Beispiel #1
0
/*
** Return true if it desirable to avoid allocating a new page cache
** entry.
**
** If memory was allocated specifically to the page cache using
** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
** it is desirable to avoid allocating a new page cache entry because
** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
** for all page cache needs and we should not need to spill the
** allocation onto the heap.
**
** Or, the heap is used for all page cache memory but the heap is
** under memory pressure, then again it is desirable to avoid
** allocating a new page cache entry in order to avoid stressing
** the heap even further.
*/
static int pcache1UnderMemoryPressure(PCache1 *pCache){
  if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
    return pcache1.bUnderPressure;
  }else{
    return sqlite3HeapNearlyFull();
  }
}
Beispiel #2
0
/*
** Return true if it desirable to avoid allocating a new page cache
** entry.
**
** If memory was allocated specifically to the page cache using
** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
** it is desirable to avoid allocating a new page cache entry because
** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
** for all page cache needs and we should not need to spill the
** allocation onto the heap.
**
** Or, the heap is used for all page cache memory put the heap is
** under memory pressure, then again it is desirable to avoid
** allocating a new page cache entry in order to avoid stressing
** the heap even further.
*/
static int pcache1UnderMemoryPressure(PCache1 *pCache){
  assert( sqlite3_mutex_held(pcache1.mutex) );
  if( pcache1.nSlot && pCache->szPage<=pcache1.szSlot ){
    return pcache1.nFreeSlot<pcache1.nReserve;
  }else{
    return sqlite3HeapNearlyFull();
  }
}
Beispiel #3
0
/*
** Add a record to the sorter.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterWrite(
  sqlite3 *db,                    /* Database handle */
  const VdbeCursor *pCsr,               /* Sorter cursor */
  Mem *pVal                       /* Memory cell containing record */
){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc = SQLITE_OK;             /* Return Code */
  SorterRecord *pNew;             /* New list element */

  assert( pSorter );
  pSorter->nInMemory += sqlite3VarintLen(pVal->n) + pVal->n;

  pNew = (SorterRecord *)sqlite3DbMallocRaw(db, pVal->n + sizeof(SorterRecord));
  if( pNew==0 ){
    rc = SQLITE_NOMEM;
  }else{
    pNew->pVal = (void *)&pNew[1];
    memcpy(pNew->pVal, pVal->z, pVal->n);
    pNew->nVal = pVal->n;
    pNew->pNext = pSorter->pRecord;
    pSorter->pRecord = pNew;
  }

  /* See if the contents of the sorter should now be written out. They
  ** are written out when either of the following are true:
  **
  **   * The total memory allocated for the in-memory list is greater 
  **     than (page-size * cache-size), or
  **
  **   * The total memory allocated for the in-memory list is greater 
  **     than (page-size * 10) and sqlite3HeapNearlyFull() returns true.
  */
  if( rc==SQLITE_OK && pSorter->mxPmaSize>0 && (
        (pSorter->nInMemory>pSorter->mxPmaSize)
     || (pSorter->nInMemory>pSorter->mnPmaSize && sqlite3HeapNearlyFull())
  )){
#ifdef SQLITE_DEBUG
    i64 nExpect = pSorter->iWriteOff
                + sqlite3VarintLen(pSorter->nInMemory)
                + pSorter->nInMemory;
#endif
    rc = vdbeSorterListToPMA(db, pCsr);
    pSorter->nInMemory = 0;
    assert( rc!=SQLITE_OK || (nExpect==pSorter->iWriteOff) );
  }

  return rc;
}