void draw_frame(uint64_t buf_ea) { vec_uint4 buf[2*1920/4]; int row, col, i, tag = 0; float step = 4.0f/spu.width*spu.zoom; float xbeg = spu.xc - spu.width*step*0.5f; vec_float4 vxbeg = spu_splats(xbeg) + spu_splats(step) * (vec_float4) { 0.f,1.f,2.f,3.f }; vec_float4 xstep = spu_splats(step)*spu_splats(4.f); vec_float4 vyp = spu_splats(spu.yc - spu.height*step*0.5f + step*spu.rank); const vec_float4 vinc = spu_splats(spu.count * step); const vec_float4 esc2 = spu_splats(BAILOUT*BAILOUT); #if BAILBITS != 1 const vec_float4 esc21 = spu_splats(4.f/(BAILOUT*BAILOUT)); #endif const vec_float4 two = spu_splats(2.f); const vec_float4 zero = spu_splats(0.f); const vec_float4 colsc = spu_splats(255.f); const vec_float4 ccr = spu_splats(4.f*BAILOUT/(3.5f*3.141592654f)); const vec_float4 ccg = spu_splats(4.f*BAILOUT/(5.f*3.141592654f)); const vec_float4 ccb = spu_splats(4.f*BAILOUT/(9.f*3.141592654f)); vec_float4 x, y, x2, y2, m2, vxp; vec_uint4 cmp, inc; vec_uint4 vi; vec_uint4 *p, *b; vec_float4 co; /* Process the full image. As there are 6 SPUs working in parallel, each with * a different rank from 0 to 5, each SPU processes only the line numbers: * rank, rank+6, rank+12, ... * The program uses a SPU DMA programming technique known as "double buffering", * where the previously generated line is transmitted to main memory while we * compute the next one, hence the need for a local buffer containing two lines. */ for (row = spu.rank; row < spu.height; row += spu.count) { /* Pixel buffer address (in local memory) of the next line to be drawn */ b = p = buf + ((1920/4)&-tag); vxp = vxbeg; /* first four x coordinates */ /* Process a whole screen line by packets of 4 pixels */ for (col = spu.width/4; col > 0 ; col--) { vi = spu_splats(0u); x = vxp; y = vyp; i = 0; cmp = spu_splats(-1u); inc = spu_splats(1u); m2 = zero; /* This loop processes the Mandelbrot suite for the four complex numbers * whose real part are the components of the x vector, and the imaginary * part are in y (as we process the same line, all initial values of y * are equal). * We perform loop unrolling for SPU performance optimization reasons, * hence the 4x replication of the same computation block. */ do { x2 = x*x; y2 = y*y; m2 = spu_sel(m2, x2+y2, cmp); cmp = spu_cmpgt(esc2, m2); inc = spu_and(inc, cmp); /* increment the iteration count only if */ vi = vi + inc; /* we're still inside the bailout radius */ y = two*x*y + vyp; x = x2-y2 + vxp; x2 = x*x; y2 = y*y; m2 = spu_sel(m2, x2+y2, cmp); cmp = spu_cmpgt(esc2, m2); inc = spu_and(inc, cmp); vi = vi + inc; y = two*x*y + vyp; x = x2-y2 + vxp; x2 = x*x; y2 = y*y; m2 = spu_sel(m2, x2+y2, cmp); cmp = spu_cmpgt(esc2, m2); inc = spu_and(inc, cmp); vi = vi + inc; y = two*x*y + vyp; x = x2-y2 + vxp; x2 = x*x; y2 = y*y; m2 = spu_sel(m2, x2+y2, cmp); cmp = spu_cmpgt(esc2, m2); inc = spu_and(inc, cmp); vi = vi + inc; y = two*x*y + vyp; x = x2-y2 + vxp; i += 4; } /* Exit the loop only if the iteration limit of 128 has been reached, * or all current four points are outside the bailout radius. * The __builtin_expect(xxx, 1) construct hints the compiler that the xxx * test has greater chance of being true (1), so a branch hinting * instruction is inserted into the binary code to make the conditional * branch faster in most cases (except the last one when we exit the * loop). This results in performance increase. */ while (__builtin_expect((i < 128) & (si_to_int((qword)spu_gather(cmp)) != 0), 1)); /* smooth coloring: compute the fractional part */ co = spu_convtf(vi, 0) + spu_splats(1.f); co -= fast_logf(fast_logf(m2) * spu_splats(.5f)); #if BAILBITS != 1 co = spu_re(spu_rsqrte(co*esc21)); #endif /* Compute the red, green an blue pixel components */ vec_uint4 cr = spu_convtu(mcos(co * ccr) * colsc, 0); vec_uint4 cg = spu_convtu(mcos(co * ccg) * colsc, 0); vec_uint4 cb = spu_convtu(mcos(co * ccb) * colsc, 0); /* Put the 4 pixel values in the buffer */ *p++ = (spu_sl(cr, 16) | spu_sl(cg, 8) | cb) & ~-inc; vxp += xstep; } /* double-buffered dma: initiate a dma transfer of last computed scanline * then wait for completion of the second last transfer (previous computed * line). This is done by changing the tag value. */ mfc_put(b, buf_ea+(spu.width*4)*row, spu.width*4, tag, 0, 0); tag = 1 - tag; wait_for_completion(tag); vyp += vinc; } /* wait for completion of last sent image line */ wait_for_completion(1-tag); }
/** * Setup fragment shader inputs by evaluating triangle's vertex * attribute coefficient info. * \param x quad x pos * \param y quad y pos * \param fragZ returns quad Z values * \param fragInputs returns fragment program inputs * Note: this code could be incorporated into the fragment program * itself to avoid the loop and switch. */ static void eval_inputs(float x, float y, vector float *fragZ, vector float fragInputs[]) { static const vector float deltaX = (const vector float) {0, 1, 0, 1}; static const vector float deltaY = (const vector float) {0, 0, 1, 1}; const uint posSlot = 0; const vector float pos = setup.coef[posSlot].a0; const vector float dposdx = setup.coef[posSlot].dadx; const vector float dposdy = setup.coef[posSlot].dady; const vector float fragX = spu_splats(x) + deltaX; const vector float fragY = spu_splats(y) + deltaY; vector float fragW, wInv; uint i; *fragZ = splatz(pos) + fragX * splatz(dposdx) + fragY * splatz(dposdy); fragW = splatw(pos) + fragX * splatw(dposdx) + fragY * splatw(dposdy); wInv = spu_re(fragW); /* 1 / w */ /* loop over fragment program inputs */ for (i = 0; i < spu.vertex_info.num_attribs; i++) { uint attr = i + 1; enum interp_mode interp = spu.vertex_info.attrib[attr].interp_mode; /* constant term */ vector float a0 = setup.coef[attr].a0; vector float r0 = splatx(a0); vector float r1 = splaty(a0); vector float r2 = splatz(a0); vector float r3 = splatw(a0); if (interp == INTERP_LINEAR || interp == INTERP_PERSPECTIVE) { /* linear term */ vector float dadx = setup.coef[attr].dadx; vector float dady = setup.coef[attr].dady; /* Use SPU intrinsics here to get slightly better code. * originally: r0 += fragX * splatx(dadx) + fragY * splatx(dady); */ r0 = spu_madd(fragX, splatx(dadx), spu_madd(fragY, splatx(dady), r0)); r1 = spu_madd(fragX, splaty(dadx), spu_madd(fragY, splaty(dady), r1)); r2 = spu_madd(fragX, splatz(dadx), spu_madd(fragY, splatz(dady), r2)); r3 = spu_madd(fragX, splatw(dadx), spu_madd(fragY, splatw(dady), r3)); if (interp == INTERP_PERSPECTIVE) { /* perspective term */ r0 *= wInv; r1 *= wInv; r2 *= wInv; r3 *= wInv; } } fragInputs[CHAN0] = r0; fragInputs[CHAN1] = r1; fragInputs[CHAN2] = r2; fragInputs[CHAN3] = r3; fragInputs += 4; } } /** * Emit a quad (pass to next stage). No clipping is done. * Note: about 1/5 to 1/7 of the time, mask is zero and this function * should be skipped. But adding the test for that slows things down * overall. */ static INLINE void emit_quad( int x, int y, mask_t mask) { /* If any bits in mask are set... */ if (spu_extract(spu_orx(mask), 0)) { const int ix = x - setup.cliprect_minx; const int iy = y - setup.cliprect_miny; spu.cur_ctile_status = TILE_STATUS_DIRTY; spu.cur_ztile_status = TILE_STATUS_DIRTY; { /* * Run fragment shader, execute per-fragment ops, update fb/tile. */ vector float inputs[4*4], outputs[2*4]; vector unsigned int kill_mask; vector float fragZ; eval_inputs((float) x, (float) y, &fragZ, inputs); ASSERT(spu.fragment_program); ASSERT(spu.fragment_ops); /* Execute the current fragment program */ kill_mask = spu.fragment_program(inputs, outputs, spu.constants); mask = spu_andc(mask, kill_mask); /* Execute per-fragment/quad operations, including: * alpha test, z test, stencil test, blend and framebuffer writing. * Note that there are two different fragment operations functions * that can be called, one for front-facing fragments, and one * for back-facing fragments. (Often the two are the same; * but in some cases, like two-sided stenciling, they can be * very different.) So choose the correct function depending * on the calculated facing. */ spu.fragment_ops[setup.facing](ix, iy, &spu.ctile, &spu.ztile, fragZ, outputs[0*4+0], outputs[0*4+1], outputs[0*4+2], outputs[0*4+3], mask); } } } /** * Given an X or Y coordinate, return the block/quad coordinate that it * belongs to. */ static INLINE int block(int x) { return x & ~1; } /** * Render a horizontal span of quads */ static void flush_spans(void) { int minleft, maxright; const int l0 = spu_extract(setup.span.quad, 0); const int l1 = spu_extract(setup.span.quad, 1); const int r0 = spu_extract(setup.span.quad, 2); const int r1 = spu_extract(setup.span.quad, 3); switch (setup.span.y_flags) { case 0x3: /* both odd and even lines written (both quad rows) */ minleft = MIN2(l0, l1); maxright = MAX2(r0, r1); break; case 0x1: /* only even line written (quad top row) */ minleft = l0; maxright = r0; break; case 0x2: /* only odd line written (quad bottom row) */ minleft = l1; maxright = r1; break; default: return; } /* OK, we're very likely to need the tile data now. * clear or finish waiting if needed. */ if (spu.cur_ctile_status == TILE_STATUS_GETTING) { /* wait for mfc_get() to complete */ //printf("SPU: %u: waiting for ctile\n", spu.init.id); wait_on_mask(1 << TAG_READ_TILE_COLOR); spu.cur_ctile_status = TILE_STATUS_CLEAN; } else if (spu.cur_ctile_status == TILE_STATUS_CLEAR) { //printf("SPU %u: clearing C tile %u, %u\n", spu.init.id, setup.tx, setup.ty); clear_c_tile(&spu.ctile); spu.cur_ctile_status = TILE_STATUS_DIRTY; } ASSERT(spu.cur_ctile_status != TILE_STATUS_DEFINED); if (spu.read_depth_stencil) { if (spu.cur_ztile_status == TILE_STATUS_GETTING) { /* wait for mfc_get() to complete */ //printf("SPU: %u: waiting for ztile\n", spu.init.id); wait_on_mask(1 << TAG_READ_TILE_Z); spu.cur_ztile_status = TILE_STATUS_CLEAN; } else if (spu.cur_ztile_status == TILE_STATUS_CLEAR) { //printf("SPU %u: clearing Z tile %u, %u\n", spu.init.id, setup.tx, setup.ty); clear_z_tile(&spu.ztile); spu.cur_ztile_status = TILE_STATUS_DIRTY; } ASSERT(spu.cur_ztile_status != TILE_STATUS_DEFINED); } /* XXX this loop could be moved into the above switch cases... */ /* Setup for mask calculation */ const vec_int4 quad_LlRr = setup.span.quad; const vec_int4 quad_RrLl = spu_rlqwbyte(quad_LlRr, 8); const vec_int4 quad_LLll = spu_shuffle(quad_LlRr, quad_LlRr, SHUFFLE4(A,A,B,B)); const vec_int4 quad_RRrr = spu_shuffle(quad_RrLl, quad_RrLl, SHUFFLE4(A,A,B,B)); const vec_int4 twos = spu_splats(2); const int x = block(minleft); vec_int4 xs = {x, x+1, x, x+1}; for (; spu_extract(xs, 0) <= block(maxright); xs += twos) { /** * Computes mask to indicate which pixels in the 2x2 quad are actually * inside the triangle's bounds. */ /* Calculate ({x,x+1,x,x+1} >= {l[0],l[0],l[1],l[1]}) */ const mask_t gt_LLll_xs = spu_cmpgt(quad_LLll, xs); const mask_t gte_xs_LLll = spu_nand(gt_LLll_xs, gt_LLll_xs); /* Calculate ({r[0],r[0],r[1],r[1]} > {x,x+1,x,x+1}) */ const mask_t gt_RRrr_xs = spu_cmpgt(quad_RRrr, xs); /* Combine results to create mask */ const mask_t mask = spu_and(gte_xs_LLll, gt_RRrr_xs); emit_quad(spu_extract(xs, 0), setup.span.y, mask); } setup.span.y = 0; setup.span.y_flags = 0; /* Zero right elements */ setup.span.quad = spu_shuffle(setup.span.quad, setup.span.quad, SHUFFLE4(A,B,0,0)); } #if DEBUG_VERTS static void print_vertex(const struct vertex_header *v) { uint i; fprintf(stderr, " Vertex: (%p)\n", v); for (i = 0; i < spu.vertex_info.num_attribs; i++) { fprintf(stderr, " %d: %f %f %f %f\n", i, spu_extract(v->data[i], 0), spu_extract(v->data[i], 1), spu_extract(v->data[i], 2), spu_extract(v->data[i], 3)); } }
vector double __divv2df3 (vector double a_in, vector double b_in) { /* Variables */ vec_int4 exp, exp_bias; vec_uint4 no_underflow, overflow; vec_float4 mant_bf, inv_bf; vec_ullong2 exp_a, exp_b; vec_ullong2 a_nan, a_zero, a_inf, a_denorm, a_denorm0; vec_ullong2 b_nan, b_zero, b_inf, b_denorm, b_denorm0; vec_ullong2 nan; vec_uint4 a_exp, b_exp; vec_ullong2 a_mant_0, b_mant_0; vec_ullong2 a_exp_1s, b_exp_1s; vec_ullong2 sign_exp_mask; vec_double2 a, b; vec_double2 mant_a, mant_b, inv_b, q0, q1, q2, mult; /* Constants */ vec_uint4 exp_mask_u32 = spu_splats((unsigned int)0x7FF00000); vec_uchar16 splat_hi = (vec_uchar16) { 0,1,2,3, 0,1,2,3, 8, 9,10,11, 8,9,10,11 }; vec_uchar16 swap_32 = (vec_uchar16) { 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 }; vec_ullong2 exp_mask = spu_splats(0x7FF0000000000000ULL); vec_ullong2 sign_mask = spu_splats(0x8000000000000000ULL); vec_float4 onef = spu_splats(1.0f); vec_double2 one = spu_splats(1.0); vec_double2 exp_53 = (vec_double2)spu_splats(0x0350000000000000ULL); sign_exp_mask = spu_or(sign_mask, exp_mask); /* Extract the floating point components from each of the operands including * exponent and mantissa. */ a_exp = (vec_uint4)spu_and((vec_uint4)a_in, exp_mask_u32); a_exp = spu_shuffle(a_exp, a_exp, splat_hi); b_exp = (vec_uint4)spu_and((vec_uint4)b_in, exp_mask_u32); b_exp = spu_shuffle(b_exp, b_exp, splat_hi); a_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)a_in, sign_exp_mask), 0); a_mant_0 = spu_and(a_mant_0, spu_shuffle(a_mant_0, a_mant_0, swap_32)); b_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)b_in, sign_exp_mask), 0); b_mant_0 = spu_and(b_mant_0, spu_shuffle(b_mant_0, b_mant_0, swap_32)); a_exp_1s = (vec_ullong2)spu_cmpeq(a_exp, exp_mask_u32); b_exp_1s = (vec_ullong2)spu_cmpeq(b_exp, exp_mask_u32); /* Identify all possible special values that must be accommodated including: * +-denorm, +-0, +-infinity, and NaNs. */ a_denorm0= (vec_ullong2)spu_cmpeq(a_exp, 0); a_nan = spu_andc(a_exp_1s, a_mant_0); a_zero = spu_and (a_denorm0, a_mant_0); a_inf = spu_and (a_exp_1s, a_mant_0); a_denorm = spu_andc(a_denorm0, a_zero); b_denorm0= (vec_ullong2)spu_cmpeq(b_exp, 0); b_nan = spu_andc(b_exp_1s, b_mant_0); b_zero = spu_and (b_denorm0, b_mant_0); b_inf = spu_and (b_exp_1s, b_mant_0); b_denorm = spu_andc(b_denorm0, b_zero); /* Scale denorm inputs to into normalized numbers by conditionally scaling the * input parameters. */ a = spu_sub(spu_or(a_in, exp_53), spu_sel(exp_53, a_in, sign_mask)); a = spu_sel(a_in, a, a_denorm); b = spu_sub(spu_or(b_in, exp_53), spu_sel(exp_53, b_in, sign_mask)); b = spu_sel(b_in, b, b_denorm); /* Extract the divisor and dividend exponent and force parameters into the signed * range [1.0,2.0) or [-1.0,2.0). */ exp_a = spu_and((vec_ullong2)a, exp_mask); exp_b = spu_and((vec_ullong2)b, exp_mask); mant_a = spu_sel(a, one, (vec_ullong2)exp_mask); mant_b = spu_sel(b, one, (vec_ullong2)exp_mask); /* Approximate the single reciprocal of b by using * the single precision reciprocal estimate followed by one * single precision iteration of Newton-Raphson. */ mant_bf = spu_roundtf(mant_b); inv_bf = spu_re(mant_bf); inv_bf = spu_madd(spu_nmsub(mant_bf, inv_bf, onef), inv_bf, inv_bf); /* Perform 2 more Newton-Raphson iterations in double precision. The * result (q1) is in the range (0.5, 2.0). */ inv_b = spu_extend(inv_bf); inv_b = spu_madd(spu_nmsub(mant_b, inv_b, one), inv_b, inv_b); q0 = spu_mul(mant_a, inv_b); q1 = spu_madd(spu_nmsub(mant_b, q0, mant_a), inv_b, q0); /* Determine the exponent correction factor that must be applied * to q1 by taking into account the exponent of the normalized inputs * and the scale factors that were applied to normalize them. */ exp = spu_rlmaska(spu_sub((vec_int4)exp_a, (vec_int4)exp_b), -20); exp = spu_add(exp, (vec_int4)spu_add(spu_and((vec_int4)a_denorm, -0x34), spu_and((vec_int4)b_denorm, 0x34))); /* Bias the quotient exponent depending on the sign of the exponent correction * factor so that a single multiplier will ensure the entire double precision * domain (including denorms) can be achieved. * * exp bias q1 adjust exp * ===== ======== ========== * positive 2^+65 -65 * negative 2^-64 +64 */ exp_bias = spu_xor(spu_rlmaska(exp, -31), 64); exp = spu_sub(exp, exp_bias); q1 = spu_sel(q1, (vec_double2)spu_add((vec_int4)q1, spu_sl(exp_bias, 20)), exp_mask); /* Compute a multiplier (mult) to applied to the quotient (q1) to produce the * expected result. On overflow, clamp the multiplier to the maximum non-infinite * number in case the rounding mode is not round-to-nearest. */ exp = spu_add(exp, 0x3FF); no_underflow = spu_cmpgt(exp, 0); overflow = spu_cmpgt(exp, 0x7FE); exp = spu_and(spu_sl(exp, 20), (vec_int4)no_underflow); exp = spu_and(exp, (vec_int4)exp_mask); mult = spu_sel((vec_double2)exp, (vec_double2)(spu_add((vec_uint4)exp_mask, -1)), (vec_ullong2)overflow); /* Handle special value conditions. These include: * * 1) IF either operand is a NaN OR both operands are 0 or INFINITY THEN a NaN * results. * 2) ELSE IF the dividend is an INFINITY OR the divisor is 0 THEN a INFINITY results. * 3) ELSE IF the dividend is 0 OR the divisor is INFINITY THEN a 0 results. */ mult = spu_andc(mult, (vec_double2)spu_or(a_zero, b_inf)); mult = spu_sel(mult, (vec_double2)exp_mask, spu_or(a_inf, b_zero)); nan = spu_or(a_nan, b_nan); nan = spu_or(nan, spu_and(a_zero, b_zero)); nan = spu_or(nan, spu_and(a_inf, b_inf)); mult = spu_or(mult, (vec_double2)nan); /* Scale the final quotient */ q2 = spu_mul(q1, mult); return (q2); }
inline vector real_t advec_diff_v(vector real_t cell_size, vector real_t c2l, vector real_t w2l, vector real_t d2l, vector real_t c1l, vector real_t w1l, vector real_t d1l, vector real_t c, vector real_t w, vector real_t d, vector real_t c1r, vector real_t w1r, vector real_t d1r, vector real_t c2r, vector real_t w2r, vector real_t d2r) { vector real_t acc1, acc2, acc3; vector real_t wind, diff_term, advec_term; vector real_t advec_term_pos, advec_term_neg; vector real_t advec_termR, advec_termL; acc1 = spu_add(w1l, w); wind = spu_mul(acc1, HALF); acc1 = spu_mul(c1l, FIVE); acc2 = spu_mul(c, TWO); advec_term_pos = spu_add(acc1, acc2); advec_term_pos = spu_sub(advec_term_pos, c2l); acc1 = spu_mul(c1l, TWO); acc2 = spu_mul(c, FIVE); advec_term_neg = spu_add(acc1, acc2); advec_term_neg = spu_sub(advec_term_neg, c1r); acc1 = (vector real_t)spu_cmpgt(wind, ZERO); acc1 = spu_and(acc1, advec_term_pos); acc2 = (vector real_t)spu_cmpgt(ZERO, wind); acc2 = spu_and(acc2, advec_term_neg); advec_termL = spu_add(acc1, acc2); advec_termL = spu_mul(advec_termL, SIXTH); advec_termL = spu_mul(advec_termL, wind); acc1 = spu_add(w1r, w); wind = spu_mul(acc1, HALF); acc1 = spu_mul(c, FIVE); acc2 = spu_mul(c1r, TWO); advec_term_pos = spu_add(acc1, acc2); advec_term_pos = spu_sub(advec_term_pos, c1l); acc1 = spu_mul(c, TWO); acc2 = spu_mul(c1r, FIVE); advec_term_neg = spu_add(acc1, acc2); advec_term_neg = spu_sub(advec_term_neg, c2r); acc1 = (vector real_t)spu_cmpgt(wind, ZERO); acc1 = spu_and(acc1, advec_term_pos); acc2 = (vector real_t)spu_cmpgt(ZERO, wind); acc2 = spu_and(acc2, advec_term_neg); advec_termR = spu_add(acc1, acc2); advec_termR = spu_mul(advec_termR, SIXTH); advec_termR = spu_mul(advec_termR, wind); acc1 = spu_sub(advec_termL, advec_termR); advec_term = VEC_DIVIDE(acc1, cell_size); acc1 = spu_add(d1l, d); acc1 = spu_mul(acc1, HALF); acc3 = spu_sub(c1l, c); acc1 = spu_mul(acc1, acc3); acc2 = spu_add(d, d1r); acc2 = spu_mul(acc2, HALF); acc3 = spu_sub(c, c1r); acc2 = spu_mul(acc2, acc3); acc1 = spu_sub(acc1, acc2); acc2 = spu_mul(cell_size, cell_size); diff_term = VEC_DIVIDE(acc1, acc2); return spu_add(advec_term, diff_term); }
inline vector float spu_abs(vector float v) { return spu_and(v, abs_mask); }
void process_render_tasks(unsigned long eah_render_tasks, unsigned long eal_render_tasks) { const vec_uchar16 SHUFFLE_MERGE_BYTES = (vec_uchar16) { // merge lo bytes from unsigned shorts (array) 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31 }; const vec_uchar16 SHUFFLE_GET_BUSY_WITH_ONES = (vec_uchar16) { // get busy flag with ones in unused bytes 0xc0, 0xc0, 2, 3, 0xc0,0xc0,0xc0,0xc0, 0xc0,0xc0,0xc0,0xc0 }; const vec_uchar16 ZERO_BYTES = (vec_uchar16) spu_splats(0); char trianglebuffer[ 256 + TRIANGLE_MAX_SIZE ]; char sync_buffer[128+127]; void* aligned_sync_buffer = (void*) ( ((unsigned long)sync_buffer+127) & ~127 ); RenderableCacheLine* cache = (RenderableCacheLine*) aligned_sync_buffer; unsigned long long cache_ea; spu_mfcdma64(&cache_ea, eah_render_tasks, eal_render_tasks, sizeof(cache_ea), 0, MFC_GET_CMD); mfc_write_tag_mask(1<<0); mfc_read_tag_status_all(); while (cache_ea) { // terminate immediately if possible if (spu_stat_in_mbox()) return; // read the cache line spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_GETLLAR_CMD); spu_readch(MFC_RdAtomicStat); unsigned int endTriangle = cache->endTriangle; vec_ushort8 testTriangle = spu_splats((unsigned short) endTriangle); // first look for short chunks vec_uchar16 next = cache->chunkNext; vec_uchar16 nextmask = spu_and(next, spu_splats((unsigned char)CHUNKNEXT_MASK)); // change next to word offset, note we don't care what the low bit shifted in is vec_uchar16 firstshuf = (vec_uchar16) spu_sl( (vec_ushort8)nextmask, 1 ); vec_uchar16 trishufhi = spu_or ( firstshuf, spu_splats((unsigned char) 1)); vec_uchar16 trishuflo = spu_and( firstshuf, spu_splats((unsigned char) 254)); vec_ushort8 start0 = cache->chunkStart[0]; vec_ushort8 start1 = cache->chunkStart[1]; vec_ushort8 nstart0 = spu_shuffle( start0, start1, spu_shuffle( trishuflo, trishufhi, SHUF0 ) ); vec_ushort8 nstart1 = spu_shuffle( start0, start1, spu_shuffle( trishuflo, trishufhi, SHUF1 ) ); vec_ushort8 starteq0 = spu_cmpeq( nstart0, spu_splats((unsigned short)0) ); vec_ushort8 starteq1 = spu_cmpeq( nstart1, spu_splats((unsigned short)0) ); vec_ushort8 end0 = spu_sel( nstart0, spu_splats((unsigned short)4096), starteq0); vec_ushort8 end1 = spu_sel( nstart1, spu_splats((unsigned short)4096), starteq1); vec_ushort8 len0 = spu_sub( end0, start0); vec_ushort8 len1 = spu_sub( end1, start1); vec_ushort8 small0 = spu_cmpgt( spu_splats((unsigned short)17), len0); vec_ushort8 small1 = spu_cmpgt( spu_splats((unsigned short)17), len1); vec_uchar16 small = (vec_uchar16) spu_shuffle( small0, small1, MERGE ); vec_uint4 smallChunkGather = spu_gather(small); // check to see if chunk is already at the last triangle vec_uint4 doneChunkGather = spu_gather( (vec_uchar16) spu_shuffle( (vec_uchar16) spu_cmpeq(testTriangle, cache->chunkTriangle[0]), (vec_uchar16) spu_cmpeq(testTriangle, cache->chunkTriangle[1]), SHUFFLE_MERGE_BYTES) ); // check if the chunk is free vec_uint4 freeChunkGather = spu_gather( spu_cmpeq( spu_splats( (unsigned char) CHUNKNEXT_FREE_BLOCK ), cache->chunkNext ) ); // check to see if the chunk is being processed vec_uint4 busyChunkGather = spu_gather( spu_cmpgt( cache->chunkNext, //spu_and(cache->chunkNext, CHUNKNEXT_MASK), spu_splats( (unsigned char) (CHUNKNEXT_BUSY_BIT-1) ) ) ); // doneChunkGather, freeChunkGather, busyChunkGather - rightmost 16 bits of word 0 // note that if freeChunkGather is true then busyChunkGather must also be true // done=false, free=false, busy=false -> can process // free=false, busy=false -> can be merged // decide which chunk to process vec_uint4 mayProcessGather = spu_nor( doneChunkGather, busyChunkGather ); vec_uint4 mayProcessShortGather = spu_and( mayProcessGather, smallChunkGather ); vec_uint4 shortSelMask = spu_cmpeq( mayProcessShortGather, spu_splats(0U) ); vec_uint4 mayProcessSelection = spu_sel( mayProcessShortGather, mayProcessGather, shortSelMask ); /* if (!spu_extract(shortSelMask, 0)) printf("taken short: may=%04x short=%04x mayshort=%04x mask=%04x sel=%04x\n", spu_extract(mayProcessGather, 0) & 0xffff, spu_extract(smallChunkGather, 0), spu_extract(mayProcessShortGather, 0), spu_extract(shortSelMask, 0) & 0xffff, spu_extract(mayProcessSelection, 0) & 0xffff ); */ vec_uint4 mayProcessBits = spu_sl( mayProcessSelection, 16); unsigned int chunkToProcess = spu_extract( spu_cntlz( mayProcessBits ), 0); unsigned int freeChunk = spu_extract( spu_cntlz( spu_sl( freeChunkGather, 16 ) ), 0); // if there's nothing to process, try the next cache line in the rendering tasks list if (!spu_extract(mayProcessBits, 0)) { trynextcacheline: cache_ea = cache->next; // sleep(); continue; } unsigned int chunkStart = cache->chunkStartArray [chunkToProcess]; unsigned int chunkTriangle = cache->chunkTriangleArray[chunkToProcess]; unsigned int chunkNext = cache->chunkNextArray [chunkToProcess] & CHUNKNEXT_MASK; unsigned int chunkEnd = (cache->chunkStartArray [chunkNext]-1) & (NUMBER_OF_TILES-1); unsigned int chunkLength = 1 + chunkEnd-chunkStart; // only need an extra block if the block is especially long if (chunkLength <= NUMBER_OF_TILES_PER_CHUNK) { freeChunk = 32; } // mark this block as busy cache->chunkNextArray[chunkToProcess] |= CHUNKNEXT_BUSY_BIT; // if there's at least one free chunk, claim it if (freeChunk != 32) { cache->chunkNextArray[freeChunk] = CHUNKNEXT_RESERVED; cache->chunkTriangleArray[freeChunk] = chunkTriangle; } // write the cache line back spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_PUTLLC_CMD); if (spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS) continue; #ifdef INFO printf("[%d] Claimed chunk %d (%d-%d len %d) at tri %x end %x with free chunk %d\n", _SPUID, chunkToProcess, chunkStart, chunkEnd, chunkLength, chunkTriangle, endTriangle, freeChunk!=32 ? freeChunk : -1 ); // debug_render_tasks(cache); #endif Triangle* triangle; int firstTile; do { // read the triangle data for the current triangle unsigned int extra = chunkTriangle & 127; unsigned long long trianglebuffer_ea = cache_ea + TRIANGLE_OFFSET_FROM_CACHE_LINE + (chunkTriangle & ~127); triangle = (Triangle*) (trianglebuffer+extra); unsigned int length = (extra + TRIANGLE_MAX_SIZE + 127) & ~127; // ensure DMA slot available do {} while (!spu_readchcnt(MFC_Cmd)); spu_mfcdma64(trianglebuffer, mfc_ea2h(trianglebuffer_ea), mfc_ea2l(trianglebuffer_ea), length, 0, MFC_GET_CMD); mfc_write_tag_mask(1<<0); mfc_read_tag_status_all(); // get the triangle deltas firstTile = findFirstTriangleTile(triangle, chunkStart, chunkEnd); if (firstTile>=0) break; // no match, try next triangle chunkTriangle = triangle->next_triangle; } while (chunkTriangle != endTriangle); // if we actually have something to process... if (firstTile>=0) { // the "normal" splitting will now become: // chunkStart .. (firstTile-1) -> triangle->next_triangle // firstTile .. (firstTile+NUM-1) -> chunkTriangle (BUSY) // (firstTile+NUM) .. chunkEnd -> chunkTriangle (FREE) int tailChunk; int thisChunk; int nextBlockStart; int thisBlockStart; int realBlockStart; do { retry: // read the cache line spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_GETLLAR_CMD); spu_readch(MFC_RdAtomicStat); // calculate start of next block nextBlockStart = firstTile + NUMBER_OF_TILES_PER_CHUNK; if (nextBlockStart > chunkEnd) nextBlockStart = chunkEnd+1; // calculate start of block to mark as busy thisBlockStart = nextBlockStart - NUMBER_OF_TILES_PER_CHUNK; if (thisBlockStart < chunkStart) thisBlockStart = chunkStart; realBlockStart = thisBlockStart; #ifdef INFO printf("[%d] nextBlockStart=%d, realBlockStart=%d, thisBlockStart=%d, chunkStart=%d\n", _SPUID, nextBlockStart, realBlockStart, thisBlockStart, chunkStart); #endif // allocate some more free chunks vec_uint4 freeChunkGather2 = spu_sl(spu_gather(spu_cmpeq( spu_splats((unsigned char)CHUNKNEXT_FREE_BLOCK), cache->chunkNext)), 16); unsigned int freeChunk2 = spu_extract(spu_cntlz(freeChunkGather2), 0); if (freeChunk == 32) { // if we didn't have one before, try again freeChunk = freeChunk2; // and try to get the second one freeChunkGather2 = spu_andc( freeChunkGather2, spu_promote(0x80000000>>freeChunk2, 0) ); freeChunk2 = spu_extract(spu_cntlz(freeChunkGather2), 0); } else { // speculatively clear the free chunk just in case we don't need it cache->chunkNextArray[freeChunk] = CHUNKNEXT_FREE_BLOCK; } #ifdef INFO printf("[%d] Free chunks %d and %d, cN=%d, nBS=%d, cE=%d, tBS=%d, cS=%d\n", _SPUID, freeChunk, freeChunk2, chunkNext, nextBlockStart, chunkEnd, thisBlockStart, chunkStart ); #endif // mark region after as available for processing if required if (nextBlockStart < chunkEnd) { if (freeChunk==32) { // if no free chunk, relinquish entire block and write back cache->chunkNextArray[chunkToProcess] = chunkNext; spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_PUTLLC_CMD); // if writeback failed, we *might* have a free block, retry if (spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS) goto retry; // otherwise give up and try the next cache line goto trynextcacheline; } cache->chunkStartArray[freeChunk] = nextBlockStart; cache->chunkNextArray[freeChunk] = chunkNext; cache->chunkTriangleArray[freeChunk] = chunkTriangle; cache->chunkNextArray[chunkToProcess] = freeChunk | CHUNKNEXT_BUSY_BIT; tailChunk = freeChunk; #ifdef INFO printf("[%d] Insert tail, tailChunk=%d, chunkNext=%d, chunkToProcess=%d\n", _SPUID, tailChunk, chunkNext, chunkToProcess); debug_render_tasks(cache); #endif } else { // we're gonna use freeChunk2 for the "in front" block, as we've not // used freeChunk, let's use it as it's more likely to have a free chunk freeChunk2 = freeChunk; tailChunk = chunkNext; } // mark region before as available if required and possible thisChunk = chunkToProcess; if (thisBlockStart > chunkStart) { if (freeChunk2 != 32) { // mark this region as busy cache->chunkStartArray[freeChunk2]=thisBlockStart; cache->chunkNextArray[freeChunk2]=tailChunk | CHUNKNEXT_BUSY_BIT; cache->chunkTriangleArray[freeChunk2]=chunkTriangle; // mark region before as available for processing cache->chunkNextArray[chunkToProcess]=freeChunk2; cache->chunkTriangleArray[chunkToProcess]=triangle->next_triangle; thisChunk = freeChunk2; #ifdef INFO printf("[%d] Insert new head, tailChunk=%d, chunkNext=%d, thisChunk=%d\n", _SPUID, tailChunk, chunkNext, thisChunk); debug_render_tasks(cache); #endif } else { // need to keep whole block, update info and mark bust cache->chunkTriangleArray[chunkToProcess]=chunkTriangle; cache->chunkNextArray[chunkToProcess]=tailChunk | CHUNKNEXT_BUSY_BIT; realBlockStart = chunkStart; printf("[%d] Keep whole block, tailChunk=%d, chunkNext=%d, thisChunk=%d\n", _SPUID, tailChunk, chunkNext, thisChunk); debug_render_tasks(cache); #ifdef INFO #endif sleep(); } } // merge chunks merge_cache_blocks(cache); // write the cache line back spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_PUTLLC_CMD); } while (spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS); // finally after the write succeeded, update the variables chunkNext = tailChunk; chunkToProcess = thisChunk; chunkStart = firstTile; //thisBlockStart; chunkLength = nextBlockStart - firstTile; chunkEnd = chunkStart + chunkLength - 1; freeChunk = 32; // now we can process the block up to endTriangle initTileBuffers(thisBlockStart, chunkEnd); int ok=0; while (chunkTriangle != endTriangle) { #ifdef INFO printf("[%d] Processing chunk %d at %4d len %4d, triangle %04x first=%d tbs=%d\n", _SPUID, chunkToProcess, chunkStart, chunkLength, chunkTriangle, firstTile, thisBlockStart); #endif // and actually process that triangle on these chunks processTriangleChunks(triangle, cache, thisBlockStart, chunkEnd, chunkTriangle, ok); ok=1; #ifdef PAUSE sleep(); #endif // and advance to the next-triangle chunkTriangle = triangle->next_triangle; // this should only ever happen if we're running really low on cache line slots // basically, if we pick up a block with more than NUMBER_OF_TILES_PER_CHUNK and // there's no slot to store the pre-NUMBER_OF_TILES_PER_CHUNK tiles. // in this case, we process from thisBlockStart only (because we know that from // chunkStart to there has no result) and then we only process one triangle if (chunkStart != realBlockStart) { /* printf("[%d] chunkStart=%d != realBlockStart %d, chunkEnd=%d, " "firstTile=%d chunk=%d\n", _SPUID, chunkStart, realBlockStart, chunkEnd, firstTile, chunkToProcess); debug_render_tasks(cache); */ // abort the while loop break; } // read the next triangle unsigned int extra = chunkTriangle & 127; unsigned long long trianglebuffer_ea = cache_ea + TRIANGLE_OFFSET_FROM_CACHE_LINE + (chunkTriangle & ~127); triangle = (Triangle*) (trianglebuffer+extra); unsigned int length = (extra + TRIANGLE_MAX_SIZE + 127) & ~127; // ensure DMA slot available do {} while (!spu_readchcnt(MFC_Cmd)); spu_mfcdma64(trianglebuffer, mfc_ea2h(trianglebuffer_ea), mfc_ea2l(trianglebuffer_ea), length, 0, MFC_GET_CMD); mfc_write_tag_mask(1<<0); mfc_read_tag_status_all(); } // until chunkTriangle == endTriangle // flush any output buffers flushTileBuffers(thisBlockStart, chunkEnd); } // firstTile>=0
int allneginf_double2( vec_double2 x ) { vec_ullong2 neginf = spu_and( isinfd2 ( x ), signbitd2 ( x ) ); return ( spu_extract(neginf,0) != 0 && spu_extract(neginf,1) != 0 ); }
Triangle* getTriangleBuffer(Context* context) { // if we've already allocated a triangle buffer (and we're in the same context) if (context == _currentTriangleContext && _currentTriangle) return _currentTriangle; // trash the default values _currentTriangleContext = context; _currentTriangle = NULL; // read the current renderable cache line to ensure there is room for the triangle data // in the cache line buffer; we do this by comparing against all 16 cache line blocks // to make sure that extending the write pointer wouldn't clobber the data unsigned long long cache_ea = context->renderableCacheLine; if (cache_ea == 0) return NULL; char cachebuffer[128+127]; RenderableCacheLine* cache = (RenderableCacheLine*) ( ((unsigned int)cachebuffer+127) & ~127 ); // printf("GTB: reading to %x from %x:%x\n", cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea)); spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_GETLLAR_CMD); spu_readch(MFC_RdAtomicStat); // extendvalid = ( read<=write && test<end ) || ( read>write && test<read ) // extendvalid = ( read>write && read>test ) || ( read<=write && end>test ) // simplifies to extendvalid = selb(end, read, read>write) > test // or extendvalid = selb(end>test, read>test, read>write) // rewind = next >= end // rewindvalid = read != 0 // valid = extendvalid && (!rewind || rewindvalid) // = extendvalid && (!rewind || !rewindinvalid) // = extendvalid && !(rewind && rewindinvalid) // invalid = ! (extendvalid && !(rewind && rewindinvalid)) // = (!extendvalid || (rewind && rewindinvalid)) vec_ushort8 v_writeptr = spu_splats( cache->endTriangle ); vec_ushort8 v_readptr0 = cache->chunkTriangle[0]; vec_ushort8 v_readptr1 = cache->chunkTriangle[1]; vec_ushort8 v_testptr = spu_add(v_writeptr, TRIANGLE_MAX_SIZE); vec_ushort8 v_nextptr = spu_add(v_writeptr, 2*TRIANGLE_MAX_SIZE); vec_ushort8 v_endptr = spu_splats( (unsigned short)TRIANGLE_BUFFER_SIZE); vec_ushort8 v_zero = spu_splats( (unsigned short) 0 ); vec_uchar16 v_merger = (vec_uchar16) { 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31 }; vec_ushort8 v_max0_test = spu_sel( v_endptr, v_readptr0, spu_cmpgt( v_readptr0, v_writeptr ) ); vec_ushort8 v_max1_test = spu_sel( v_endptr, v_readptr1, spu_cmpgt( v_readptr1, v_writeptr ) ); vec_ushort8 v_extend0_valid = spu_cmpgt( v_max0_test, v_testptr ); vec_ushort8 v_extend1_valid = spu_cmpgt( v_max1_test, v_testptr ); vec_ushort8 v_rewind0_invalid = spu_cmpeq( v_readptr0, v_zero ); vec_ushort8 v_rewind1_invalid = spu_cmpeq( v_readptr1, v_zero ); vec_ushort8 v_rewind8 = spu_cmpgt( v_nextptr, v_endptr ); vec_uchar16 v_extend_valid = (vec_uchar16) spu_shuffle( v_extend0_valid, v_extend1_valid, v_merger ); vec_uchar16 v_rewind_invalid = (vec_uchar16) spu_shuffle( v_rewind0_invalid, v_rewind1_invalid, v_merger ); vec_uchar16 v_rewind = (vec_uchar16) v_rewind8; vec_uchar16 v_valid_rhs = spu_and( v_rewind_invalid, v_rewind ); vec_uchar16 v_invalid = spu_orc( v_valid_rhs, v_extend_valid ); // check to see if the chunk is being processed vec_uint4 v_free = spu_gather( spu_cmpeq( spu_splats( (unsigned char) CHUNKNEXT_FREE_BLOCK ), cache->chunkNext ) ); vec_uint4 v_invalid_bits = spu_andc( spu_gather( v_invalid ), (vec_uint4) v_free ); // if any of the bits are invalid, then no can do if ( spu_extract(v_invalid_bits, 0) ) { return NULL; } // fetch in the data before this triangle in the cache buffer unsigned int offset = cache->endTriangle; _currentTriangleBufferExtra = offset & 127; unsigned long long trianglebuffer_ea = cache_ea + TRIANGLE_OFFSET_FROM_CACHE_LINE + (offset & ~127); if (_currentTriangleBufferExtra) { spu_mfcdma64(_currentTriangleBuffer, mfc_ea2h(trianglebuffer_ea), mfc_ea2l(trianglebuffer_ea), 128, 0, MFC_GET_CMD); // ensure DMA did actually complete mfc_write_tag_mask(1<<0); mfc_read_tag_status_all(); } // final bit of initialisation _currentTriangle = (Triangle*) (_currentTriangleBuffer+_currentTriangleBufferExtra); _currentTriangleOffset = offset; _currentTriangleRewind = v_rewind8; _currentTriangleCacheEndTriangleEAL = mfc_ea2l(cache_ea) + (((char*)&cache->endTriangle) - ((char*)cache)); _currentTriangleCacheEndTriangleEAH = mfc_ea2h(cache_ea); _currentTriangleBufferEA = trianglebuffer_ea; // printf("Allocated new triangle buffer: %x\n", offset); // and return the buffer ready to go return _currentTriangle; }
static inline vec_uint4 vec_Maj(vec_uint4 x, vec_uint4 y, vec_uint4 z) { return spu_sel(spu_and(y, z), spu_or(y, z), x); }
/* Scans the string pointed to by s for the character c and * returns a pointer to the last occurance of c. If * c is not found, then NULL is returned. */ char * strrchr(const char *s, int c) { int nskip; vec_uchar16 *ptr, data, vc; vec_uint4 cmp_c, cmp_0, cmp; vec_uint4 res_ptr, res_cmp; vec_uint4 mask, result; vec_uint4 one = spu_splats(0xffffU); /* Scan memory array a quadword at a time. Skip leading * mis-aligned bytes. */ ptr = (vec_uchar16 *)s; nskip = -((unsigned int)(ptr) & 15); mask = spu_rlmask(one, nskip); vc = spu_splats((unsigned char)(c)); data = *ptr++; ptr = (vec_uchar16 *)((unsigned int)ptr & ~15); cmp_c = spu_and(spu_gather(spu_cmpeq(data, vc)), mask); cmp_0 = spu_and(spu_gather(spu_cmpeq(data, 0)), mask); res_ptr = spu_splats(0U); res_cmp = spu_splats(0U); while (spu_extract(cmp_0, 0) == 0) { cmp = spu_cmpeq(cmp_c, 0); res_ptr = spu_sel(spu_promote((unsigned int)(ptr), 0), res_ptr, cmp); res_cmp = spu_sel(cmp_c, res_cmp, cmp); data = *ptr++; cmp_c = spu_gather(spu_cmpeq(data, vc)); cmp_0 = spu_gather(spu_cmpeq(data, 0)); cmp = spu_cmpeq(cmp_c, 0); } /* Compute the location of the last character before termination * character. * * First mask off compare results following the first termination character. */ mask = spu_sl(one, 31 - spu_extract(spu_cntlz(cmp_0), 0)); cmp_c = spu_and(cmp_c, mask); /* Conditionally update res_ptr and res_cmd if a match was found in the last * quadword. */ cmp = spu_cmpeq(cmp_c, 0); res_ptr = spu_sel(spu_promote((unsigned int)(ptr), 0), res_ptr, cmp); res_cmp = spu_sel(cmp_c, res_cmp, cmp); /* Bit reserve res_cmp for locating last occurance. */ mask = spu_cmpeq(res_cmp, 0); res_cmp = (vec_uint4)spu_maskb(spu_extract(res_cmp, 0)); res_cmp = spu_gather((vec_uchar16)spu_shuffle(res_cmp, res_cmp, VEC_LITERAL(vec_uchar16, 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0))); /* Compute the location (ptr) of the last occurance of c. If no * occurance was found (ie, element 0 of res_cmp == 0, then return * NULL. */ result = spu_sub(spu_add(res_ptr, 15), spu_cntlz(res_cmp)); result = spu_andc(result, mask); return ((char *)spu_extract(result, 0)); }
void* libvector_pointwise_multiply_32fc_unaligned(void* target, void* src0, void* src1, unsigned int num_bytes){ //loop iterator i int i = 0; void* retval = target; //put the target and source addresses into qwords vector unsigned int address_counter_tgt = {(unsigned int)target, 0, 0, 0}; vector unsigned int address_counter_src0 = {(unsigned int)src0, 0, 0 ,0}; vector unsigned int address_counter_src1 = {(unsigned int)src1, 0, 0, 0}; //create shuffle masks //shuffle mask building blocks: //all from the first vector vector unsigned char oneup = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}; //all from the second vector vector unsigned char second_oneup = {0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f}; //gamma: second half of the second, first half of the first, break at (unsigned int)src0%16 vector unsigned char src_cmp = spu_splats((unsigned char)((unsigned int)src0%16)); vector unsigned char gt_res = spu_cmpgt(oneup, src_cmp); vector unsigned char eq_res = spu_cmpeq(oneup, src_cmp); vector unsigned char cmp_res = spu_or(gt_res, eq_res); vector unsigned char sixteen_uchar = spu_splats((unsigned char)16); vector unsigned char phase_change = spu_and(sixteen_uchar, cmp_res); vector unsigned int shuffle_mask_gamma = spu_add((vector unsigned int)phase_change, (vector unsigned int)oneup); shuffle_mask_gamma = spu_rlqwbyte(shuffle_mask_gamma, (unsigned int)src0%16); //eta: second half of the second, first half of the first, break at (unsigned int)src1%16 src_cmp = spu_splats((unsigned char)((unsigned int)src1%16)); gt_res = spu_cmpgt(oneup, src_cmp); eq_res = spu_cmpeq(oneup, src_cmp); cmp_res = spu_or(gt_res, eq_res); sixteen_uchar = spu_splats((unsigned char)16); phase_change = spu_and(sixteen_uchar, cmp_res); vector unsigned int shuffle_mask_eta = spu_add((vector unsigned int)phase_change, (vector unsigned int)oneup); shuffle_mask_eta = spu_rlqwbyte(shuffle_mask_eta, (unsigned int)src1%16); vector unsigned char tgt_second = spu_rlqwbyte(second_oneup, -((unsigned int)target%16)); vector unsigned char tgt_first = spu_rlqwbyte(oneup, -((unsigned int)target%16)); //alpha: first half of first, second half of second, break at (unsigned int)target%16 src_cmp = spu_splats((unsigned char)((unsigned int)target%16)); gt_res = spu_cmpgt(oneup, src_cmp); eq_res = spu_cmpeq(oneup, src_cmp); cmp_res = spu_or(gt_res, eq_res); phase_change = spu_and(sixteen_uchar, cmp_res); vector unsigned int shuffle_mask_alpha = spu_add((vector unsigned int)phase_change, (vector unsigned int)oneup); //delta: first half of first, first half of second, break at (unsigned int)target%16 vector unsigned char shuffle_mask_delta = spu_shuffle(oneup, tgt_second, (vector unsigned char)shuffle_mask_alpha); //epsilon: second half of second, second half of first, break at (unsigned int)target%16 vector unsigned char shuffle_mask_epsilon = spu_shuffle(tgt_second, oneup, (vector unsigned char)shuffle_mask_alpha); //zeta: second half of second, first half of first, break at 16 - (unsigned int)target%16 vector unsigned int shuffle_mask_zeta = spu_rlqwbyte(shuffle_mask_alpha, (unsigned int)target%16); //beta: first half of first, second half of second, break at num_bytes%16 src_cmp = spu_splats((unsigned char)(num_bytes%16)); gt_res = spu_cmpgt(oneup, src_cmp); eq_res = spu_cmpeq(oneup, src_cmp); cmp_res = spu_or(gt_res, eq_res); phase_change = spu_and(sixteen_uchar, cmp_res); vector unsigned int shuffle_mask_beta = spu_add((vector unsigned int)phase_change, (vector unsigned int)oneup); qword src0_past; qword src0_present; qword src1_past; qword src1_present; qword tgt_past; qword tgt_present; qword in_temp0; qword in_temp1; qword out_temp0; qword out_temp1; src0_past = si_lqd((qword)address_counter_src0, 0); src1_past = si_lqd((qword)address_counter_src1, 0); tgt_past = si_lqd((qword)address_counter_tgt, 0); vector unsigned char shuffle_mask_complexprod0 = {0x04, 0x05, 0x06, 0x07, 0x00, 0x01, 0x02, 0x03, 0x0c, 0x0d, 0x0e, 0x0f, 0x08, 0x09, 0x0a, 0x0b}; vector unsigned char shuffle_mask_complexprod1 = {0x00, 0x01, 0x02, 0x03, 0x10, 0x11, 0x12, 0x13, 0x08, 0x09, 0x0a, 0x0b, 0x18, 0x19, 0x1a, 0x1b}; vector unsigned char shuffle_mask_complexprod2 = {0x04, 0x05, 0x06, 0x07, 0x14, 0x15, 0x16, 0x17, 0x0c, 0x0d, 0x0e, 0x0f, 0x1c, 0x1d, 0x1e, 0x1f}; vector unsigned char sign_changer = {0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00}; vector float prod0; qword shuf0; vector float prod1; vector float sign_change; qword summand0; qword summand1; vector float sum; for(i = 0; i < num_bytes/16; ++i) { src0_present = si_lqd((qword)address_counter_src0, 16); src1_present = si_lqd((qword)address_counter_src1, 16); tgt_present = si_lqd((qword)address_counter_tgt, 16); in_temp0 = spu_shuffle(src0_present, src0_past, (vector unsigned char)shuffle_mask_gamma); in_temp1 = spu_shuffle(src1_present, src1_past, (vector unsigned char)shuffle_mask_eta); prod0 = spu_mul((vector float)in_temp0, (vector float)in_temp1); shuf0 = spu_shuffle((qword)in_temp1, (qword)in_temp1, shuffle_mask_complexprod0); prod1 = spu_mul((vector float)in_temp0, (vector float)shuf0); sign_change = spu_xor(prod0, (vector float)sign_changer); summand0 = spu_shuffle((qword)sign_change, (qword)prod1, shuffle_mask_complexprod1); summand1 = spu_shuffle((qword)sign_change, (qword)prod1, shuffle_mask_complexprod2); sum = spu_add((vector float)summand0, (vector float)summand1); out_temp0 = spu_shuffle(tgt_past, (qword)sum, shuffle_mask_delta); out_temp1 = spu_shuffle(tgt_present, (qword)sum, shuffle_mask_epsilon); si_stqd(out_temp0, (qword)address_counter_tgt, 0); si_stqd(out_temp1, (qword)address_counter_tgt, 16); tgt_past = out_temp1; src0_past = src0_present; src1_past = src1_present; address_counter_src0 = spu_add(address_counter_src0, 16); address_counter_src1 = spu_add(address_counter_src1, 16); address_counter_tgt = spu_add(address_counter_tgt, 16); } src0_present = si_lqd((qword)address_counter_src0, 16); src1_present = si_lqd((qword)address_counter_src1, 16); tgt_present = si_lqd((qword)address_counter_tgt, 16); in_temp0 = spu_shuffle(src0_present, src0_past, (vector unsigned char) shuffle_mask_gamma); in_temp1 = spu_shuffle(src1_present, src1_past, (vector unsigned char) shuffle_mask_eta); prod0 = spu_mul((vector float)in_temp0, (vector float)in_temp1); shuf0 = spu_shuffle((qword)in_temp1, (qword)in_temp1, shuffle_mask_complexprod0); prod1 = spu_mul(prod0, (vector float)shuf0); sign_change = spu_xor(prod0, (vector float)sign_changer); summand0 = spu_shuffle((qword)sign_change, (qword)prod1, shuffle_mask_complexprod1); summand1 = spu_shuffle((qword)sign_change, (qword)prod1, shuffle_mask_complexprod2); sum = spu_add((vector float)summand0, (vector float)summand1); qword target_temp = spu_shuffle(tgt_present, tgt_past, (vector unsigned char) shuffle_mask_zeta); qword meld = spu_shuffle((qword)sum, target_temp, (vector unsigned char)shuffle_mask_beta); out_temp0 = spu_shuffle(tgt_past, meld, shuffle_mask_delta); out_temp1 = spu_shuffle(tgt_present, meld, shuffle_mask_epsilon); si_stqd(out_temp0, (qword)address_counter_tgt, 0); si_stqd(out_temp1, (qword)address_counter_tgt, 16); return retval; }