/*
** Resize the block of memory pointed to by p to n bytes. If the
** resize fails, set the mallocFailed flag in the connection object.
*/
void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
  void *pNew = 0;
  assert( db!=0 );
  assert( sqlite3_mutex_held(db->mutex) );
  if( db->mallocFailed==0 ){
    if( p==0 ){
      return sqlite3DbMallocRaw(db, n);
    }
    if( isLookaside(db, p) ){
      if( n<=db->lookaside.sz ){
        return p;
      }
      pNew = sqlite3DbMallocRaw(db, n);
      if( pNew ){
        memcpy(pNew, p, db->lookaside.sz);
        sqlite3DbFree(db, p);
      }
    }else{
      assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      pNew = sqlite3_realloc64(p, n);
      if( !pNew ){
        db->mallocFailed = 1;
      }
      sqlite3MemdebugSetType(pNew,
            (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
    }
  }
  return pNew;
}
Beispiel #2
0
static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){
  void *pNew = 0;
  assert( db!=0 );
  assert( p!=0 );
  if( db->mallocFailed==0 ){
    if( isLookaside(db, p) ){
      pNew = sqlite3DbMallocRawNN(db, n);
      if( pNew ){
        memcpy(pNew, p, db->lookaside.sz);
        sqlite3DbFree(db, p);
      }
    }else{
      assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      pNew = sqlite3_realloc64(p, n);
      if( !pNew ){
        sqlite3OomFault(db);
      }
      sqlite3MemdebugSetType(pNew,
            (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
    }
  }
  return pNew;
}
Beispiel #3
0
/*
** Return the size of a pcache allocation
*/
static int pcache1MemSize(void *p){
  if( p>=pcache1.pStart && p<pcache1.pEnd ){
    return pcache1.szSlot;
  }else{
    int iSize;
    assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
    sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
    iSize = sqlite3MallocSize(p);
    sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
    return iSize;
  }
}
Beispiel #4
0
/*
** Free an allocated buffer obtained from pcache1Alloc().
*/
static int pcache1Free(void *p){
  int nFreed = 0;
  if( p==0 ) return 0;
  if( p>=pcache1.pStart && p<pcache1.pEnd ){
    PgFreeslot *pSlot;
    sqlite3_mutex_enter(pcache1.mutex);
    sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
    pSlot = (PgFreeslot*)p;
    pSlot->pNext = pcache1.pFree;
    pcache1.pFree = pSlot;
    pcache1.nFreeSlot++;
    pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
    assert( pcache1.nFreeSlot<=pcache1.nSlot );
    sqlite3_mutex_leave(pcache1.mutex);
  }else{
    assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
    sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
    nFreed = sqlite3MallocSize(p);
    sqlite3_mutex_enter(pcache1.mutex);
    sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -nFreed);
    sqlite3_mutex_leave(pcache1.mutex);
    sqlite3_free(p);
  }
  return nFreed;
}
Beispiel #5
0
/*
** Allocate memory, either lookaside (if possible) or heap.  
** If the allocation fails, set the mallocFailed flag in
** the connection pointer.
**
** If db!=0 and db->mallocFailed is true (indicating a prior malloc
** failure on the same database connection) then always return 0.
** Hence for a particular database connection, once malloc starts
** failing, it fails consistently until mallocFailed is reset.
** This is an important assumption.  There are many places in the
** code that do things like this:
**
**         int *a = (int*)sqlite3DbMallocRaw(db, 100);
**         int *b = (int*)sqlite3DbMallocRaw(db, 200);
**         if( b ) a[10] = 9;
**
** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
** that all prior mallocs (ex: "a") worked too.
**
** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is
** not a NULL pointer.
*/
void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
  void *p;
  if( db ) return sqlite3DbMallocRawNN(db, n);
  p = sqlite3Malloc(n);
  sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
  return p;
}
Beispiel #6
0
/*
** Malloc function used within this file to allocate space from the buffer
** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
** such buffer exists or there is no space left in it, this function falls
** back to sqlite3Malloc().
**
** Multiple threads can run this routine at the same time.  Global variables
** in pcache1 need to be protected via mutex.
*/
static void *pcache1Alloc(int nByte){
  void *p = 0;
  assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
  if( nByte<=pcache1.szSlot ){
    sqlite3_mutex_enter(pcache1.mutex);
    p = (PgHdr1 *)pcache1.pFree;
    if( p ){
      pcache1.pFree = pcache1.pFree->pNext;
      pcache1.nFreeSlot--;
      pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
      assert( pcache1.nFreeSlot>=0 );
      sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
      sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
    }
    sqlite3_mutex_leave(pcache1.mutex);
  }
  if( p==0 ){
    /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
    ** it from sqlite3Malloc instead.
    */
    p = sqlite3Malloc(nByte);
#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
    if( p ){
      int sz = sqlite3MallocSize(p);
      sqlite3_mutex_enter(pcache1.mutex);
      sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
      sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
      sqlite3_mutex_leave(pcache1.mutex);
    }
#endif
    sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
  }
  return p;
}
/*
** Free memory that might be associated with a particular database
** connection.
*/
void sqlite3DbFree(sqlite3 *db, void *p){
  assert( db==0 || sqlite3_mutex_held(db->mutex) );
  if( p==0 ) return;
  if( db ){
    if( db->pnBytesFreed ){
      measureAllocationSize(db, p);
      return;
    }
    if( isLookaside(db, p) ){
      LookasideSlot *pBuf = (LookasideSlot*)p;
#if SQLITE_DEBUG
      /* Trash all content in the buffer being freed */
      memset(p, 0xaa, db->lookaside.sz);
#endif
      pBuf->pNext = db->lookaside.pFree;
      db->lookaside.pFree = pBuf;
      db->lookaside.nOut--;
      return;
    }
  }
  assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
  assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
  assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
  sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
  sqlite3_free(p);
}
Beispiel #8
0
/*
** Free an allocated buffer obtained from pcache1Alloc().
*/
static void pcache1Free(void *p){
  int nFreed = 0;
  if( p==0 ) return;
  if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
    PgFreeslot *pSlot;
    sqlite3_mutex_enter(pcache1.mutex);
    sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
    pSlot = (PgFreeslot*)p;
    pSlot->pNext = pcache1.pFree;
    pcache1.pFree = pSlot;
    pcache1.nFreeSlot++;
    pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
    assert( pcache1.nFreeSlot<=pcache1.nSlot );
    sqlite3_mutex_leave(pcache1.mutex);
  }else{
    assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
    sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
    nFreed = sqlite3MallocSize(p);
    sqlite3_mutex_enter(pcache1.mutex);
    sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
    sqlite3_mutex_leave(pcache1.mutex);
#endif
    sqlite3_free(p);
  }
}
Beispiel #9
0
void *sqlite3ScratchMalloc(int n){
  void *p;
  assert( n>0 );

  sqlite3_mutex_enter(mem0.mutex);
  if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
    p = mem0.pScratchFree;
    mem0.pScratchFree = mem0.pScratchFree->pNext;
    mem0.nScratchFree--;
    sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
    sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    if( sqlite3GlobalConfig.bMemstat ){
      sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
      n = mallocWithAlarm(n, &p);
      if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
      sqlite3_mutex_leave(mem0.mutex);
    }else{
      sqlite3_mutex_leave(mem0.mutex);
      p = sqlite3GlobalConfig.m.xMalloc(n);
    }
    sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
  }
  assert( sqlite3_mutex_notheld(mem0.mutex) );


#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
  assert( scratchAllocOut<=1 );
  if( p ) scratchAllocOut++;
#endif

  return p;
}
/*
** Allocate and zero memory.  If the allocation fails, make
** the mallocFailed flag in the connection pointer.
**
** If db!=0 and db->mallocFailed is true (indicating a prior malloc
** failure on the same database connection) then always return 0.
** Hence for a particular database connection, once malloc starts
** failing, it fails consistently until mallocFailed is reset.
** This is an important assumption.  There are many places in the
** code that do things like this:
**
**         int *a = (int*)sqlite3DbMallocRaw(db, 100);
**         int *b = (int*)sqlite3DbMallocRaw(db, 200);
**         if( b ) a[10] = 9;
**
** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
** that all prior mallocs (ex: "a") worked too.
*/
void *sqlite3DbMallocRaw(sqlite3 *db, int n){
  void *p;
  assert( db==0 || sqlite3_mutex_held(db->mutex) );
#ifndef SQLITE_OMIT_LOOKASIDE
  if( db ){
    LookasideSlot *pBuf;
    if( db->mallocFailed ){
      return 0;
    }
    if( db->lookaside.bEnabled && n<=db->lookaside.sz
         && (pBuf = db->lookaside.pFree)!=0 ){
      db->lookaside.pFree = pBuf->pNext;
      db->lookaside.nOut++;
      if( db->lookaside.nOut>db->lookaside.mxOut ){
        db->lookaside.mxOut = db->lookaside.nOut;
      }
      return (void*)pBuf;
    }
  }
#else
  if( db && db->mallocFailed ){
    return 0;
  }
#endif
  p = sqlite3Malloc(n);
  if( !p && db ){
    db->mallocFailed = 1;
  }
  sqlite3MemdebugSetType(p,
            (db && db->lookaside.bEnabled) ? MEMTYPE_DB : MEMTYPE_HEAP);
  return p;
}
Beispiel #11
0
/*
** Malloc function used within this file to allocate space from the buffer
** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 
** such buffer exists or there is no space left in it, this function falls 
** back to sqlite3Malloc().
*/
static void *pcache1Alloc(int nByte){
  void *p;
  assert( sqlite3_mutex_held(pcache1.mutex) );
  sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
  if( nByte<=pcache1.szSlot && pcache1.pFree ){
    assert( pcache1.isInit );
    p = (PgHdr1 *)pcache1.pFree;
    pcache1.pFree = pcache1.pFree->pNext;
    pcache1.nFreeSlot--;
    assert( pcache1.nFreeSlot>=0 );
    sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
  }else{

    /* Allocate a new buffer using sqlite3Malloc. Before doing so, exit the
    ** global pcache mutex and unlock the pager-cache object pCache. This is 
    ** so that if the attempt to allocate a new buffer causes the the 
    ** configured soft-heap-limit to be breached, it will be possible to
    ** reclaim memory from this pager-cache.
    */
    pcache1LeaveMutex();
    p = sqlite3Malloc(nByte);
    pcache1EnterMutex();
    if( p ){
      int sz = sqlite3MallocSize(p);
      sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
    }
    sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
  }
  return p;
}
Beispiel #12
0
/* Finish the work of sqlite3DbMallocRawNN for the unusual and
** slower case when the allocation cannot be fulfilled using lookaside.
*/
static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){
  void *p;
  assert( db!=0 );
  p = sqlite3Malloc(n);
  if( !p ) sqlite3OomFault(db);
  sqlite3MemdebugSetType(p, 
         (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
  return p;
}
Beispiel #13
0
static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){
  void *p = sqlite3Malloc(n);
  if( !p && db ){
    db->mallocFailed = 1;
  }
  sqlite3MemdebugSetType(p, 
         (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
  return p;
}
/*
** Allocate memory that is to be used and released right away.
** This routine is similar to alloca() in that it is not intended
** for situations where the memory might be held long-term.  This
** routine is intended to get memory to old large transient data
** structures that would not normally fit on the stack of an
** embedded processor.
*/
void *sqlite3ScratchMalloc(int n){
  void *p;
  assert( n>0 );

#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
  /* Verify that no more than two scratch allocation per thread
  ** is outstanding at one time.  (This is only checked in the
  ** single-threaded case since checking in the multi-threaded case
  ** would be much more complicated.) */
  assert( scratchAllocOut<=1 );
#endif

  if( sqlite3GlobalConfig.szScratch<n ){
    goto scratch_overflow;
  }else{  
    sqlite3_mutex_enter(mem0.mutex);
    if( mem0.nScratchFree==0 ){
      sqlite3_mutex_leave(mem0.mutex);
      goto scratch_overflow;
    }else{
      int i;
      i = mem0.aScratchFree[--mem0.nScratchFree];
      i *= sqlite3GlobalConfig.szScratch;
      sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
      sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
      sqlite3_mutex_leave(mem0.mutex);
      p = (void*)&((char*)sqlite3GlobalConfig.pScratch)[i];
      assert(  (((u8*)p - (u8*)0) & 7)==0 );
    }
  }
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
  scratchAllocOut = p!=0;
#endif

  return p;

scratch_overflow:
  if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
    n = mallocWithAlarm(n, &p);
    if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    p = sqlite3GlobalConfig.m.xMalloc(n);
  }
  sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
  scratchAllocOut = p!=0;
#endif
  return p;    
}
/*
** Free memory that might be associated with a particular database
** connection.
*/
void sqlite3DbFree(sqlite3 *db, void *p){
  assert( db==0 || sqlite3_mutex_held(db->mutex) );
  if( isLookaside(db, p) ){
    LookasideSlot *pBuf = (LookasideSlot*)p;
    pBuf->pNext = db->lookaside.pFree;
    db->lookaside.pFree = pBuf;
    db->lookaside.nOut--;
  }else{
    assert( sqlite3MemdebugHasType(p, MEMTYPE_DB|MEMTYPE_HEAP) );
    sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
    sqlite3_free(p);
  }
}
void sqlite3ScratchFree(void *p){
  if( p ){

#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
    /* Verify that no more than two scratch allocation per thread
    ** is outstanding at one time.  (This is only checked in the
    ** single-threaded case since checking in the multi-threaded case
    ** would be much more complicated.) */
    assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
    scratchAllocOut--;
#endif

    if( SQLITE_WITHIN(p, sqlite3GlobalConfig.pScratch, mem0.pScratchEnd) ){
      /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
      ScratchFreeslot *pSlot;
      pSlot = (ScratchFreeslot*)p;
      sqlite3_mutex_enter(mem0.mutex);
      pSlot->pNext = mem0.pScratchFree;
      mem0.pScratchFree = pSlot;
      mem0.nScratchFree++;
      assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
      sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1);
      sqlite3_mutex_leave(mem0.mutex);
    }else{
      /* Release memory back to the heap */
      assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
      assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      if( sqlite3GlobalConfig.bMemstat ){
        int iSize = sqlite3MallocSize(p);
        sqlite3_mutex_enter(mem0.mutex);
        sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize);
        sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize);
        sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
        sqlite3GlobalConfig.m.xFree(p);
        sqlite3_mutex_leave(mem0.mutex);
      }else{
        sqlite3GlobalConfig.m.xFree(p);
      }
    }
  }
}
Beispiel #17
0
/*
** Free an allocated buffer obtained from pcache1Alloc().
*/
static void pcache1Free(void *p){
  assert( sqlite3_mutex_held(pcache1.mutex) );
  if( p==0 ) return;
  if( p>=pcache1.pStart && p<pcache1.pEnd ){
    PgFreeslot *pSlot;
    sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
    pSlot = (PgFreeslot*)p;
    pSlot->pNext = pcache1.pFree;
    pcache1.pFree = pSlot;
    pcache1.nFreeSlot++;
    assert( pcache1.nFreeSlot<=pcache1.nSlot );
  }else{
    int iSize;
    assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
    sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
    iSize = sqlite3MallocSize(p);
    sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
    sqlite3_free(p);
  }
}
Beispiel #18
0
void sqlite3DbFree(sqlite3 *db, void *p){
  assert( db==0 || sqlite3_mutex_held(db->mutex) );
  if( db ){
    if( db->pnBytesFreed ){
      *db->pnBytesFreed += sqlite3DbMallocSize(db, p);
      return;
    }
    if( isLookaside(db, p) ){
      LookasideSlot *pBuf = (LookasideSlot*)p;
      pBuf->pNext = db->lookaside.pFree;
      db->lookaside.pFree = pBuf;
      db->lookaside.nOut--;
      return;
    }
  }
  assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
  assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
  assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
  sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
  sqlite3_free(p);
}
void sqlite3ScratchFree(void *p){
  if( p ){
    if( sqlite3GlobalConfig.pScratch==0
           || p<sqlite3GlobalConfig.pScratch
           || p>=(void*)mem0.aScratchFree ){
      assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      if( sqlite3GlobalConfig.bMemstat ){
        int iSize = sqlite3MallocSize(p);
        sqlite3_mutex_enter(mem0.mutex);
        sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
        sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
        sqlite3GlobalConfig.m.xFree(p);
        sqlite3_mutex_leave(mem0.mutex);
      }else{
        sqlite3GlobalConfig.m.xFree(p);
      }
    }else{
      int i;
      i = (int)((u8*)p - (u8*)sqlite3GlobalConfig.pScratch);
      i /= sqlite3GlobalConfig.szScratch;
      assert( i>=0 && i<sqlite3GlobalConfig.nScratch );
      sqlite3_mutex_enter(mem0.mutex);
      assert( mem0.nScratchFree<(u32)sqlite3GlobalConfig.nScratch );
      mem0.aScratchFree[mem0.nScratchFree++] = i;
      sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
      sqlite3_mutex_leave(mem0.mutex);

#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
    /* Verify that no more than two scratch allocation per thread
    ** is outstanding at one time.  (This is only checked in the
    ** single-threaded case since checking in the multi-threaded case
    ** would be much more complicated.) */
    assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
    scratchAllocOut = 0;
#endif

    }
  }
}
/*
** Allocate and zero memory.  If the allocation fails, make
** the mallocFailed flag in the connection pointer.
**
** If db!=0 and db->mallocFailed is true (indicating a prior malloc
** failure on the same database connection) then always return 0.
** Hence for a particular database connection, once malloc starts
** failing, it fails consistently until mallocFailed is reset.
** This is an important assumption.  There are many places in the
** code that do things like this:
**
**         int *a = (int*)sqlite3DbMallocRaw(db, 100);
**         int *b = (int*)sqlite3DbMallocRaw(db, 200);
**         if( b ) a[10] = 9;
**
** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
** that all prior mallocs (ex: "a") worked too.
*/
void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
  void *p;
  assert( db==0 || sqlite3_mutex_held(db->mutex) );
  assert( db==0 || db->pnBytesFreed==0 );
#ifndef SQLITE_OMIT_LOOKASIDE
  if( db ){
    LookasideSlot *pBuf;
    if( db->mallocFailed ){
      return 0;
    }
    if( db->lookaside.bEnabled ){
      if( n>db->lookaside.sz ){
        db->lookaside.anStat[1]++;
      }else if( (pBuf = db->lookaside.pFree)==0 ){
        db->lookaside.anStat[2]++;
      }else{
        db->lookaside.pFree = pBuf->pNext;
        db->lookaside.nOut++;
        db->lookaside.anStat[0]++;
        if( db->lookaside.nOut>db->lookaside.mxOut ){
          db->lookaside.mxOut = db->lookaside.nOut;
        }
        return (void*)pBuf;
      }
    }
  }
#else
  if( db && db->mallocFailed ){
    return 0;
  }
#endif
  p = sqlite3Malloc(n);
  if( !p && db ){
    db->mallocFailed = 1;
  }
  sqlite3MemdebugSetType(p, 
         (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
  return p;
}
Beispiel #21
0
void sqlite3ScratchFree(void *p){
  if( p ){

#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
    assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
    scratchAllocOut--;
#endif

    if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){
      
      ScratchFreeslot *pSlot;
      pSlot = (ScratchFreeslot*)p;
      sqlite3_mutex_enter(mem0.mutex);
      pSlot->pNext = mem0.pScratchFree;
      mem0.pScratchFree = pSlot;
      mem0.nScratchFree++;
      assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
      sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
      sqlite3_mutex_leave(mem0.mutex);
    }else{
      
      assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
      assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      if( sqlite3GlobalConfig.bMemstat ){
        int iSize = sqlite3MallocSize(p);
        sqlite3_mutex_enter(mem0.mutex);
        sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
        sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
        sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
        sqlite3GlobalConfig.m.xFree(p);
        sqlite3_mutex_leave(mem0.mutex);
      }else{
        sqlite3GlobalConfig.m.xFree(p);
      }
    }
  }
}
Beispiel #22
0
/*
** Allocate memory that is to be used and released right away.
** This routine is similar to alloca() in that it is not intended
** for situations where the memory might be held long-term.  This
** routine is intended to get memory to old large transient data
** structures that would not normally fit on the stack of an
** embedded processor.
*/
void *sqlite3ScratchMalloc(int n){
  void *p;
  assert( n>0 );

  sqlite3_mutex_enter(mem0.mutex);
  if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
    p = mem0.pScratchFree;
    mem0.pScratchFree = mem0.pScratchFree->pNext;
    mem0.nScratchFree--;
    sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
    sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    if( sqlite3GlobalConfig.bMemstat ){
      sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
      n = mallocWithAlarm(n, &p);
      if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
      sqlite3_mutex_leave(mem0.mutex);
    }else{
      sqlite3_mutex_leave(mem0.mutex);
      p = sqlite3GlobalConfig.m.xMalloc(n);
    }
    sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
  }
  assert( sqlite3_mutex_notheld(mem0.mutex) );


#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
  /* Verify that no more than two scratch allocations per thread
  ** are outstanding at one time.  (This is only checked in the
  ** single-threaded case since checking in the multi-threaded case
  ** would be much more complicated.) */
  assert( scratchAllocOut<=1 );
  if( p ) scratchAllocOut++;
#endif

  return p;
}
/*
** Allocate memory that is to be used and released right away.
** This routine is similar to alloca() in that it is not intended
** for situations where the memory might be held long-term.  This
** routine is intended to get memory to old large transient data
** structures that would not normally fit on the stack of an
** embedded processor.
*/
void *sqlite3ScratchMalloc(int n){
  void *p;
  assert( n>0 );

  sqlite3_mutex_enter(mem0.mutex);
  sqlite3StatusHighwater(SQLITE_STATUS_SCRATCH_SIZE, n);
  if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
    p = mem0.pScratchFree;
    mem0.pScratchFree = mem0.pScratchFree->pNext;
    mem0.nScratchFree--;
    sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    sqlite3_mutex_leave(mem0.mutex);
    p = sqlite3Malloc(n);
    if( sqlite3GlobalConfig.bMemstat && p ){
      sqlite3_mutex_enter(mem0.mutex);
      sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p));
      sqlite3_mutex_leave(mem0.mutex);
    }
    sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
  }
  assert( sqlite3_mutex_notheld(mem0.mutex) );


#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
  /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch
  ** buffers per thread.
  **
  ** This can only be checked in single-threaded mode.
  */
  assert( scratchAllocOut==0 );
  if( p ) scratchAllocOut++;
#endif

  return p;
}