          M x N */
/*     Q:          M x M */
/*     P:          N x N */
/*     B:          min(M,N) x min(M,N) */
/*     C:          M x NRHS */

/*  For each generated matrix, 4 tests are performed: */

/*  (1)   | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P' */

/*  (2)   | I - Q' Q | / ( M ulp ) */

/*  (3)   | I - PT PT' | / ( N ulp ) */

/*  (4)   | Y - Q' C | / ( |Y| max(M,NRHS) ulp ), where Y = Q' C. */

/*  The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */
/*  if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */
/*  Currently, the list of possible types is: */

/*  The possible matrix types are */

/*  (1)  The zero matrix. */
/*  (2)  The identity matrix. */

/*  (3)  A diagonal matrix with evenly spaced entries */
/*       1, ..., ULP  and random signs. */
/*       (ULP = (first number larger than 1) - 1 ) */
/*  (4)  A diagonal matrix with geometrically spaced entries */
/*       1, ..., ULP  and random signs. */
/*  (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
/*       and random signs. */

/*  (6)  Same as (3), but multiplied by SQRT( overflow threshold ) */
/*  (7)  Same as (3), but multiplied by SQRT( underflow threshold ) */

/*  (8)  A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has evenly spaced entries 1, ..., ULP with random signs */
/*       on the diagonal. */

/*  (9)  A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has geometrically spaced entries 1, ..., ULP with random */
/*       signs on the diagonal. */

/*  (10) A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has "clustered" entries 1, ULP,..., ULP with random */
/*       signs on the diagonal. */

/*  (11) Same as (8), but multiplied by SQRT( overflow threshold ) */
/*  (12) Same as (8), but multiplied by SQRT( underflow threshold ) */

/*  (13) Rectangular matrix with random entries chosen from (-1,1). */
/*  (14) Same as (13), but multiplied by SQRT( overflow threshold ) */
/*  (15) Same as (13), but multiplied by SQRT( underflow threshold ) */

/*  Arguments */
/*  ========= */

/*  NSIZES  (input) INTEGER */
/*          The number of values of M and N contained in the vectors */
/*          MVAL and NVAL.  The matrix sizes are used in pairs (M,N). */
/*          If NSIZES is zero, SCHKBB does nothing.  NSIZES must be at */
/*          least zero. */

/*  MVAL    (input) INTEGER array, dimension (NSIZES) */
/*          The values of the matrix row dimension M. */

/*  NVAL    (input) INTEGER array, dimension (NSIZES) */
/*          The values of the matrix column dimension N. */

/*  NWDTHS  (input) INTEGER */
/*          The number of bandwidths to use.  If it is zero, */
/*          SCHKBB does nothing.  It must be at least zero. */

/*  KK      (input) INTEGER array, dimension (NWDTHS) */
/*          An array containing the bandwidths to be used for the band */
/*          matrices.  The values must be at least zero. */

/*  NTYPES  (input) INTEGER */
/*          The number of elements in DOTYPE.   If it is zero, SCHKBB */
/*          does nothing.  It must be at least zero.  If it is MAXTYP+1 */
/*          and NSIZES is 1, then an additional type, MAXTYP+1 is */
/*          defined, which is to use whatever matrix is in A.  This */
/*          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */
/*          DOTYPE(MAXTYP+1) is .TRUE. . */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          If DOTYPE(j) is .TRUE., then for each size in NN a */
/*          matrix of that size and of type j will be generated. */
/*          If NTYPES is smaller than the maximum number of types */
/*          defined (PARAMETER MAXTYP), then types NTYPES+1 through */
/*          MAXTYP will not be generated.  If NTYPES is larger */
/*          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */
/*          will be ignored. */

/*  NRHS    (input) INTEGER */
/*          The number of columns in the "right-hand side" matrix C. */
/*          If NRHS = 0, then the operations on the right-hand side will */
/*          not be tested. NRHS must be at least 0. */

/*  ISEED   (input/output) INTEGER array, dimension (4) */
/*          On entry ISEED specifies the seed of the random number */
/*          generator. The array elements should be between 0 and 4095; */
/*          if not they will be reduced mod 4096.  Also, ISEED(4) must */
/*          be odd.  The random number generator uses a linear */
/*          congruential sequence limited to small integers, and so */
/*          should produce machine independent random numbers. The */
/*          values of ISEED are changed on exit, and can be used in the */
/*          next call to SCHKBB to continue the same random number */
/*          sequence. */

/*  THRESH  (input) REAL */
/*          A test will count as "failed" if the "error", computed as */
/*          described above, exceeds THRESH.  Note that the error */
/*          is scaled to be O(1), so THRESH should be a reasonably */
/*          small multiple of 1, e.g., 10 or 100.  In particular, */
/*          it should not depend on the precision (single vs. double) */
/*          or the size of the matrix.  It must be at least zero. */

/*  NOUNIT  (input) INTEGER */
/*          The FORTRAN unit number for printing out error messages */
/*          (e.g., if a routine returns IINFO not equal to 0.) */

/*  A       (input/workspace) REAL array, dimension */
/*                            (LDA, max(NN)) */
/*          Used to hold the matrix A. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of A.  It must be at least 1 */
/*          and at least max( NN ). */

/*  AB      (workspace) REAL array, dimension (LDAB, max(NN)) */
/*          Used to hold A in band storage format. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of AB.  It must be at least 2 (not 1!) */
/*          and at least max( KK )+1. */

/*  BD      (workspace) REAL array, dimension (max(NN)) */
/*          Used to hold the diagonal of the bidiagonal matrix computed */
/*          by SGBBRD. */

/*  BE      (workspace) REAL array, dimension (max(NN)) */
/*          Used to hold the off-diagonal of the bidiagonal matrix */
/*          computed by SGBBRD. */

/*  Q       (workspace) REAL array, dimension (LDQ, max(NN)) */
/*          Used to hold the orthogonal matrix Q computed by SGBBRD. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of Q.  It must be at least 1 */
/*          and at least max( NN ). */

/*  P       (workspace) REAL array, dimension (LDP, max(NN)) */
/*          Used to hold the orthogonal matrix P computed by SGBBRD. */

/*  LDP     (input) INTEGER */
/*          The leading dimension of P.  It must be at least 1 */
/*          and at least max( NN ). */

/*  C       (workspace) REAL array, dimension (LDC, max(NN)) */
/*          Used to hold the matrix C updated by SGBBRD. */

/*  LDC     (input) INTEGER */
/*          The leading dimension of U.  It must be at least 1 */
/*          and at least max( NN ). */

/*  CC      (workspace) REAL array, dimension (LDC, max(NN)) */
/*          Used to hold a copy of the matrix C. */

/*  WORK    (workspace) REAL array, dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          The number of entries in WORK.  This must be at least */
/*          max( LDA+1, max(NN)+1 )*max(NN). */

/*  RESULT  (output) REAL array, dimension (4) */
/*          The values computed by the tests described above. */
/*          The values are currently limited to 1/ulp, to avoid */
/*          overflow. */

/*  INFO    (output) INTEGER */
/*          If 0, then everything ran OK. */

/* ----------------------------------------------------------------------- */

/*       Some Local Variables and Parameters: */
/*       ---- ----- --------- --- ---------- */
/*       ZERO, ONE       Real 0 and 1. */
/*       MAXTYP          The number of types defined. */
/*       NTEST           The number of tests performed, or which can */
/*                       be performed so far, for the current matrix. */
/*       NTESTT          The total number of tests performed so far. */
/*       NMAX            Largest value in NN. */
/*       NMATS           The number of matrices generated so far. */
/*       NERRS           The number of tests which have exceeded THRESH */
/*                       so far. */
/*       COND, IMODE     Values to be passed to the matrix generators. */
/*       ANORM           Norm of A; passed to matrix generators. */

/*       OVFL, UNFL      Overflow and underflow thresholds. */
/*       ULP, ULPINV     Finest relative precision and its inverse. */
/*       RTOVFL, RTUNFL  Square roots of the previous 2 values. */
/*               The following four arrays decode JTYPE: */
/*       KTYPE(j)        The general type (1-10) for type "j". */
/*       KMODE(j)        The MODE value to be passed to the matrix */
/*                       generator for type "j". */
/*       KMAGN(j)        The order of magnitude ( O(1), */
/*                       O(overflow^(1/2) ), O(underflow^(1/2) ) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --mval;
    --nval;
    --kk;
    --dotype;
    --iseed;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --bd;
    --be;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    p_dim1 = *ldp;
    p_offset = 1 + p_dim1;
    p -= p_offset;
    cc_dim1 = *ldc;
    cc_offset = 1 + cc_dim1;
    cc -= cc_offset;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;
    --work;
    --result;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Check for errors */

    ntestt = 0;
    *info = 0;

/*     Important constants */

    badmm = FALSE_;
    badnn = FALSE_;
    mmax = 1;
    nmax = 1;
    mnmax = 1;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = mmax, i__3 = mval[j];
	mmax = max(i__2,i__3);
	if (mval[j] < 0) {
	    badmm = TRUE_;
	}
/* Computing MAX */
	i__2 = nmax, i__3 = nval[j];
	nmax = max(i__2,i__3);
	if (nval[j] < 0) {
	    badnn = TRUE_;
	}
/* Computing MAX */
/* Computing MIN */
	i__4 = mval[j], i__5 = nval[j];
	i__2 = mnmax, i__3 = min(i__4,i__5);
	mnmax = max(i__2,i__3);
/* L10: */
    }

    badnnb = FALSE_;
    kmax = 0;
    i__1 = *nwdths;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = kmax, i__3 = kk[j];
	kmax = max(i__2,i__3);
	if (kk[j] < 0) {
	    badnnb = TRUE_;
	}
/* L20: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badmm) {
	*info = -2;
    } else if (badnn) {
	*info = -3;
    } else if (*nwdths < 0) {
	*info = -4;
    } else if (badnnb) {
	*info = -5;
    } else if (*ntypes < 0) {
	*info = -6;
    } else if (*nrhs < 0) {
	*info = -8;
    } else if (*lda < nmax) {
	*info = -13;
    } else if (*ldab < (kmax << 1) + 1) {
	*info = -15;
    } else if (*ldq < nmax) {
	*info = -19;
    } else if (*ldp < nmax) {
	*info = -21;
    } else if (*ldc < nmax) {
	*info = -23;
    } else if ((max(*lda,nmax) + 1) * nmax > *lwork) {
	*info = -26;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SCHKBB", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*nsizes == 0 || *ntypes == 0 || *nwdths == 0) {
	return 0;
    }

/*     More Important constants */

    unfl = slamch_("Safe minimum");
    ovfl = 1.f / unfl;
    ulp = slamch_("Epsilon") * slamch_("Base");
    ulpinv = 1.f / ulp;
    rtunfl = sqrt(unfl);
    rtovfl = sqrt(ovfl);

/*     Loop over sizes, widths, types */

    nerrs = 0;
    nmats = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	m = mval[jsize];
	n = nval[jsize];
	mnmin = min(m,n);
/* Computing MAX */
	i__2 = max(1,m);
	amninv = 1.f / (real) max(i__2,n);

	i__2 = *nwdths;
	for (jwidth = 1; jwidth <= i__2; ++jwidth) {
	    k = kk[jwidth];
	    if (k >= m && k >= n) {
		goto L150;
	    }
/* Computing MAX */
/* Computing MIN */
	    i__5 = m - 1;
	    i__3 = 0, i__4 = min(i__5,k);
	    kl = max(i__3,i__4);
/* Computing MAX */
/* Computing MIN */
	    i__5 = n - 1;
	    i__3 = 0, i__4 = min(i__5,k);
	    ku = max(i__3,i__4);

	    if (*nsizes != 1) {
		mtypes = min(15,*ntypes);
	    } else {
		mtypes = min(16,*ntypes);
	    }

	    i__3 = mtypes;
	    for (jtype = 1; jtype <= i__3; ++jtype) {
		if (! dotype[jtype]) {
		    goto L140;
		}
		++nmats;
		ntest = 0;

		for (j = 1; j <= 4; ++j) {
		    ioldsd[j - 1] = iseed[j];
/* L30: */
		}

/*              Compute "A". */

/*              Control parameters: */

/*                  KMAGN  KMODE        KTYPE */
/*              =1  O(1)   clustered 1  zero */
/*              =2  large  clustered 2  identity */
/*              =3  small  exponential  (none) */
/*              =4         arithmetic   diagonal, (w/ singular values) */
/*              =5         random log   (none) */
/*              =6         random       nonhermitian, w/ singular values */
/*              =7                      (none) */
/*              =8                      (none) */
/*              =9                      random nonhermitian */

		if (mtypes > 15) {
		    goto L90;
		}

		itype = ktype[jtype - 1];
		imode = kmode[jtype - 1];

/*              Compute norm */

		switch (kmagn[jtype - 1]) {
		    case 1:  goto L40;
		    case 2:  goto L50;
		    case 3:  goto L60;
		}

L40:
		anorm = 1.f;
		goto L70;

L50:
		anorm = rtovfl * ulp * amninv;
		goto L70;

L60:
		anorm = rtunfl * max(m,n) * ulpinv;
		goto L70;

L70:

		slaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda);
		slaset_("Full", ldab, &n, &c_b18, &c_b18, &ab[ab_offset], 
			ldab);
		iinfo = 0;
		cond = ulpinv;

/*              Special Matrices -- Identity & Jordan block */

/*                 Zero */

		if (itype == 1) {
		    iinfo = 0;

		} else if (itype == 2) {

/*                 Identity */

		    i__4 = n;
		    for (jcol = 1; jcol <= i__4; ++jcol) {
			a[jcol + jcol * a_dim1] = anorm;
/* L80: */
		    }

		} else if (itype == 4) {

/*                 Diagonal Matrix, singular values specified */

		    slatms_(&m, &n, "S", &iseed[1], "N", &work[1], &imode, &
			    cond, &anorm, &c__0, &c__0, "N", &a[a_offset], 
			    lda, &work[m + 1], &iinfo);

		} else if (itype == 6) {

/*                 Nonhermitian, singular values specified */

		    slatms_(&m, &n, "S", &iseed[1], "N", &work[1], &imode, &
			    cond, &anorm, &kl, &ku, "N", &a[a_offset], lda, &
			    work[m + 1], &iinfo);

		} else if (itype == 9) {

/*                 Nonhermitian, random entries */

		    slatmr_(&m, &n, "S", &iseed[1], "N", &work[1], &c__6, &
			    c_b35, &c_b35, "T", "N", &work[n + 1], &c__1, &
			    c_b35, &work[(n << 1) + 1], &c__1, &c_b35, "N", 
			    idumma, &kl, &ku, &c_b18, &anorm, "N", &a[
			    a_offset], lda, idumma, &iinfo);

		} else {

		    iinfo = 1;
		}

/*              Generate Right-Hand Side */

		slatmr_(&m, nrhs, "S", &iseed[1], "N", &work[1], &c__6, &
			c_b35, &c_b35, "T", "N", &work[m + 1], &c__1, &c_b35, 
			&work[(m << 1) + 1], &c__1, &c_b35, "N", idumma, &m, 
			nrhs, &c_b18, &c_b35, "NO", &c__[c_offset], ldc, 
			idumma, &iinfo);

		if (iinfo != 0) {
		    io___41.ciunit = *nounit;
		    s_wsfe(&io___41);
		    do_fio(&c__1, "Generator", (ftnlen)9);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    return 0;
		}

L90:

/*              Copy A to band storage. */

		i__4 = n;
		for (j = 1; j <= i__4; ++j) {
/* Computing MAX */
		    i__5 = 1, i__6 = j - ku;
/* Computing MIN */
		    i__8 = m, i__9 = j + kl;
		    i__7 = min(i__8,i__9);
		    for (i__ = max(i__5,i__6); i__ <= i__7; ++i__) {
			ab[ku + 1 + i__ - j + j * ab_dim1] = a[i__ + j * 
				a_dim1];
/* L100: */
		    }
/* L110: */
		}

/*              Copy C */

		slacpy_("Full", &m, nrhs, &c__[c_offset], ldc, &cc[cc_offset], 
			 ldc);

/*              Call SGBBRD to compute B, Q and P, and to update C. */

		sgbbrd_("B", &m, &n, nrhs, &kl, &ku, &ab[ab_offset], ldab, &
			bd[1], &be[1], &q[q_offset], ldq, &p[p_offset], ldp, &
			cc[cc_offset], ldc, &work[1], &iinfo);

		if (iinfo != 0) {
		    io___43.ciunit = *nounit;
		    s_wsfe(&io___43);
		    do_fio(&c__1, "SGBBRD", (ftnlen)6);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    if (iinfo < 0) {
			return 0;
		    } else {
			result[1] = ulpinv;
			goto L120;
		    }
		}

/*              Test 1:  Check the decomposition A := Q * B * P' */
/*                   2:  Check the orthogonality of Q */
/*                   3:  Check the orthogonality of P */
/*                   4:  Check the computation of Q' * C */

		sbdt01_(&m, &n, &c_n1, &a[a_offset], lda, &q[q_offset], ldq, &
			bd[1], &be[1], &p[p_offset], ldp, &work[1], &result[1]
);
		sort01_("Columns", &m, &m, &q[q_offset], ldq, &work[1], lwork, 
			 &result[2]);
		sort01_("Rows", &n, &n, &p[p_offset], ldp, &work[1], lwork, &
			result[3]);
		sbdt02_(&m, nrhs, &c__[c_offset], ldc, &cc[cc_offset], ldc, &
			q[q_offset], ldq, &work[1], &result[4]);

/*              End of Loop -- Check for RESULT(j) > THRESH */

		ntest = 4;
L120:
		ntestt += ntest;

/*              Print out tests which fail. */

		i__4 = ntest;
		for (jr = 1; jr <= i__4; ++jr) {
		    if (result[jr] >= *thresh) {
			if (nerrs == 0) {
			    slahd2_(nounit, "SBB");
			}
			++nerrs;
			io___45.ciunit = *nounit;
			s_wsfe(&io___45);
			do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&jr, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[jr], (ftnlen)sizeof(
				real));
			e_wsfe();
		    }
/* L130: */
		}

L140:
		;
	    }
L150:
	    ;
	}
/* L160: */
    }

/*     Summary */

    slasum_("SBB", nounit, &nerrs, &ntestt);
    return 0;


/*     End of SCHKBB */

} /* schkbb_ */
Beispiel #2
0
/* Subroutine */ int ssyt22_(integer *itype, char *uplo, integer *n, integer *
	m, integer *kband, real *a, integer *lda, real *d__, real *e, real *u,
	 integer *ldu, real *v, integer *ldv, real *tau, real *work, real *
	result)
{
    /* System generated locals */
    integer a_dim1, a_offset, u_dim1, u_offset, v_dim1, v_offset, i__1;
    real r__1, r__2;

    /* Local variables */
    static real unfl;
    static integer j;
    extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
	    integer *, real *, real *, integer *, real *, integer *, real *, 
	    real *, integer *);
    static real anorm;
    extern /* Subroutine */ int sort01_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *, real *);
    static real wnorm;
    extern /* Subroutine */ int ssymm_(char *, char *, integer *, integer *, 
	    real *, real *, integer *, real *, integer *, real *, real *, 
	    integer *);
    static integer jj, nn;
    extern doublereal slamch_(char *);
    static integer jj1, jj2;
    extern doublereal slansy_(char *, char *, integer *, real *, integer *, 
	    real *);
    static real ulp;
    static integer nnp1;


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

         SSYT22  generally checks a decomposition of the form   

                 A U = U S   

         where A is symmetric, the columns of U are orthonormal, and S   
         is diagonal (if KBAND=0) or symmetric tridiagonal (if   
         KBAND=1).  If ITYPE=1, then U is represented as a dense matrix,   
         otherwise the U is expressed as a product of Householder   
         transformations, whose vectors are stored in the array "V" and   
         whose scaling constants are in "TAU"; we shall use the letter   
         "V" to refer to the product of Householder transformations   
         (which should be equal to U).   

         Specifically, if ITYPE=1, then:   

                 RESULT(1) = | U' A U - S | / ( |A| m ulp ) *and*   
                 RESULT(2) = | I - U'U | / ( m ulp )   

    Arguments   
    =========   

    ITYPE   INTEGER   
            Specifies the type of tests to be performed.   
            1: U expressed as a dense orthogonal matrix:   
               RESULT(1) = | A - U S U' | / ( |A| n ulp )   *and*   
               RESULT(2) = | I - UU' | / ( n ulp )   

    UPLO    CHARACTER   
            If UPLO='U', the upper triangle of A will be used and the   
            (strictly) lower triangle will not be referenced.  If   
            UPLO='L', the lower triangle of A will be used and the   
            (strictly) upper triangle will not be referenced.   
            Not modified.   

    N       INTEGER   
            The size of the matrix.  If it is zero, SSYT22 does nothing.   
            It must be at least zero.   
            Not modified.   

    M       INTEGER   
            The number of columns of U.  If it is zero, SSYT22 does   
            nothing.  It must be at least zero.   
            Not modified.   

    KBAND   INTEGER   
            The bandwidth of the matrix.  It may only be zero or one.   
            If zero, then S is diagonal, and E is not referenced.  If   
            one, then S is symmetric tri-diagonal.   
            Not modified.   

    A       REAL array, dimension (LDA , N)   
            The original (unfactored) matrix.  It is assumed to be   
            symmetric, and only the upper (UPLO='U') or only the lower   
            (UPLO='L') will be referenced.   
            Not modified.   

    LDA     INTEGER   
            The leading dimension of A.  It must be at least 1   
            and at least N.   
            Not modified.   

    D       REAL array, dimension (N)   
            The diagonal of the (symmetric tri-) diagonal matrix.   
            Not modified.   

    E       REAL array, dimension (N)   
            The off-diagonal of the (symmetric tri-) diagonal matrix.   
            E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc.   
            Not referenced if KBAND=0.   
            Not modified.   

    U       REAL array, dimension (LDU, N)   
            If ITYPE=1 or 3, this contains the orthogonal matrix in   
            the decomposition, expressed as a dense matrix.  If ITYPE=2,   
            then it is not referenced.   
            Not modified.   

    LDU     INTEGER   
            The leading dimension of U.  LDU must be at least N and   
            at least 1.   
            Not modified.   

    V       REAL array, dimension (LDV, N)   
            If ITYPE=2 or 3, the lower triangle of this array contains   
            the Householder vectors used to describe the orthogonal   
            matrix in the decomposition.  If ITYPE=1, then it is not   
            referenced.   
            Not modified.   

    LDV     INTEGER   
            The leading dimension of V.  LDV must be at least N and   
            at least 1.   
            Not modified.   

    TAU     REAL array, dimension (N)   
            If ITYPE >= 2, then TAU(j) is the scalar factor of   
            v(j) v(j)' in the Householder transformation H(j) of   
            the product  U = H(1)...H(n-2)   
            If ITYPE < 2, then TAU is not referenced.   
            Not modified.   

    WORK    REAL array, dimension (2*N**2)   
            Workspace.   
            Modified.   

    RESULT  REAL array, dimension (2)   
            The values computed by the two tests described above.  The   
            values are currently limited to 1/ulp, to avoid overflow.   
            RESULT(1) is always modified.  RESULT(2) is modified only   
            if LDU is at least N.   
            Modified.   

    =====================================================================   


       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --d__;
    --e;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1 * 1;
    u -= u_offset;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1 * 1;
    v -= v_offset;
    --tau;
    --work;
    --result;

    /* Function Body */
    result[1] = 0.f;
    result[2] = 0.f;
    if (*n <= 0 || *m <= 0) {
	return 0;
    }

    unfl = slamch_("Safe minimum");
    ulp = slamch_("Precision");

/*     Do Test 1   

       Norm of A:   

   Computing MAX */
    r__1 = slansy_("1", uplo, n, &a[a_offset], lda, &work[1]);
    anorm = dmax(r__1,unfl);

/*     Compute error matrix:   

       ITYPE=1: error = U' A U - S */

    ssymm_("L", uplo, n, m, &c_b6, &a[a_offset], lda, &u[u_offset], ldu, &
	    c_b7, &work[1], n);
    nn = *n * *n;
    nnp1 = nn + 1;
    sgemm_("T", "N", m, m, n, &c_b6, &u[u_offset], ldu, &work[1], n, &c_b7, &
	    work[nnp1], n);
    i__1 = *m;
    for (j = 1; j <= i__1; ++j) {
	jj = nn + (j - 1) * *n + j;
	work[jj] -= d__[j];
/* L10: */
    }
    if (*kband == 1 && *n > 1) {
	i__1 = *m;
	for (j = 2; j <= i__1; ++j) {
	    jj1 = nn + (j - 1) * *n + j - 1;
	    jj2 = nn + (j - 2) * *n + j;
	    work[jj1] -= e[j - 1];
	    work[jj2] -= e[j - 1];
/* L20: */
	}
    }
    wnorm = slansy_("1", uplo, m, &work[nnp1], n, &work[1]);

    if (anorm > wnorm) {
	result[1] = wnorm / anorm / (*m * ulp);
    } else {
	if (anorm < 1.f) {
/* Computing MIN */
	    r__1 = wnorm, r__2 = *m * anorm;
	    result[1] = dmin(r__1,r__2) / anorm / (*m * ulp);
	} else {
/* Computing MIN */
	    r__1 = wnorm / anorm, r__2 = (real) (*m);
	    result[1] = dmin(r__1,r__2) / (*m * ulp);
	}
    }

/*     Do Test 2   

       Compute  U'U - I */

    if (*itype == 1) {
	i__1 = (*n << 1) * *n;
	sort01_("Columns", n, m, &u[u_offset], ldu, &work[1], &i__1, &result[
		2]);
    }

    return 0;

/*     End of SSYT22 */

} /* ssyt22_ */
Beispiel #3
0
/* Subroutine */ int schkbd_(integer *nsizes, integer *mval, integer *nval, 
	integer *ntypes, logical *dotype, integer *nrhs, integer *iseed, real 
	*thresh, real *a, integer *lda, real *bd, real *be, real *s1, real *
	s2, real *x, integer *ldx, real *y, real *z__, real *q, integer *ldq, 
	real *pt, integer *ldpt, real *u, real *vt, real *work, integer *
	lwork, integer *iwork, integer *nout, integer *info)
{
    /* Initialized data */

    static integer ktype[16] = { 1,2,4,4,4,4,4,6,6,6,6,6,9,9,9,10 };
    static integer kmagn[16] = { 1,1,1,1,1,2,3,1,1,1,2,3,1,2,3,0 };
    static integer kmode[16] = { 0,0,4,3,1,4,4,4,3,1,4,4,0,0,0,0 };

    /* Format strings */
    static char fmt_9998[] = "(\002 SCHKBD: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002M=\002,i6,\002, N=\002,i6,\002, JTYPE=\002,i"
	    "6,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9999[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, type "
	    "\002,i2,\002, seed=\002,4(i4,\002,\002),\002 test(\002,i2,\002)"
	    "=\002,g11.4)";

    /* System generated locals */
    integer a_dim1, a_offset, pt_dim1, pt_offset, q_dim1, q_offset, u_dim1, 
	    u_offset, vt_dim1, vt_offset, x_dim1, x_offset, y_dim1, y_offset, 
	    z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7;
    real r__1, r__2, r__3, r__4, r__5, r__6, r__7;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double log(doublereal), sqrt(doublereal), exp(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, m, n, mq;
    real dum[1], ulp, cond;
    integer jcol;
    char path[3];
    integer idum[1], mmax, nmax;
    real unfl, ovfl;
    char uplo[1];
    real temp1, temp2;
    logical badmm, badnn;
    integer nfail, imode;
    extern /* Subroutine */ int sbdt01_(integer *, integer *, integer *, real 
	    *, integer *, real *, integer *, real *, real *, real *, integer *
, real *, real *), sbdt02_(integer *, integer *, real *, integer *
, real *, integer *, real *, integer *, real *, real *), sbdt03_(
	    char *, integer *, integer *, real *, real *, real *, integer *, 
	    real *, real *, integer *, real *, real *);
    real dumma[1];
    integer iinfo;
    extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
	    integer *, real *, real *, integer *, real *, integer *, real *, 
	    real *, integer *);
    real anorm;
    integer mnmin, mnmax, jsize;
    extern /* Subroutine */ int sort01_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *, real *);
    integer itype, jtype, ntest;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *), slahd2_(integer *, char *);
    integer log2ui;
    logical bidiag;
    extern /* Subroutine */ int slabad_(real *, real *), sbdsdc_(char *, char 
	    *, integer *, real *, real *, real *, integer *, real *, integer *
, real *, integer *, real *, integer *, integer *)
	    , sgebrd_(integer *, integer *, real *, integer *, real *, real *, 
	     real *, real *, real *, integer *, integer *);
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    integer ioldsd[4];
    extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer 
	    *, integer *);
    extern doublereal slarnd_(integer *, integer *);
    real amninv;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), slaset_(char *, integer *, 
	    integer *, real *, real *, real *, integer *), sbdsqr_(
	    char *, integer *, integer *, integer *, integer *, real *, real *
, real *, integer *, real *, integer *, real *, integer *, real *, 
	     integer *), sorgbr_(char *, integer *, integer *, 
	    integer *, real *, integer *, real *, real *, integer *, integer *
), slatmr_(integer *, integer *, char *, integer *, char *
, real *, integer *, real *, real *, char *, char *, real *, 
	    integer *, real *, real *, integer *, real *, char *, integer *, 
	    integer *, integer *, real *, real *, char *, real *, integer *, 
	    integer *, integer *), slatms_(integer *, integer *, char *, integer *, char *, 
	    real *, integer *, real *, real *, integer *, integer *, char *, 
	    real *, integer *, real *, integer *);
    integer minwrk;
    real rtunfl, rtovfl, ulpinv, result[19];
    integer mtypes;

    /* Fortran I/O blocks */
    static cilist io___39 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___40 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SCHKBD checks the singular value decomposition (SVD) routines. */

/*  SGEBRD reduces a real general m by n matrix A to upper or lower */
/*  bidiagonal form B by an orthogonal transformation:  Q' * A * P = B */
/*  (or A = Q * B * P').  The matrix B is upper bidiagonal if m >= n */
/*  and lower bidiagonal if m < n. */

/*  SORGBR generates the orthogonal matrices Q and P' from SGEBRD. */
/*  Note that Q and P are not necessarily square. */

/*  SBDSQR computes the singular value decomposition of the bidiagonal */
/*  matrix B as B = U S V'.  It is called three times to compute */
/*     1)  B = U S1 V', where S1 is the diagonal matrix of singular */
/*         values and the columns of the matrices U and V are the left */
/*         and right singular vectors, respectively, of B. */
/*     2)  Same as 1), but the singular values are stored in S2 and the */
/*         singular vectors are not computed. */
/*     3)  A = (UQ) S (P'V'), the SVD of the original matrix A. */
/*  In addition, SBDSQR has an option to apply the left orthogonal matrix */
/*  U to a matrix X, useful in least squares applications. */

/*  SBDSDC computes the singular value decomposition of the bidiagonal */
/*  matrix B as B = U S V' using divide-and-conquer. It is called twice */
/*  to compute */
/*     1) B = U S1 V', where S1 is the diagonal matrix of singular */
/*         values and the columns of the matrices U and V are the left */
/*         and right singular vectors, respectively, of B. */
/*     2) Same as 1), but the singular values are stored in S2 and the */
/*         singular vectors are not computed. */

/*  For each pair of matrix dimensions (M,N) and each selected matrix */
/*  type, an M by N matrix A and an M by NRHS matrix X are generated. */
/*  The problem dimensions are as follows */
/*     A:          M x N */
/*     Q:          M x min(M,N) (but M x M if NRHS > 0) */
/*     P:          min(M,N) x N */
/*     B:          min(M,N) x min(M,N) */
/*     U, V:       min(M,N) x min(M,N) */
/*     S1, S2      diagonal, order min(M,N) */
/*     X:          M x NRHS */

/*  For each generated matrix, 14 tests are performed: */

/*  Test SGEBRD and SORGBR */

/*  (1)   | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P' */

/*  (2)   | I - Q' Q | / ( M ulp ) */

/*  (3)   | I - PT PT' | / ( N ulp ) */

/*  Test SBDSQR on bidiagonal matrix B */

/*  (4)   | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V' */

/*  (5)   | Y - U Z | / ( |Y| max(min(M,N),k) ulp ), where Y = Q' X */
/*                                                   and   Z = U' Y. */
/*  (6)   | I - U' U | / ( min(M,N) ulp ) */

/*  (7)   | I - VT VT' | / ( min(M,N) ulp ) */

/*  (8)   S1 contains min(M,N) nonnegative values in decreasing order. */
/*        (Return 0 if true, 1/ULP if false.) */

/*  (9)   | S1 - S2 | / ( |S1| ulp ), where S2 is computed without */
/*                                    computing U and V. */

/*  (10)  0 if the true singular values of B are within THRESH of */
/*        those in S1.  2*THRESH if they are not.  (Tested using */
/*        SSVDCH) */

/*  Test SBDSQR on matrix A */

/*  (11)  | A - (QU) S (VT PT) | / ( |A| max(M,N) ulp ) */

/*  (12)  | X - (QU) Z | / ( |X| max(M,k) ulp ) */

/*  (13)  | I - (QU)'(QU) | / ( M ulp ) */

/*  (14)  | I - (VT PT) (PT'VT') | / ( N ulp ) */

/*  Test SBDSDC on bidiagonal matrix B */

/*  (15)  | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V' */

/*  (16)  | I - U' U | / ( min(M,N) ulp ) */

/*  (17)  | I - VT VT' | / ( min(M,N) ulp ) */

/*  (18)  S1 contains min(M,N) nonnegative values in decreasing order. */
/*        (Return 0 if true, 1/ULP if false.) */

/*  (19)  | S1 - S2 | / ( |S1| ulp ), where S2 is computed without */
/*                                    computing U and V. */
/*  The possible matrix types are */

/*  (1)  The zero matrix. */
/*  (2)  The identity matrix. */

/*  (3)  A diagonal matrix with evenly spaced entries */
/*       1, ..., ULP  and random signs. */
/*       (ULP = (first number larger than 1) - 1 ) */
/*  (4)  A diagonal matrix with geometrically spaced entries */
/*       1, ..., ULP  and random signs. */
/*  (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
/*       and random signs. */

/*  (6)  Same as (3), but multiplied by SQRT( overflow threshold ) */
/*  (7)  Same as (3), but multiplied by SQRT( underflow threshold ) */

/*  (8)  A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has evenly spaced entries 1, ..., ULP with random signs */
/*       on the diagonal. */

/*  (9)  A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has geometrically spaced entries 1, ..., ULP with random */
/*       signs on the diagonal. */

/*  (10) A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has "clustered" entries 1, ULP,..., ULP with random */
/*       signs on the diagonal. */

/*  (11) Same as (8), but multiplied by SQRT( overflow threshold ) */
/*  (12) Same as (8), but multiplied by SQRT( underflow threshold ) */

/*  (13) Rectangular matrix with random entries chosen from (-1,1). */
/*  (14) Same as (13), but multiplied by SQRT( overflow threshold ) */
/*  (15) Same as (13), but multiplied by SQRT( underflow threshold ) */

/*  Special case: */
/*  (16) A bidiagonal matrix with random entries chosen from a */
/*       logarithmic distribution on [ulp^2,ulp^(-2)]  (I.e., each */
/*       entry is  e^x, where x is chosen uniformly on */
/*       [ 2 log(ulp), -2 log(ulp) ] .)  For *this* type: */
/*       (a) SGEBRD is not called to reduce it to bidiagonal form. */
/*       (b) the bidiagonal is  min(M,N) x min(M,N); if M<N, the */
/*           matrix will be lower bidiagonal, otherwise upper. */
/*       (c) only tests 5--8 and 14 are performed. */

/*  A subset of the full set of matrix types may be selected through */
/*  the logical array DOTYPE. */

/*  Arguments */
/*  ========== */

/*  NSIZES  (input) INTEGER */
/*          The number of values of M and N contained in the vectors */
/*          MVAL and NVAL.  The matrix sizes are used in pairs (M,N). */

/*  MVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix row dimension M. */

/*  NVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix column dimension N. */

/*  NTYPES  (input) INTEGER */
/*          The number of elements in DOTYPE.   If it is zero, SCHKBD */
/*          does nothing.  It must be at least zero.  If it is MAXTYP+1 */
/*          and NSIZES is 1, then an additional type, MAXTYP+1 is */
/*          defined, which is to use whatever matrices are in A and B. */
/*          This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */
/*          DOTYPE(MAXTYP+1) is .TRUE. . */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix */
/*          of type j will be generated.  If NTYPES is smaller than the */
/*          maximum number of types defined (PARAMETER MAXTYP), then */
/*          types NTYPES+1 through MAXTYP will not be generated.  If */
/*          NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through */
/*          DOTYPE(NTYPES) will be ignored. */

/*  NRHS    (input) INTEGER */
/*          The number of columns in the "right-hand side" matrices X, Y, */
/*          and Z, used in testing SBDSQR.  If NRHS = 0, then the */
/*          operations on the right-hand side will not be tested. */
/*          NRHS must be at least 0. */

/*  ISEED   (input/output) INTEGER array, dimension (4) */
/*          On entry ISEED specifies the seed of the random number */
/*          generator. The array elements should be between 0 and 4095; */
/*          if not they will be reduced mod 4096.  Also, ISEED(4) must */
/*          be odd.  The values of ISEED are changed on exit, and can be */
/*          used in the next call to SCHKBD to continue the same random */
/*          number sequence. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0.  Note that the */
/*          expected value of the test ratios is O(1), so THRESH should */
/*          be a reasonably small multiple of 1, e.g., 10 or 100. */

/*  A       (workspace) REAL array, dimension (LDA,NMAX) */
/*          where NMAX is the maximum value of N in NVAL. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,MMAX), */
/*          where MMAX is the maximum value of M in MVAL. */

/*  BD      (workspace) REAL array, dimension */
/*                      (max(min(MVAL(j),NVAL(j)))) */

/*  BE      (workspace) REAL array, dimension */
/*                      (max(min(MVAL(j),NVAL(j)))) */

/*  S1      (workspace) REAL array, dimension */
/*                      (max(min(MVAL(j),NVAL(j)))) */

/*  S2      (workspace) REAL array, dimension */
/*                      (max(min(MVAL(j),NVAL(j)))) */

/*  X       (workspace) REAL array, dimension (LDX,NRHS) */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the arrays X, Y, and Z. */
/*          LDX >= max(1,MMAX) */

/*  Y       (workspace) REAL array, dimension (LDX,NRHS) */

/*  Z       (workspace) REAL array, dimension (LDX,NRHS) */

/*  Q       (workspace) REAL array, dimension (LDQ,MMAX) */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q.  LDQ >= max(1,MMAX). */

/*  PT      (workspace) REAL array, dimension (LDPT,NMAX) */

/*  LDPT    (input) INTEGER */
/*          The leading dimension of the arrays PT, U, and V. */
/*          LDPT >= max(1, max(min(MVAL(j),NVAL(j)))). */

/*  U       (workspace) REAL array, dimension */
/*                      (LDPT,max(min(MVAL(j),NVAL(j)))) */

/*  V       (workspace) REAL array, dimension */
/*                      (LDPT,max(min(MVAL(j),NVAL(j)))) */

/*  WORK    (workspace) REAL array, dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          The number of entries in WORK.  This must be at least */
/*          3(M+N) and  M(M + max(M,N,k) + 1) + N*min(M,N)  for all */
/*          pairs  (M,N)=(MM(j),NN(j)) */

/*  IWORK   (workspace) INTEGER array, dimension at least 8*min(M,N) */

/*  NOUT    (input) INTEGER */
/*          The FORTRAN unit number for printing out error messages */
/*          (e.g., if a routine returns IINFO not equal to 0.) */

/*  INFO    (output) INTEGER */
/*          If 0, then everything ran OK. */
/*           -1: NSIZES < 0 */
/*           -2: Some MM(j) < 0 */
/*           -3: Some NN(j) < 0 */
/*           -4: NTYPES < 0 */
/*           -6: NRHS  < 0 */
/*           -8: THRESH < 0 */
/*          -11: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ). */
/*          -17: LDB < 1 or LDB < MMAX. */
/*          -21: LDQ < 1 or LDQ < MMAX. */
/*          -23: LDPT< 1 or LDPT< MNMAX. */
/*          -27: LWORK too small. */
/*          If  SLATMR, SLATMS, SGEBRD, SORGBR, or SBDSQR, */
/*              returns an error code, the */
/*              absolute value of it is returned. */

/* ----------------------------------------------------------------------- */

/*     Some Local Variables and Parameters: */
/*     ---- ----- --------- --- ---------- */

/*     ZERO, ONE       Real 0 and 1. */
/*     MAXTYP          The number of types defined. */
/*     NTEST           The number of tests performed, or which can */
/*                     be performed so far, for the current matrix. */
/*     MMAX            Largest value in NN. */
/*     NMAX            Largest value in NN. */
/*     MNMIN           min(MM(j), NN(j)) (the dimension of the bidiagonal */
/*                     matrix.) */
/*     MNMAX           The maximum value of MNMIN for j=1,...,NSIZES. */
/*     NFAIL           The number of tests which have exceeded THRESH */
/*     COND, IMODE     Values to be passed to the matrix generators. */
/*     ANORM           Norm of A; passed to matrix generators. */

/*     OVFL, UNFL      Overflow and underflow thresholds. */
/*     RTOVFL, RTUNFL  Square roots of the previous 2 values. */
/*     ULP, ULPINV     Finest relative precision and its inverse. */

/*             The following four arrays decode JTYPE: */
/*     KTYPE(j)        The general type (1-10) for type "j". */
/*     KMODE(j)        The MODE value to be passed to the matrix */
/*                     generator for type "j". */
/*     KMAGN(j)        The order of magnitude ( O(1), */
/*                     O(overflow^(1/2) ), O(underflow^(1/2) ) */

/* ====================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --mval;
    --nval;
    --dotype;
    --iseed;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --bd;
    --be;
    --s1;
    --s2;
    z_dim1 = *ldx;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    y_dim1 = *ldx;
    y_offset = 1 + y_dim1;
    y -= y_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    vt_dim1 = *ldpt;
    vt_offset = 1 + vt_dim1;
    vt -= vt_offset;
    u_dim1 = *ldpt;
    u_offset = 1 + u_dim1;
    u -= u_offset;
    pt_dim1 = *ldpt;
    pt_offset = 1 + pt_dim1;
    pt -= pt_offset;
    --work;
    --iwork;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Check for errors */

    *info = 0;

    badmm = FALSE_;
    badnn = FALSE_;
    mmax = 1;
    nmax = 1;
    mnmax = 1;
    minwrk = 1;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = mmax, i__3 = mval[j];
	mmax = max(i__2,i__3);
	if (mval[j] < 0) {
	    badmm = TRUE_;
	}
/* Computing MAX */
	i__2 = nmax, i__3 = nval[j];
	nmax = max(i__2,i__3);
	if (nval[j] < 0) {
	    badnn = TRUE_;
	}
/* Computing MAX */
/* Computing MIN */
	i__4 = mval[j], i__5 = nval[j];
	i__2 = mnmax, i__3 = min(i__4,i__5);
	mnmax = max(i__2,i__3);
/* Computing MAX */
/* Computing MAX */
	i__4 = mval[j], i__5 = nval[j], i__4 = max(i__4,i__5);
/* Computing MIN */
	i__6 = nval[j], i__7 = mval[j];
	i__2 = minwrk, i__3 = (mval[j] + nval[j]) * 3, i__2 = max(i__2,i__3), 
		i__3 = mval[j] * (mval[j] + max(i__4,*nrhs) + 1) + nval[j] * 
		min(i__6,i__7);
	minwrk = max(i__2,i__3);
/* L10: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badmm) {
	*info = -2;
    } else if (badnn) {
	*info = -3;
    } else if (*ntypes < 0) {
	*info = -4;
    } else if (*nrhs < 0) {
	*info = -6;
    } else if (*lda < mmax) {
	*info = -11;
    } else if (*ldx < mmax) {
	*info = -17;
    } else if (*ldq < mmax) {
	*info = -21;
    } else if (*ldpt < mnmax) {
	*info = -23;
    } else if (minwrk > *lwork) {
	*info = -27;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SCHKBD", &i__1);
	return 0;
    }

/*     Initialize constants */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "BD", (ftnlen)2, (ftnlen)2);
    nfail = 0;
    ntest = 0;
    unfl = slamch_("Safe minimum");
    ovfl = slamch_("Overflow");
    slabad_(&unfl, &ovfl);
    ulp = slamch_("Precision");
    ulpinv = 1.f / ulp;
    log2ui = (integer) (log(ulpinv) / log(2.f));
    rtunfl = sqrt(unfl);
    rtovfl = sqrt(ovfl);
    infoc_1.infot = 0;

/*     Loop over sizes, types */

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	m = mval[jsize];
	n = nval[jsize];
	mnmin = min(m,n);
/* Computing MAX */
	i__2 = max(m,n);
	amninv = 1.f / max(i__2,1);

	if (*nsizes != 1) {
	    mtypes = min(16,*ntypes);
	} else {
	    mtypes = min(17,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L190;
	    }

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

	    for (j = 1; j <= 14; ++j) {
		result[j - 1] = -1.f;
/* L30: */
	    }

	    *(unsigned char *)uplo = ' ';

/*           Compute "A" */

/*           Control parameters: */

/*           KMAGN  KMODE        KTYPE */
/*       =1  O(1)   clustered 1  zero */
/*       =2  large  clustered 2  identity */
/*       =3  small  exponential  (none) */
/*       =4         arithmetic   diagonal, (w/ eigenvalues) */
/*       =5         random       symmetric, w/ eigenvalues */
/*       =6                      nonsymmetric, w/ singular values */
/*       =7                      random diagonal */
/*       =8                      random symmetric */
/*       =9                      random nonsymmetric */
/*       =10                     random bidiagonal (log. distrib.) */

	    if (mtypes > 16) {
		goto L100;
	    }

	    itype = ktype[jtype - 1];
	    imode = kmode[jtype - 1];

/*           Compute norm */

	    switch (kmagn[jtype - 1]) {
		case 1:  goto L40;
		case 2:  goto L50;
		case 3:  goto L60;
	    }

L40:
	    anorm = 1.f;
	    goto L70;

L50:
	    anorm = rtovfl * ulp * amninv;
	    goto L70;

L60:
	    anorm = rtunfl * max(m,n) * ulpinv;
	    goto L70;

L70:

	    slaset_("Full", lda, &n, &c_b20, &c_b20, &a[a_offset], lda);
	    iinfo = 0;
	    cond = ulpinv;

	    bidiag = FALSE_;
	    if (itype == 1) {

/*              Zero matrix */

		iinfo = 0;

	    } else if (itype == 2) {

/*              Identity */

		i__3 = mnmin;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a[jcol + jcol * a_dim1] = anorm;
/* L80: */
		}

	    } else if (itype == 4) {

/*              Diagonal Matrix, [Eigen]values Specified */

		slatms_(&mnmin, &mnmin, "S", &iseed[1], "N", &work[1], &imode, 
			 &cond, &anorm, &c__0, &c__0, "N", &a[a_offset], lda, 
			&work[mnmin + 1], &iinfo);

	    } else if (itype == 5) {

/*              Symmetric, eigenvalues specified */

		slatms_(&mnmin, &mnmin, "S", &iseed[1], "S", &work[1], &imode, 
			 &cond, &anorm, &m, &n, "N", &a[a_offset], lda, &work[
			mnmin + 1], &iinfo);

	    } else if (itype == 6) {

/*              Nonsymmetric, singular values specified */

		slatms_(&m, &n, "S", &iseed[1], "N", &work[1], &imode, &cond, 
			&anorm, &m, &n, "N", &a[a_offset], lda, &work[mnmin + 
			1], &iinfo);

	    } else if (itype == 7) {

/*              Diagonal, random entries */

		slatmr_(&mnmin, &mnmin, "S", &iseed[1], "N", &work[1], &c__6, 
			&c_b37, &c_b37, "T", "N", &work[mnmin + 1], &c__1, &
			c_b37, &work[(mnmin << 1) + 1], &c__1, &c_b37, "N", &
			iwork[1], &c__0, &c__0, &c_b20, &anorm, "NO", &a[
			a_offset], lda, &iwork[1], &iinfo);

	    } else if (itype == 8) {

/*              Symmetric, random entries */

		slatmr_(&mnmin, &mnmin, "S", &iseed[1], "S", &work[1], &c__6, 
			&c_b37, &c_b37, "T", "N", &work[mnmin + 1], &c__1, &
			c_b37, &work[m + mnmin + 1], &c__1, &c_b37, "N", &
			iwork[1], &m, &n, &c_b20, &anorm, "NO", &a[a_offset], 
			lda, &iwork[1], &iinfo);

	    } else if (itype == 9) {

/*              Nonsymmetric, random entries */

		slatmr_(&m, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b37, 
			&c_b37, "T", "N", &work[mnmin + 1], &c__1, &c_b37, &
			work[m + mnmin + 1], &c__1, &c_b37, "N", &iwork[1], &
			m, &n, &c_b20, &anorm, "NO", &a[a_offset], lda, &
			iwork[1], &iinfo);

	    } else if (itype == 10) {

/*              Bidiagonal, random entries */

		temp1 = log(ulp) * -2.f;
		i__3 = mnmin;
		for (j = 1; j <= i__3; ++j) {
		    bd[j] = exp(temp1 * slarnd_(&c__2, &iseed[1]));
		    if (j < mnmin) {
			be[j] = exp(temp1 * slarnd_(&c__2, &iseed[1]));
		    }
/* L90: */
		}

		iinfo = 0;
		bidiag = TRUE_;
		if (m >= n) {
		    *(unsigned char *)uplo = 'U';
		} else {
		    *(unsigned char *)uplo = 'L';
		}
	    } else {
		iinfo = 1;
	    }

	    if (iinfo == 0) {

/*              Generate Right-Hand Side */

		if (bidiag) {
		    slatmr_(&mnmin, nrhs, "S", &iseed[1], "N", &work[1], &
			    c__6, &c_b37, &c_b37, "T", "N", &work[mnmin + 1], 
			    &c__1, &c_b37, &work[(mnmin << 1) + 1], &c__1, &
			    c_b37, "N", &iwork[1], &mnmin, nrhs, &c_b20, &
			    c_b37, "NO", &y[y_offset], ldx, &iwork[1], &iinfo);
		} else {
		    slatmr_(&m, nrhs, "S", &iseed[1], "N", &work[1], &c__6, &
			    c_b37, &c_b37, "T", "N", &work[m + 1], &c__1, &
			    c_b37, &work[(m << 1) + 1], &c__1, &c_b37, "N", &
			    iwork[1], &m, nrhs, &c_b20, &c_b37, "NO", &x[
			    x_offset], ldx, &iwork[1], &iinfo);
		}
	    }

/*           Error Exit */

	    if (iinfo != 0) {
		io___39.ciunit = *nout;
		s_wsfe(&io___39);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L100:

/*           Call SGEBRD and SORGBR to compute B, Q, and P, do tests. */

	    if (! bidiag) {

/*              Compute transformations to reduce A to bidiagonal form: */
/*              B := Q' * A * P. */

		slacpy_(" ", &m, &n, &a[a_offset], lda, &q[q_offset], ldq);
		i__3 = *lwork - (mnmin << 1);
		sgebrd_(&m, &n, &q[q_offset], ldq, &bd[1], &be[1], &work[1], &
			work[mnmin + 1], &work[(mnmin << 1) + 1], &i__3, &
			iinfo);

/*              Check error code from SGEBRD. */

		if (iinfo != 0) {
		    io___40.ciunit = *nout;
		    s_wsfe(&io___40);
		    do_fio(&c__1, "SGEBRD", (ftnlen)6);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    return 0;
		}

		slacpy_(" ", &m, &n, &q[q_offset], ldq, &pt[pt_offset], ldpt);
		if (m >= n) {
		    *(unsigned char *)uplo = 'U';
		} else {
		    *(unsigned char *)uplo = 'L';
		}

/*              Generate Q */

		mq = m;
		if (*nrhs <= 0) {
		    mq = mnmin;
		}
		i__3 = *lwork - (mnmin << 1);
		sorgbr_("Q", &m, &mq, &n, &q[q_offset], ldq, &work[1], &work[(
			mnmin << 1) + 1], &i__3, &iinfo);

/*              Check error code from SORGBR. */

		if (iinfo != 0) {
		    io___42.ciunit = *nout;
		    s_wsfe(&io___42);
		    do_fio(&c__1, "SORGBR(Q)", (ftnlen)9);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    return 0;
		}

/*              Generate P' */

		i__3 = *lwork - (mnmin << 1);
		sorgbr_("P", &mnmin, &n, &m, &pt[pt_offset], ldpt, &work[
			mnmin + 1], &work[(mnmin << 1) + 1], &i__3, &iinfo);

/*              Check error code from SORGBR. */

		if (iinfo != 0) {
		    io___43.ciunit = *nout;
		    s_wsfe(&io___43);
		    do_fio(&c__1, "SORGBR(P)", (ftnlen)9);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    return 0;
		}

/*              Apply Q' to an M by NRHS matrix X:  Y := Q' * X. */

		sgemm_("Transpose", "No transpose", &m, nrhs, &m, &c_b37, &q[
			q_offset], ldq, &x[x_offset], ldx, &c_b20, &y[
			y_offset], ldx);

/*              Test 1:  Check the decomposition A := Q * B * PT */
/*                   2:  Check the orthogonality of Q */
/*                   3:  Check the orthogonality of PT */

		sbdt01_(&m, &n, &c__1, &a[a_offset], lda, &q[q_offset], ldq, &
			bd[1], &be[1], &pt[pt_offset], ldpt, &work[1], result)
			;
		sort01_("Columns", &m, &mq, &q[q_offset], ldq, &work[1], 
			lwork, &result[1]);
		sort01_("Rows", &mnmin, &n, &pt[pt_offset], ldpt, &work[1], 
			lwork, &result[2]);
	    }

/*           Use SBDSQR to form the SVD of the bidiagonal matrix B: */
/*           B := U * S1 * VT, and compute Z = U' * Y. */

	    scopy_(&mnmin, &bd[1], &c__1, &s1[1], &c__1);
	    if (mnmin > 0) {
		i__3 = mnmin - 1;
		scopy_(&i__3, &be[1], &c__1, &work[1], &c__1);
	    }
	    slacpy_(" ", &m, nrhs, &y[y_offset], ldx, &z__[z_offset], ldx);
	    slaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &u[u_offset], 
		    ldpt);
	    slaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &vt[vt_offset], 
		    ldpt);

	    sbdsqr_(uplo, &mnmin, &mnmin, &mnmin, nrhs, &s1[1], &work[1], &vt[
		    vt_offset], ldpt, &u[u_offset], ldpt, &z__[z_offset], ldx, 
		     &work[mnmin + 1], &iinfo);

/*           Check error code from SBDSQR. */

	    if (iinfo != 0) {
		io___44.ciunit = *nout;
		s_wsfe(&io___44);
		do_fio(&c__1, "SBDSQR(vects)", (ftnlen)13);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    return 0;
		} else {
		    result[3] = ulpinv;
		    goto L170;
		}
	    }

/*           Use SBDSQR to compute only the singular values of the */
/*           bidiagonal matrix B;  U, VT, and Z should not be modified. */

	    scopy_(&mnmin, &bd[1], &c__1, &s2[1], &c__1);
	    if (mnmin > 0) {
		i__3 = mnmin - 1;
		scopy_(&i__3, &be[1], &c__1, &work[1], &c__1);
	    }

	    sbdsqr_(uplo, &mnmin, &c__0, &c__0, &c__0, &s2[1], &work[1], &vt[
		    vt_offset], ldpt, &u[u_offset], ldpt, &z__[z_offset], ldx, 
		     &work[mnmin + 1], &iinfo);

/*           Check error code from SBDSQR. */

	    if (iinfo != 0) {
		io___45.ciunit = *nout;
		s_wsfe(&io___45);
		do_fio(&c__1, "SBDSQR(values)", (ftnlen)14);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    return 0;
		} else {
		    result[8] = ulpinv;
		    goto L170;
		}
	    }

/*           Test 4:  Check the decomposition B := U * S1 * VT */
/*                5:  Check the computation Z := U' * Y */
/*                6:  Check the orthogonality of U */
/*                7:  Check the orthogonality of VT */

	    sbdt03_(uplo, &mnmin, &c__1, &bd[1], &be[1], &u[u_offset], ldpt, &
		    s1[1], &vt[vt_offset], ldpt, &work[1], &result[3]);
	    sbdt02_(&mnmin, nrhs, &y[y_offset], ldx, &z__[z_offset], ldx, &u[
		    u_offset], ldpt, &work[1], &result[4]);
	    sort01_("Columns", &mnmin, &mnmin, &u[u_offset], ldpt, &work[1], 
		    lwork, &result[5]);
	    sort01_("Rows", &mnmin, &mnmin, &vt[vt_offset], ldpt, &work[1], 
		    lwork, &result[6]);

/*           Test 8:  Check that the singular values are sorted in */
/*                    non-increasing order and are non-negative */

	    result[7] = 0.f;
	    i__3 = mnmin - 1;
	    for (i__ = 1; i__ <= i__3; ++i__) {
		if (s1[i__] < s1[i__ + 1]) {
		    result[7] = ulpinv;
		}
		if (s1[i__] < 0.f) {
		    result[7] = ulpinv;
		}
/* L110: */
	    }
	    if (mnmin >= 1) {
		if (s1[mnmin] < 0.f) {
		    result[7] = ulpinv;
		}
	    }

/*           Test 9:  Compare SBDSQR with and without singular vectors */

	    temp2 = 0.f;

	    i__3 = mnmin;
	    for (j = 1; j <= i__3; ++j) {
/* Computing MAX */
/* Computing MAX */
		r__6 = (r__1 = s1[j], dabs(r__1)), r__7 = (r__2 = s2[j], dabs(
			r__2));
		r__4 = sqrt(unfl) * dmax(s1[1],1.f), r__5 = ulp * dmax(r__6,
			r__7);
		temp1 = (r__3 = s1[j] - s2[j], dabs(r__3)) / dmax(r__4,r__5);
		temp2 = dmax(temp1,temp2);
/* L120: */
	    }

	    result[8] = temp2;

/*           Test 10:  Sturm sequence test of singular values */
/*                     Go up by factors of two until it succeeds */

	    temp1 = *thresh * (.5f - ulp);

	    i__3 = log2ui;
	    for (j = 0; j <= i__3; ++j) {
/*               CALL SSVDCH( MNMIN, BD, BE, S1, TEMP1, IINFO ) */
		if (iinfo == 0) {
		    goto L140;
		}
		temp1 *= 2.f;
/* L130: */
	    }

L140:
	    result[9] = temp1;

/*           Use SBDSQR to form the decomposition A := (QU) S (VT PT) */
/*           from the bidiagonal form A := Q B PT. */

	    if (! bidiag) {
		scopy_(&mnmin, &bd[1], &c__1, &s2[1], &c__1);
		if (mnmin > 0) {
		    i__3 = mnmin - 1;
		    scopy_(&i__3, &be[1], &c__1, &work[1], &c__1);
		}

		sbdsqr_(uplo, &mnmin, &n, &m, nrhs, &s2[1], &work[1], &pt[
			pt_offset], ldpt, &q[q_offset], ldq, &y[y_offset], 
			ldx, &work[mnmin + 1], &iinfo);

/*              Test 11:  Check the decomposition A := Q*U * S2 * VT*PT */
/*                   12:  Check the computation Z := U' * Q' * X */
/*                   13:  Check the orthogonality of Q*U */
/*                   14:  Check the orthogonality of VT*PT */

		sbdt01_(&m, &n, &c__0, &a[a_offset], lda, &q[q_offset], ldq, &
			s2[1], dumma, &pt[pt_offset], ldpt, &work[1], &result[
			10]);
		sbdt02_(&m, nrhs, &x[x_offset], ldx, &y[y_offset], ldx, &q[
			q_offset], ldq, &work[1], &result[11]);
		sort01_("Columns", &m, &mq, &q[q_offset], ldq, &work[1], 
			lwork, &result[12]);
		sort01_("Rows", &mnmin, &n, &pt[pt_offset], ldpt, &work[1], 
			lwork, &result[13]);
	    }

/*           Use SBDSDC to form the SVD of the bidiagonal matrix B: */
/*           B := U * S1 * VT */

	    scopy_(&mnmin, &bd[1], &c__1, &s1[1], &c__1);
	    if (mnmin > 0) {
		i__3 = mnmin - 1;
		scopy_(&i__3, &be[1], &c__1, &work[1], &c__1);
	    }
	    slaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &u[u_offset], 
		    ldpt);
	    slaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &vt[vt_offset], 
		    ldpt);

	    sbdsdc_(uplo, "I", &mnmin, &s1[1], &work[1], &u[u_offset], ldpt, &
		    vt[vt_offset], ldpt, dum, idum, &work[mnmin + 1], &iwork[
		    1], &iinfo);

/*           Check error code from SBDSDC. */

	    if (iinfo != 0) {
		io___51.ciunit = *nout;
		s_wsfe(&io___51);
		do_fio(&c__1, "SBDSDC(vects)", (ftnlen)13);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    return 0;
		} else {
		    result[14] = ulpinv;
		    goto L170;
		}
	    }

/*           Use SBDSDC to compute only the singular values of the */
/*           bidiagonal matrix B;  U and VT should not be modified. */

	    scopy_(&mnmin, &bd[1], &c__1, &s2[1], &c__1);
	    if (mnmin > 0) {
		i__3 = mnmin - 1;
		scopy_(&i__3, &be[1], &c__1, &work[1], &c__1);
	    }

	    sbdsdc_(uplo, "N", &mnmin, &s2[1], &work[1], dum, &c__1, dum, &
		    c__1, dum, idum, &work[mnmin + 1], &iwork[1], &iinfo);

/*           Check error code from SBDSDC. */

	    if (iinfo != 0) {
		io___52.ciunit = *nout;
		s_wsfe(&io___52);
		do_fio(&c__1, "SBDSDC(values)", (ftnlen)14);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    return 0;
		} else {
		    result[17] = ulpinv;
		    goto L170;
		}
	    }

/*           Test 15:  Check the decomposition B := U * S1 * VT */
/*                16:  Check the orthogonality of U */
/*                17:  Check the orthogonality of VT */

	    sbdt03_(uplo, &mnmin, &c__1, &bd[1], &be[1], &u[u_offset], ldpt, &
		    s1[1], &vt[vt_offset], ldpt, &work[1], &result[14]);
	    sort01_("Columns", &mnmin, &mnmin, &u[u_offset], ldpt, &work[1], 
		    lwork, &result[15]);
	    sort01_("Rows", &mnmin, &mnmin, &vt[vt_offset], ldpt, &work[1], 
		    lwork, &result[16]);

/*           Test 18:  Check that the singular values are sorted in */
/*                     non-increasing order and are non-negative */

	    result[17] = 0.f;
	    i__3 = mnmin - 1;
	    for (i__ = 1; i__ <= i__3; ++i__) {
		if (s1[i__] < s1[i__ + 1]) {
		    result[17] = ulpinv;
		}
		if (s1[i__] < 0.f) {
		    result[17] = ulpinv;
		}
/* L150: */
	    }
	    if (mnmin >= 1) {
		if (s1[mnmin] < 0.f) {
		    result[17] = ulpinv;
		}
	    }

/*           Test 19:  Compare SBDSQR with and without singular vectors */

	    temp2 = 0.f;

	    i__3 = mnmin;
	    for (j = 1; j <= i__3; ++j) {
/* Computing MAX */
/* Computing MAX */
		r__4 = dabs(s1[1]), r__5 = dabs(s2[1]);
		r__2 = sqrt(unfl) * dmax(s1[1],1.f), r__3 = ulp * dmax(r__4,
			r__5);
		temp1 = (r__1 = s1[j] - s2[j], dabs(r__1)) / dmax(r__2,r__3);
		temp2 = dmax(temp1,temp2);
/* L160: */
	    }

	    result[18] = temp2;

/*           End of Loop -- Check for RESULT(j) > THRESH */

L170:
	    for (j = 1; j <= 19; ++j) {
		if (result[j - 1] >= *thresh) {
		    if (nfail == 0) {
			slahd2_(nout, path);
		    }
		    io___53.ciunit = *nout;
		    s_wsfe(&io___53);
		    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&result[j - 1], (ftnlen)sizeof(real)
			    );
		    e_wsfe();
		    ++nfail;
		}
/* L180: */
	    }
	    if (! bidiag) {
		ntest += 19;
	    } else {
		ntest += 5;
	    }

L190:
	    ;
	}
/* L200: */
    }

/*     Summary */

    alasum_(path, nout, &nfail, &ntest, &c__0);

    return 0;

/*     End of SCHKBD */


} /* schkbd_ */