Beispiel #1
0
void sort_merge ( void** array, int first, int last, cp_compare_fn cmp, sort_mode mode )
{
    printf ( "first[%d]last[%d]\n", first, last );
    int mid;
    if ( last <= first )
        return 0;

    mid = ( first + last ) / 2;
    sort_merge ( array, first, mid, cmp, mode );
    sort_merge ( array, mid + 1, last, cmp, mode );
    merge ( array, first, mid, last, cmp, mode );
    printf ( "-%s-%s-%s-%s-%s\n", array[0], array[1], array[2], array[3], array[4] );
    return 0;
}
bool verify_sort_merge(int n) {

    for (int vs_len = 1; vs_len < 6; ++vs_len) {
        for (rpermut_begin(n, a, vs_len, vs); rpermut_next(n, a, vs_len, vs); ) {
            sort_merge(n, a);
            if (!is_sorted(n, a))
                return false;
        }
    }
    return true;
}
Beispiel #3
0
struct node *
sort_merge (struct node *a, struct node *b)
{

	struct node *head = NULL;
	
	if (a == NULL)	return b;
	else 
		if (b == NULL) return a;

	else  {
		if (a->ele < b->ele) {
			head = a;
			head->next = sort_merge (a->next, b);
		}
		else {
			head = b;
			head->next = sort_merge (a, b->next);
		}
	}

	return head;
}
Beispiel #4
0
void
merge (struct node **list)
{

	struct node *l1 = NULL;
	struct node *l2 = NULL;


	if (!((*list)->next))
		return ;

	fb_split (list, &l1, &l2);
	
	merge (&l1);
	merge (&l2);

	*list = sort_merge(l1, l2);
}
int main(int argc, char* argv[])
{
	int input[] = { 5, -1, 4, 12 };
	int input_size = 4;

	int input_sorted[] = { -4, 1, 22, 66, 89, 120, 238 };
	int input_sorted_size = 7;

	// 2. function pointers
	// direct invocation
	printf("Max is %d\n", max(input, input_size));
	// function pointer invocation
	int(*sortfunc)(int elements[], int size) = max;
	printf("Max (function pointer) %d\n", sortfunc(input, input_size));

	// 3. recursivity
	printf("recursive fibonacci(12) = %d\n", fibonacci_recursive(12));
	printf("iterative fibonacci(12) = %d\n", fibonacci_iterative(12));

	// 4. search
	// 4a. simple search 
	harness_search(input, input_size, 4, "search", search);
	harness_search(input, input_size, 2, "search", search);
	// 4b. binary search
	harness_search(input_sorted, input_sorted_size, 89, "search_binary", search_binary);
	harness_search(input_sorted, input_sorted_size, 500, "search_binary", search_binary);
	harness_search(input_sorted, input_sorted_size, -40, "search_binary", search_binary);
	harness_search(input_sorted, input_sorted_size, 140, "search_binary", search_binary);

	// 4. merge
	int to_sort[] = { 9, -1, 3, 11, 4, 99, 11, 0 };
	int to_sort_size = 8;

	printf("Performing merge sort\n");
	printf("- unsorted: ");
	print_array(to_sort, to_sort_size);
	sort_merge(to_sort, to_sort_size);
	printf("- sorted: ");
	print_array(to_sort, to_sort_size);

	// 5. file access
	int matrix[4][4] = {
		{ 1, 2, 3, 4 },
		{ 5, 6, 7, 8 },
		{ -1, -2, -3, -4 },
		{ 9, 78, 12, -1 }
	};
	write_matrix_to_file(matrix, "matrix.txt");
	int matrix_out[4][4];
	read_matrix_from_file(matrix_out, "matrix.txt");
	printf("Matrix read from file:\n");
	print_matrix(matrix_out);

	// 6/7. binary file access
	// delete 'db' before using
	unlink("students.dat");
	STUDENT student1;
	student1.an_studiu = 1;
	student1.grupa = 1014;
	student1.nume = "Salut";

	STUDENT student2;
	student2.an_studiu = 2;
	student2.grupa = 1084;
	student2.nume = "Pa";
	
	student_append(student1, "students.dat");
	student_append(student2, "students.dat");

	student_print_all("students.dat");

	// XX. bisection method
	// f(x) = x^3 - x - 2
	// f(1) = -2
	// f(2) = -4
	int res = bisection(1, 2, equation);
	printf("Bisected x to be %d\n", res);

	printf("GCD: %d\n", gcd(299792458, 6447287));

	return EXIT_SUCCESS;
}
Beispiel #6
0
maina()
{
    int i = 0;
    int *task_array;
    int selected_sort = 1, selected_array = 1, selected_size = 1, size_of_array = 0,
        rand_min = 0, rand_max = 100;
    int command;
    int *array_selected = 0;
    bool recalled = FALSE;
    long double *ld_array, sum, variance, avg;

    setlocale(LC_ALL, "Korean");

    {
        printf("\t정렬 알고리즘 정밀 측정기\n\n");
RE_COLE1:
        printf("\t알고리즘 선택\n\t1. 선택\t\t2. 삽입\t3. 거품\t4. 쉘\t5. 퀵\t6. 퀵(비재귀)\n\t7. 퀵(랜덤)\t8. 퀵(부분)\t9. 퀵(가운데)\n"
               "\t10. 기수\t11. 버킷\t12. 힙\t13. 병합\n\t14. 자동생성\n선택 : ");
        scanf_s("%d", &selected_sort);
        if (selected_sort < 1 || selected_sort > 14) {
            printf("다시 선택하세요.\n");
            goto RE_COLE1;
        }
        else if (selected_sort == 14) {
            printf("\n\t오류가 심한 버킷알고리즘은 제외하고 생성합니다.\n\t시작하려면 아무키나 눌러주세요...");
            _getch();
            printf("\n");
            report_auto();
        }
        if (recalled)
            goto RECALLED;

RE_COLE2:
        printf("\n\t배열 선택\n\t1. 순배열\t2. 역순배열\t3. 중복없는 임의배열\n\t4. 중복있는 임의배열\n선택 : ");
        scanf_s("%d", &selected_array);
        if (selected_array < 1 || selected_array > 4) {
            printf("다시 선택하세요.\n");
            goto RE_COLE2;
        }
        if (selected_array > 2) {
RE_SET1:
            printf("랜덤최소 숫자 : ");
            scanf_s("%d", &rand_min);
            printf("랜덤최고 숫자 : ");
            scanf_s("%d", &rand_max);
            if (rand_min >= rand_max || rand_min < 0) {
                printf("다시 맞춰라\n");
                goto RE_SET1;
            }
        }
        if (recalled)
            goto RECALLED;

RE_COLE3:
        printf("\n\t배열 크기 선택\n\t1. 10\t2. 100\t3. 1,000\t4. 10,000\t5. 100,000\n\t6. 1,000,000\t7. 직접입력\n선택 : ");
        scanf_s("%d", &selected_size);
        if (selected_size < 1 || selected_size > 7) {
            printf("다시 선택하세요.\n");
            goto RE_COLE3;
        }
        if (selected_size == 7) {
            printf("횟수 입력 : ");
            scanf_s("%d", &size_of_array);
        }
        else
            size_of_array = pow(10, selected_size);
        if (recalled)
            goto RECALLED;
    }

    recalled = TRUE;

    {
RECALLED:
        fast_cls();
        while (TRUE) {
            wprintf(L"\t선택된 알고리즘: %s\n\t선택된 배    열: %s\n\t선택된 배열크기: %s\n",
                    sort_name[selected_sort - 1], array_name[selected_array - 1], commasput(size_of_array));
            if (selected_array > 2) {
                printf("\t숫  자 범    위: %d  ~  %d", rand_min, rand_max);
            }
            printf("\n\n");
            printf("\t1. 알고리즘변경\t\t2. 배열변경\t3. 크기변경");
            if (selected_array > 2) {
                printf("\t4. 범위변경\n\t5. 실험시작");
            }
            else printf("\t4. 실험시작");
            printf("\n>> ");
            scanf_s("%d", &command);
            if (selected_array > 2 && command == 4)
                goto RE_SET1;
            else if (command == 1)
                goto RE_COLE1;
            else if (command == 2)
                goto RE_COLE2;
            else if (command == 3)
                goto RE_COLE3;
            else if (command == 4 || (selected_array > 2 && command == 5))
            {
                RAND_MIN = rand_min;
                RAND_SECTION = rand_max - rand_min + 1;
                SIZE_OF_ARRAY = size_of_array;
                array_direct = (int *)malloc(sizeof(int)*size_of_array);
                array_reverse = (int *)malloc(sizeof(int)*size_of_array);
                array_random = (int *)malloc(sizeof(int)*size_of_array);
                array_overlap = (int *)malloc(sizeof(int)*size_of_array);
                fast_cls();
                printf("진행횟수? ");
                scanf_s("%d", &command);
                fast_cls();
                selected_array_g = selected_array;
                task_array = (int *)malloc(sizeof(int) * SIZE_OF_ARRAY);

                ld_array = (long double *)malloc(sizeof(long double) * command);

                for (i = 0; i < command; i++) {
                    init_array();
                    if (selected_array == 1)
                        array_selected = array_direct;
                    else if (selected_array == 2)
                        array_selected = array_reverse;
                    else if (selected_array == 3)
                        array_selected = array_random;
                    else if (selected_array == 4)
                        array_selected = array_overlap;
                    switch (selected_sort) {
                    case 1:
                        timer_start();
                        sort_selection	(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 2:
                        timer_start();
                        sort_insertion	(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 3:
                        timer_start();
                        sort_bubble		(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 4:
                        timer_start();
                        sort_shell		(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 5:
                        timer_start();
                        sort_quick0		(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 6:
                        timer_start();
                        sort_quick1		(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 7:
                        timer_start();
                        sort_quick2		(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 8:
                        timer_start();
                        sort_quick3		(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 9:
                        timer_start();
                        sort_quick4		(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 10:
                        timer_start();
                        radix_sort		(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 11:
                        timer_start();
                        sort_bucket		(array_selected, SIZE_OF_ARRAY, task_array);
                        timer_finish();
                        break;
                    case 12:
                        timer_start();
                        sort_heap		(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 13:
                        timer_start();
                        sort_merge		(array_selected, SIZE_OF_ARRAY, task_array);
                        timer_finish();
                        break;
                    }
                    ld_array[i] = timer_getns();
                }

                free(task_array);

                printf("\n\n--------------실험 결과--------------\n");
                sum = 0.0f;
                for (i = 0; i < command; i++) {
                    printf("%.12lf ns\n", ld_array[i]);
                    sum += ld_array[i];
                }
                avg = sum / command;
                variance = 0.0f;
                for (i = 0; i < command; i++) {
                    variance += pow(ld_array[i] - avg, 2);
                }
                variance /= command;
                printf("-------------------------------------\n");
                printf("합계 : %.12lf ns\n평균 : %.12lf ns\n분산 : %.12lf\t표준편차 : %.12lf\n\n", sum, avg, variance, sqrt(variance));
                getchar();
            }
            else
                printf("없는 명령입니다.");
        }
    }
    return 0;
}
Beispiel #7
0
void report_auto()
{
    TCHAR appData[MAX_PATH];
    FILE *fp;
    int algorithm, array, count, i;
    int size_of_array = 0;
    int *task_array;
    int *array_selected = 0;
    bool recalled = FALSE;
    int cxt = 0;
    long double *ld_array, sum, variance, avg;
    char addr[256];

    RAND_MIN = 0;
    RAND_SECTION = 10000000 - 0 + 1;

    /*if (SUCCEEDED(SHGetFolderPath(NULL,
    							  CSIDL_LOCAL_APPDATA | CSIDL_FLAG_CREATE,
    							  NULL,
    							  SHGFP_TYPE_CURRENT,
    							  appData)))
    							  {*/
    //sprintf_s(addr, 256, "%s%s%d%s", appData, "\\report_", (int)time(NULL), ".log");
    //sprintf_s(addr, 256, "%s%s", "C:", "\\report_.log");
    _wfopen_s(&fp, _T("C:\\rollrat\\report_sort.log"), _T("w+"));
    /*fwprintf(fp, _T("정렬 알고리즘 정밀 측정기으로부터 자동으로 생성되었음.\n\n"));
    fwprintf(fp, _T("[알고리즘] [배열] [횟수] 순으로 알고리즘 목록이 생성되며, 바로 밑에 합계, 평균, 분산, 표준편차가 기제됩니다. 최대 횟수는 십만번이며, ")
    _T("천 개 이하의 자료개수에서만 중복없는 임의배열이 적용됩니다. 랜덤최소 값은 0이며 최대값은 10000으로 설정됩니다. 횟수는 모두 10회입니다.\n\n"));*/
    for (algorithm = 1; algorithm < 14; algorithm++)
    {
        if (algorithm == 11 || algorithm == 7 || algorithm == 8 || algorithm == 9)
            continue; // 버킷 알고리즘 사용안함
        for (array = 0; array < 4; array++)
        {
            for (count = 1; count < 5; count++)
            {
                //if (count > 3 && array == 2)
                //	break;	// 중복없는 임의배열 적용안함

                size_of_array = pow(10, count);//(double)((double)count / 2));

                SIZE_OF_ARRAY = size_of_array;
                task_array = (int *)malloc(sizeof(int) * size_of_array);
                array_direct = (int *)malloc(sizeof(int)*size_of_array);
                array_reverse = (int *)malloc(sizeof(int)*size_of_array);
                array_random = (int *)malloc(sizeof(int)*size_of_array);
                array_overlap = (int *)malloc(sizeof(int)*size_of_array);

#define _MAX_COUNT			30
                ld_array = (long double *)malloc(sizeof(long double) * _MAX_COUNT);

                for (i = 0; i < _MAX_COUNT; i++) {
                    selected_array_g = array + 1;

                    init_array();

                    if (array == 0)
                        array_selected = array_direct;
                    else if (array == 1)
                        array_selected = array_reverse;
                    else if (array == 2)
                        array_selected = array_random;
                    else if (array == 3)
                        array_selected = array_overlap;

                    switch (algorithm) {
                    case 1:
                        timer_start();
                        sort_selection(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 2:
                        timer_start();
                        sort_insertion(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 3:
                        timer_start();
                        sort_bubble(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 4:
                        timer_start();
                        sort_shell(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 5:
                        timer_start();
                        sort_quick0(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 6:
                        timer_start();
                        sort_quick1(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 7:
                        timer_start();
                        sort_quick2(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 8:
                        timer_start();
                        sort_quick3(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 9:
                        timer_start();
                        sort_quick4(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 10:
                        timer_start();
                        radix_sort(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 11:
                        timer_start();
                        sort_bucket(array_selected, SIZE_OF_ARRAY, task_array);
                        timer_finish();
                        break;
                    case 12:
                        timer_start();
                        sort_heap(array_selected, SIZE_OF_ARRAY);
                        timer_finish();
                        break;
                    case 13:
                        timer_start();
                        sort_merge(array_selected, SIZE_OF_ARRAY, task_array);
                        timer_finish();
                        break;
                    }
                    ld_array[i] = timer_getns();
                }

                sum = 0.0f;
                for (i = 0; i < _MAX_COUNT; i++) {
                    sum += ld_array[i];
                }
                avg = sum / _MAX_COUNT;
                variance = 0.0f;
                for (i = 0; i < _MAX_COUNT; i++) {
                    variance += pow(ld_array[i] - avg, 2);
                }
                variance /= _MAX_COUNT;
                fwprintf(fp, _T("[%s] [%s] [%s]\n"), sort_name[algorithm - 1], array_name[array], commasput(size_of_array));
                fwprintf(fp, _T("합계 : %.12lf ns\n평균 : %.12lf ns\n분산 : %.12lf\n표준편차 : %.12lf\n\n"), sum, avg, variance, sqrt(variance));
                printf("[%d/216]완료됨\n", ++cxt);

                // 오래걸리고 많이하면 과부하걸려서 걍 없앰
                /*free(ld_array);
                free(array_overlap);
                free(array_random);
                free(array_reverse);
                free(array_direct);
                free(task_array);*/
            }
        }
    }
    fwprintf(fp, _T("end"));
    fclose(fp);
    //}
    printf("C:\\rollrat\\report_sort.log에 성공적으로 생성하였습니다.");
}