Beispiel #1
0
void srslte_sync_free(srslte_sync_t *q) {
  if (q) {
    srslte_pss_synch_free(&q->pss);     
    srslte_sss_synch_free(&q->sss);  
    srslte_cfo_free(&q->cfocorr);
    srslte_cp_synch_free(&q->cp_synch);
    for (int i=0;i<2;i++) {
      if (q->cfo_i_corr[i]) {
        free(q->cfo_i_corr[i]);
      }
      srslte_pss_synch_free(&q->pss_i[i]);
    }
  }
}
Beispiel #2
0
void srslte_sync_free(srslte_sync_t *q) {
  if (q) {
    srslte_pss_synch_free(&q->pss);     
    srslte_sss_synch_free(&q->sss);  
    srslte_cfo_free(&q->cfocorr);
  }
}
Beispiel #3
0
/* the gateway function */
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{

  srslte_cell_t cell; 
  srslte_pss_synch_t pss; 
  cf_t *input_symbols;
  int frame_len; 
  
  if (nrhs < NOF_INPUTS) {
    help();
    return;
  }
    
  srslte_use_standard_symbol_size(true);  
    
  if (mexutils_read_cell(ENBCFG, &cell)) {
    help();
    return;
  }
  
  /* Allocate input buffers */
  frame_len = mexutils_read_cf(INPUT, &input_symbols);
  if (frame_len < 0) {
    mexErrMsgTxt("Error reading input symbols\n");
    return;
  }
  
  if (nrhs == NOF_INPUTS+1) {
    frame_len = (int) mxGetScalar(prhs[NOF_INPUTS]);
  }
  
  if (srslte_pss_synch_init_fft(&pss, frame_len, srslte_symbol_sz(cell.nof_prb))) {
    fprintf(stderr, "Error initiating PSS\n");
    exit(-1);
  }
  if (srslte_pss_synch_set_N_id_2(&pss, cell.id%3)) {
    fprintf(stderr, "Error setting N_id_2=%d\n",cell.id%3);
    exit(-1);
  }
  srslte_pss_synch_set_ema_alpha(&pss, 1.0);     
      
  int peak_idx = srslte_pss_synch_find_pss(&pss, input_symbols, NULL);

  if (nlhs >= 1) { 
    plhs[0] = mxCreateDoubleScalar(peak_idx);
  }
  if (nlhs >= 2) {
    mexutils_write_cf(pss.conv_output, &plhs[1], frame_len, 1);  
  }
    
  srslte_pss_synch_free(&pss);
  free(input_symbols);

  return;
}
Beispiel #4
0
/* Initializes the PSS synchronization object. 
 * 
 * It correlates a signal of frame_size samples with the PSS sequence in the frequency 
 * domain. The PSS sequence is transformed using fft_size samples. 
 */
int srslte_pss_synch_init_fft_offset(srslte_pss_synch_t *q, uint32_t frame_size, uint32_t fft_size, int offset) {
  int ret = SRSLTE_ERROR_INVALID_INPUTS;
    
  if (q != NULL) {
  
    uint32_t N_id_2; 
    uint32_t buffer_size; 
    bzero(q, sizeof(srslte_pss_synch_t));
    
    q->N_id_2 = 10;
    q->fft_size = fft_size;
    q->frame_size = frame_size;
    q->ema_alpha = 0.1; 

    buffer_size = fft_size + frame_size + 1;
        
    if (srslte_dft_plan(&q->dftp_input, fft_size, SRSLTE_DFT_FORWARD, SRSLTE_DFT_COMPLEX)) {
      fprintf(stderr, "Error creating DFT plan \n");
      goto clean_and_exit;
    }
    srslte_dft_plan_set_mirror(&q->dftp_input, true);
    srslte_dft_plan_set_dc(&q->dftp_input, true);
    srslte_dft_plan_set_norm(&q->dftp_input, true);

    q->tmp_input = srslte_vec_malloc(buffer_size * sizeof(cf_t));
    if (!q->tmp_input) {
      fprintf(stderr, "Error allocating memory\n");
      goto clean_and_exit;
    }

    bzero(&q->tmp_input[q->frame_size], q->fft_size * sizeof(cf_t));

    q->conv_output = srslte_vec_malloc(buffer_size * sizeof(cf_t));
    if (!q->conv_output) {
      fprintf(stderr, "Error allocating memory\n");
      goto clean_and_exit;
    }
    bzero(q->conv_output, sizeof(cf_t) * buffer_size);
    q->conv_output_avg = srslte_vec_malloc(buffer_size * sizeof(float));
    if (!q->conv_output_avg) {
      fprintf(stderr, "Error allocating memory\n");
      goto clean_and_exit;
    }
    bzero(q->conv_output_avg, sizeof(float) * buffer_size);
#ifdef SRSLTE_PSS_ACCUMULATE_ABS
    q->conv_output_abs = srslte_vec_malloc(buffer_size * sizeof(float));
    if (!q->conv_output_abs) {
      fprintf(stderr, "Error allocating memory\n");
      goto clean_and_exit;
    }
    bzero(q->conv_output_abs, sizeof(float) * buffer_size);
#endif
    
    for (N_id_2=0;N_id_2<3;N_id_2++) {
      q->pss_signal_time[N_id_2] = srslte_vec_malloc(buffer_size * sizeof(cf_t));
      if (!q->pss_signal_time[N_id_2]) {
        fprintf(stderr, "Error allocating memory\n");
        goto clean_and_exit;
      }
      /* The PSS is translated into the time domain for each N_id_2  */
      if (srslte_pss_synch_init_N_id_2(q->pss_signal_freq[N_id_2], q->pss_signal_time[N_id_2], N_id_2, fft_size, offset)) {
        fprintf(stderr, "Error initiating PSS detector for N_id_2=%d fft_size=%d\n", N_id_2, fft_size);
        goto clean_and_exit;
      }      
      bzero(&q->pss_signal_time[N_id_2][q->fft_size], q->frame_size * sizeof(cf_t));

    }    
    #ifdef CONVOLUTION_FFT
    if (srslte_conv_fft_cc_init(&q->conv_fft, frame_size, fft_size)) {
      fprintf(stderr, "Error initiating convolution FFT\n");
      goto clean_and_exit;
    }
    #endif
    
    srslte_pss_synch_reset(q);
    
    ret = SRSLTE_SUCCESS;
  }

clean_and_exit: 
  if (ret == SRSLTE_ERROR) {
    srslte_pss_synch_free(q);
  }
  return ret;
}
Beispiel #5
0
int main(int argc, char **argv) {
  cf_t *buffer; 
  int frame_cnt, n; 
  void *uhd;
  srslte_pss_synch_t pss; 
  srslte_cfo_t cfocorr, cfocorr64; 
  srslte_sss_synch_t sss; 
  int32_t flen; 
  int peak_idx, last_peak;
  float peak_value; 
  float mean_peak; 
  uint32_t nof_det, nof_nodet, nof_nopeak, nof_nopeakdet;
  cf_t ce[SRSLTE_PSS_LEN]; 
  
  parse_args(argc, argv);

  if (N_id_2_sync == -1) {
    N_id_2_sync = cell_id%3;
  }
  uint32_t N_id_2 = cell_id%3;
  uint32_t N_id_1 = cell_id/3;

#ifndef DISABLE_GRAPHICS
  if (!disable_plots)
    init_plots();
#endif

  float srate = 15000.0*fft_size; 
  
  flen = srate*5/1000;

  printf("Opening UHD device...\n");
  if (cuhd_open(uhd_args, &uhd)) {
    fprintf(stderr, "Error opening uhd\n");
    exit(-1);
  }
  
  if (srate < 10e6) {
    cuhd_set_master_clock_rate(uhd, 4*srate);        
  } else {
    cuhd_set_master_clock_rate(uhd, srate);        
  }

  printf("Set RX rate: %.2f MHz\n", cuhd_set_rx_srate(uhd, srate) / 1000000);
  printf("Set RX gain: %.1f dB\n", cuhd_set_rx_gain(uhd, uhd_gain));
  printf("Set RX freq: %.2f MHz\n", cuhd_set_rx_freq(uhd, uhd_freq) / 1000000);
  cuhd_rx_wait_lo_locked(uhd);
  
  buffer = malloc(sizeof(cf_t) * flen * 2);
  if (!buffer) {
    perror("malloc");
    exit(-1);
  }
    
  if (srslte_pss_synch_init_fft(&pss, flen, fft_size)) {
    fprintf(stderr, "Error initiating PSS\n");
    exit(-1);
  }

  if (srslte_pss_synch_set_N_id_2(&pss, N_id_2_sync)) {
    fprintf(stderr, "Error setting N_id_2=%d\n",N_id_2_sync);
    exit(-1);
  }
  
  srslte_cfo_init(&cfocorr, flen); 
  srslte_cfo_init(&cfocorr64, flen); 
 
  if (srslte_sss_synch_init(&sss, fft_size)) {
    fprintf(stderr, "Error initializing SSS object\n");
    return SRSLTE_ERROR;
  }

  srslte_sss_synch_set_N_id_2(&sss, N_id_2);

  printf("N_id_2: %d\n", N_id_2);  

  cuhd_start_rx_stream(uhd);
  
  printf("Frame length %d samples\n", flen);
  printf("PSS detection threshold: %.2f\n", threshold);
  
  nof_det = nof_nodet = nof_nopeak = nof_nopeakdet = 0;
  frame_cnt = 0;
  last_peak = 0; 
  mean_peak = 0;
  int peak_offset = 0;
  float cfo; 
  float mean_cfo = 0; 
  uint32_t m0, m1; 
  uint32_t sss_error1 = 0, sss_error2 = 0, sss_error3 = 0; 
  uint32_t cp_is_norm = 0; 
  
  srslte_sync_t ssync; 
  bzero(&ssync, sizeof(srslte_sync_t));
  ssync.fft_size = fft_size;
  
  while(frame_cnt < nof_frames || nof_frames == -1) {
    n = cuhd_recv(uhd, buffer, flen - peak_offset, 1);
    if (n < 0) {
      fprintf(stderr, "Error receiving samples\n");
      exit(-1);
    }
    
    peak_idx = srslte_pss_synch_find_pss(&pss, buffer, &peak_value);
    if (peak_idx < 0) {
      fprintf(stderr, "Error finding PSS peak\n");
      exit(-1);
    }
        
    mean_peak = SRSLTE_VEC_CMA(peak_value, mean_peak, frame_cnt);
    
    if (peak_value >= threshold) {
      nof_det++;
        
      if (peak_idx >= fft_size) {

        // Estimate CFO 
        cfo = srslte_pss_synch_cfo_compute(&pss, &buffer[peak_idx-fft_size]);
        mean_cfo = SRSLTE_VEC_CMA(cfo, mean_cfo, frame_cnt);        

        // Correct CFO
        srslte_cfo_correct(&cfocorr, buffer, buffer, -mean_cfo / fft_size);               

        // Estimate channel
        if (srslte_pss_synch_chest(&pss, &buffer[peak_idx-fft_size], ce)) {
          fprintf(stderr, "Error computing channel estimation\n");
          exit(-1);
        }
        
        // Find SSS 
        int sss_idx = peak_idx-2*fft_size-(SRSLTE_CP_ISNORM(cp)?SRSLTE_CP_LEN(fft_size, SRSLTE_CP_NORM_LEN):SRSLTE_CP_LEN(fft_size, SRSLTE_CP_EXT_LEN));             
        if (sss_idx >= 0 && sss_idx < flen-fft_size) {
          srslte_sss_synch_m0m1_partial(&sss, &buffer[sss_idx], 3, NULL, &m0, &m0_value, &m1, &m1_value);
          if (srslte_sss_synch_N_id_1(&sss, m0, m1) != N_id_1) {
            sss_error2++;            
          }
          INFO("Partial N_id_1: %d\n", srslte_sss_synch_N_id_1(&sss, m0, m1));
          srslte_sss_synch_m0m1_diff(&sss, &buffer[sss_idx], &m0, &m0_value, &m1, &m1_value);
          if (srslte_sss_synch_N_id_1(&sss, m0, m1) != N_id_1) {
            sss_error3++;            
          }
          INFO("Diff N_id_1: %d\n", srslte_sss_synch_N_id_1(&sss, m0, m1));
          srslte_sss_synch_m0m1_partial(&sss, &buffer[sss_idx], 1, NULL, &m0, &m0_value, &m1, &m1_value);
          if (srslte_sss_synch_N_id_1(&sss, m0, m1) != N_id_1) {
            sss_error1++;     
          }
          INFO("Full N_id_1: %d\n", srslte_sss_synch_N_id_1(&sss, m0, m1));
        }
        
        // Estimate CP 
        if (peak_idx > 2*(fft_size + SRSLTE_CP_LEN_EXT(fft_size))) {
          srslte_cp_t cp = srslte_sync_detect_cp(&ssync, buffer, peak_idx);
          if (SRSLTE_CP_ISNORM(cp)) {
            cp_is_norm++; 
          }          
        }
        
      } else {
        INFO("No space for CFO computation. Frame starts at \n",peak_idx);
      }
      
      if(srslte_sss_synch_subframe(m0,m1) == 0)
      {
#ifndef DISABLE_GRAPHICS
          if (!disable_plots)
            do_plots_sss(sss.corr_output_m0, sss.corr_output_m1);
#endif
      }
      
    } else {
      nof_nodet++;
    }

    if (frame_cnt > 100) {
      if (abs(last_peak-peak_idx) > 4) {
        if (peak_value >= threshold) {
          nof_nopeakdet++;
        } 
        nof_nopeak++;                  
      } 
    }
    
    frame_cnt++;
   
    printf("[%5d]: Pos: %5d, PSR: %4.1f (~%4.1f) Pdet: %4.2f, "
           "FA: %4.2f, CFO: %+4.1f KHz SSSmiss: %4.2f/%4.2f/%4.2f CPNorm: %.0f%%\r", 
           frame_cnt, 
           peak_idx, 
           peak_value, mean_peak,
           (float) nof_det/frame_cnt, 
           (float) nof_nopeakdet/frame_cnt, mean_cfo*15, 
           (float) sss_error1/nof_det,(float) sss_error2/nof_det,(float) sss_error3/nof_det,
           (float) cp_is_norm/nof_det * 100);
    
    if (SRSLTE_VERBOSE_ISINFO()) {
      printf("\n");
    }
  
#ifndef DISABLE_GRAPHICS
    if (!disable_plots)
      do_plots(pss.conv_output_avg, pss.conv_output_avg[peak_idx], pss.fft_size+pss.frame_size-1, ce);
#endif

    last_peak = peak_idx;

  }
  
  srslte_pss_synch_free(&pss);
  free(buffer);
  cuhd_close(uhd);

  printf("Ok\n");
  exit(0);
}