// get acceleration limited desired speed
float AR_AttitudeControl::get_desired_speed_accel_limited(float desired_speed, float dt) const
{
    // return input value if no recent calls to speed controller
	// apply no limiting when ATC_ACCEL_MAX is set to zero
    const uint32_t now = AP_HAL::millis();
    if ((_speed_last_ms == 0) || ((now - _speed_last_ms) > AR_ATTCONTROL_TIMEOUT_MS) || !is_positive(_throttle_accel_max)) {
        return desired_speed;
    }

    // sanity check dt
    dt = constrain_float(dt, 0.0f, 1.0f);

    // use previous desired speed as basis for accel limiting
    float speed_prev = _desired_speed;

    // if no recent calls to speed controller limit based on current speed
    if (!speed_control_active()) {
        get_forward_speed(speed_prev);
    }

    // acceleration limit desired speed
    float speed_change_max;
    if (fabsf(desired_speed) < fabsf(_desired_speed) && is_positive(_throttle_decel_max)) {
        speed_change_max = _throttle_decel_max * dt;
    } else {
        speed_change_max = _throttle_accel_max * dt;
    }
    return constrain_float(desired_speed, speed_prev - speed_change_max, speed_prev + speed_change_max);
}
// get latest desired speed recorded during call to get_throttle_out_speed.  For reporting purposes only
float AR_AttitudeControl::get_desired_speed() const
{
    // return zero if no recent calls to speed controller
    if (!speed_control_active()) {
        return 0.0f;
    }
    return _desired_speed;
}
// get acceleration limited desired speed
float AR_AttitudeControl::get_desired_speed_accel_limited(float desired_speed, float dt) const
{
    // sanity check dt
    dt = constrain_float(dt, 0.0f, 1.0f);

    // use previous desired speed as basis for accel limiting
    float speed_prev = _desired_speed;

    // if no recent calls to speed controller limit based on current speed
    if (!speed_control_active()) {
        get_forward_speed(speed_prev);
    }

    // acceleration limit desired speed
    float speed_change_max;
    if (fabsf(desired_speed) < fabsf(_desired_speed) && is_positive(_throttle_decel_max)) {
        speed_change_max = _throttle_decel_max * dt;
    } else {
        speed_change_max = _throttle_accel_max * dt;
    }
    return constrain_float(desired_speed, speed_prev - speed_change_max, speed_prev + speed_change_max);
}
// return a throttle output from -1 to +1 given a desired speed in m/s (use negative speeds to travel backwards)
//   motor_limit should be true if motors have hit their upper or lower limits
//   cruise speed should be in m/s, cruise throttle should be a number from -1 to +1
float AR_AttitudeControl::get_throttle_out_speed(float desired_speed, bool motor_limit_low, bool motor_limit_high, float cruise_speed, float cruise_throttle, float dt)
{
    // sanity check dt
    dt = constrain_float(dt, 0.0f, 1.0f);

    // get speed forward
    float speed;
    if (!get_forward_speed(speed)) {
        // we expect caller will not try to control heading using rate control without a valid speed estimate
        // on failure to get speed we do not attempt to steer
        return 0.0f;
    }

    // if not called recently, reset input filter and desired speed to actual speed (used for accel limiting)
    const uint32_t now = AP_HAL::millis();
    if (!speed_control_active()) {
        _throttle_speed_pid.reset_filter();
        _desired_speed = speed;
    }
    _speed_last_ms = now;

    // acceleration limit desired speed
    _desired_speed = get_desired_speed_accel_limited(desired_speed, dt);

    // set PID's dt
    _throttle_speed_pid.set_dt(dt);

    // calculate speed error and pass to PID controller
    const float speed_error = desired_speed - speed;
    _throttle_speed_pid.set_input_filter_all(speed_error);

    // record desired speed for logging purposes only
    _throttle_speed_pid.set_desired_rate(desired_speed);

    // get feed-forward
    const float ff = _throttle_speed_pid.get_ff(desired_speed);

    // get p
    const float p = _throttle_speed_pid.get_p();

    // get i unless moving at low speed or motors have hit a limit
    float i = _throttle_speed_pid.get_integrator();
    if ((is_negative(speed_error) && !motor_limit_low && !_throttle_limit_low) || (is_positive(speed_error) && !motor_limit_high && !_throttle_limit_high)) {
        i = _throttle_speed_pid.get_i();
    }

    // get d
    const float d = _throttle_speed_pid.get_d();

    // calculate base throttle (protect against divide by zero)
    float throttle_base = 0.0f;
    if (is_positive(cruise_speed) && is_positive(cruise_throttle)) {
        throttle_base = desired_speed * (cruise_throttle / cruise_speed);
    }

    // calculate final output
    float throttle_out = (ff+p+i+d+throttle_base);

    // clear local limit flags used to stop i-term build-up as we stop reversed outputs going to motors
    _throttle_limit_low = false;
    _throttle_limit_high = false;

    // protect against reverse output being sent to the motors unless braking has been enabled
    if (!_brake_enable) {
        // if both desired speed and actual speed are positive, do not allow negative values
        if ((desired_speed >= 0.0f) && (throttle_out <= 0.0f)) {
            throttle_out = 0.0f;
            _throttle_limit_low = true;
        }
        if ((desired_speed <= 0.0f) && (throttle_out >= 0.0f)) {
            throttle_out = 0.0f;
            _throttle_limit_high = true;
        }
    }

    // final output throttle in range -1 to 1
    return throttle_out;
}