Beispiel #1
0
/* Subroutine */ int ssygst_(integer *itype, char *uplo, integer *n, real *a, 
	integer *lda, real *b, integer *ldb, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;

    /* Local variables */
    integer k, kb, nb;
    extern logical lsame_(char *, char *);
    logical upper;
    extern /* Subroutine */ int strmm_(char *, char *, char *, char *, 
	    integer *, integer *, real *, real *, integer *, real *, integer *
), ssymm_(char *, char *, integer 
	    *, integer *, real *, real *, integer *, real *, integer *, real *
, real *, integer *), strsm_(char *, char *, char 
	    *, char *, integer *, integer *, real *, real *, integer *, real *
, integer *), ssygs2_(integer *, 
	    char *, integer *, real *, integer *, real *, integer *, integer *
), ssyr2k_(char *, char *, integer *, integer *, real *, 
	    real *, integer *, real *, integer *, real *, real *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SSYGST reduces a real symmetric-definite generalized eigenproblem */
/*  to standard form. */

/*  If ITYPE = 1, the problem is A*x = lambda*B*x, */
/*  and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T) */

/*  If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or */
/*  B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L. */

/*  B must have been previously factorized as U**T*U or L*L**T by SPOTRF. */

/*  Arguments */
/*  ========= */

/*  ITYPE   (input) INTEGER */
/*          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T); */
/*          = 2 or 3: compute U*A*U**T or L**T*A*L. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored and B is factored as */
/*                  U**T*U; */
/*          = 'L':  Lower triangle of A is stored and B is factored as */
/*                  L*L**T. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B.  N >= 0. */

/*  A       (input/output) REAL array, dimension (LDA,N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
/*          N-by-N upper triangular part of A contains the upper */
/*          triangular part of the matrix A, and the strictly lower */
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
/*          leading N-by-N lower triangular part of A contains the lower */
/*          triangular part of the matrix A, and the strictly upper */
/*          triangular part of A is not referenced. */

/*          On exit, if INFO = 0, the transformed matrix, stored in the */
/*          same format as A. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  B       (input) REAL array, dimension (LDB,N) */
/*          The triangular factor from the Cholesky factorization of B, */
/*          as returned by SPOTRF. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (*itype < 1 || *itype > 3) {
	*info = -1;
    } else if (! upper && ! lsame_(uplo, "L")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSYGST", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine the block size for this environment. */

    nb = ilaenv_(&c__1, "SSYGST", uplo, n, &c_n1, &c_n1, &c_n1);

    if (nb <= 1 || nb >= *n) {

/*        Use unblocked code */

	ssygs2_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
    } else {

/*        Use blocked code */

	if (*itype == 1) {
	    if (upper) {

/*              Compute inv(U')*A*inv(U) */

		i__1 = *n;
		i__2 = nb;
		for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
/* Computing MIN */
		    i__3 = *n - k + 1;
		    kb = min(i__3,nb);

/*                 Update the upper triangle of A(k:n,k:n) */

		    ssygs2_(itype, uplo, &kb, &a[k + k * a_dim1], lda, &b[k + 
			    k * b_dim1], ldb, info);
		    if (k + kb <= *n) {
			i__3 = *n - k - kb + 1;
			strsm_("Left", uplo, "Transpose", "Non-unit", &kb, &
				i__3, &c_b14, &b[k + k * b_dim1], ldb, &a[k + 
				(k + kb) * a_dim1], lda);
			i__3 = *n - k - kb + 1;
			ssymm_("Left", uplo, &kb, &i__3, &c_b16, &a[k + k * 
				a_dim1], lda, &b[k + (k + kb) * b_dim1], ldb, 
				&c_b14, &a[k + (k + kb) * a_dim1], lda);
			i__3 = *n - k - kb + 1;
			ssyr2k_(uplo, "Transpose", &i__3, &kb, &c_b19, &a[k + 
				(k + kb) * a_dim1], lda, &b[k + (k + kb) * 
				b_dim1], ldb, &c_b14, &a[k + kb + (k + kb) * 
				a_dim1], lda);
			i__3 = *n - k - kb + 1;
			ssymm_("Left", uplo, &kb, &i__3, &c_b16, &a[k + k * 
				a_dim1], lda, &b[k + (k + kb) * b_dim1], ldb, 
				&c_b14, &a[k + (k + kb) * a_dim1], lda);
			i__3 = *n - k - kb + 1;
			strsm_("Right", uplo, "No transpose", "Non-unit", &kb, 
				 &i__3, &c_b14, &b[k + kb + (k + kb) * b_dim1]
, ldb, &a[k + (k + kb) * a_dim1], lda);
		    }
/* L10: */
		}
	    } else {

/*              Compute inv(L)*A*inv(L') */

		i__2 = *n;
		i__1 = nb;
		for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
/* Computing MIN */
		    i__3 = *n - k + 1;
		    kb = min(i__3,nb);

/*                 Update the lower triangle of A(k:n,k:n) */

		    ssygs2_(itype, uplo, &kb, &a[k + k * a_dim1], lda, &b[k + 
			    k * b_dim1], ldb, info);
		    if (k + kb <= *n) {
			i__3 = *n - k - kb + 1;
			strsm_("Right", uplo, "Transpose", "Non-unit", &i__3, 
				&kb, &c_b14, &b[k + k * b_dim1], ldb, &a[k + 
				kb + k * a_dim1], lda);
			i__3 = *n - k - kb + 1;
			ssymm_("Right", uplo, &i__3, &kb, &c_b16, &a[k + k * 
				a_dim1], lda, &b[k + kb + k * b_dim1], ldb, &
				c_b14, &a[k + kb + k * a_dim1], lda);
			i__3 = *n - k - kb + 1;
			ssyr2k_(uplo, "No transpose", &i__3, &kb, &c_b19, &a[
				k + kb + k * a_dim1], lda, &b[k + kb + k * 
				b_dim1], ldb, &c_b14, &a[k + kb + (k + kb) * 
				a_dim1], lda);
			i__3 = *n - k - kb + 1;
			ssymm_("Right", uplo, &i__3, &kb, &c_b16, &a[k + k * 
				a_dim1], lda, &b[k + kb + k * b_dim1], ldb, &
				c_b14, &a[k + kb + k * a_dim1], lda);
			i__3 = *n - k - kb + 1;
			strsm_("Left", uplo, "No transpose", "Non-unit", &
				i__3, &kb, &c_b14, &b[k + kb + (k + kb) * 
				b_dim1], ldb, &a[k + kb + k * a_dim1], lda);
		    }
/* L20: */
		}
	    }
	} else {
	    if (upper) {

/*              Compute U*A*U' */

		i__1 = *n;
		i__2 = nb;
		for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
/* Computing MIN */
		    i__3 = *n - k + 1;
		    kb = min(i__3,nb);

/*                 Update the upper triangle of A(1:k+kb-1,1:k+kb-1) */

		    i__3 = k - 1;
		    strmm_("Left", uplo, "No transpose", "Non-unit", &i__3, &
			    kb, &c_b14, &b[b_offset], ldb, &a[k * a_dim1 + 1], 
			     lda)
			    ;
		    i__3 = k - 1;
		    ssymm_("Right", uplo, &i__3, &kb, &c_b52, &a[k + k * 
			    a_dim1], lda, &b[k * b_dim1 + 1], ldb, &c_b14, &a[
			    k * a_dim1 + 1], lda);
		    i__3 = k - 1;
		    ssyr2k_(uplo, "No transpose", &i__3, &kb, &c_b14, &a[k * 
			    a_dim1 + 1], lda, &b[k * b_dim1 + 1], ldb, &c_b14, 
			     &a[a_offset], lda);
		    i__3 = k - 1;
		    ssymm_("Right", uplo, &i__3, &kb, &c_b52, &a[k + k * 
			    a_dim1], lda, &b[k * b_dim1 + 1], ldb, &c_b14, &a[
			    k * a_dim1 + 1], lda);
		    i__3 = k - 1;
		    strmm_("Right", uplo, "Transpose", "Non-unit", &i__3, &kb, 
			     &c_b14, &b[k + k * b_dim1], ldb, &a[k * a_dim1 + 
			    1], lda);
		    ssygs2_(itype, uplo, &kb, &a[k + k * a_dim1], lda, &b[k + 
			    k * b_dim1], ldb, info);
/* L30: */
		}
	    } else {

/*              Compute L'*A*L */

		i__2 = *n;
		i__1 = nb;
		for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
/* Computing MIN */
		    i__3 = *n - k + 1;
		    kb = min(i__3,nb);

/*                 Update the lower triangle of A(1:k+kb-1,1:k+kb-1) */

		    i__3 = k - 1;
		    strmm_("Right", uplo, "No transpose", "Non-unit", &kb, &
			    i__3, &c_b14, &b[b_offset], ldb, &a[k + a_dim1], 
			    lda);
		    i__3 = k - 1;
		    ssymm_("Left", uplo, &kb, &i__3, &c_b52, &a[k + k * 
			    a_dim1], lda, &b[k + b_dim1], ldb, &c_b14, &a[k + 
			    a_dim1], lda);
		    i__3 = k - 1;
		    ssyr2k_(uplo, "Transpose", &i__3, &kb, &c_b14, &a[k + 
			    a_dim1], lda, &b[k + b_dim1], ldb, &c_b14, &a[
			    a_offset], lda);
		    i__3 = k - 1;
		    ssymm_("Left", uplo, &kb, &i__3, &c_b52, &a[k + k * 
			    a_dim1], lda, &b[k + b_dim1], ldb, &c_b14, &a[k + 
			    a_dim1], lda);
		    i__3 = k - 1;
		    strmm_("Left", uplo, "Transpose", "Non-unit", &kb, &i__3, 
			    &c_b14, &b[k + k * b_dim1], ldb, &a[k + a_dim1], 
			    lda);
		    ssygs2_(itype, uplo, &kb, &a[k + k * a_dim1], lda, &b[k + 
			    k * b_dim1], ldb, info);
/* L40: */
		}
	    }
	}
    }
    return 0;

/*     End of SSYGST */

} /* ssygst_ */
Beispiel #2
0
/* Subroutine */ int ssygst_(integer *itype, char *uplo, integer *n, real *a, 
	integer *lda, real *b, integer *ldb, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    SSYGST reduces a real symmetric-definite generalized eigenproblem   
    to standard form.   

    If ITYPE = 1, the problem is A*x = lambda*B*x,   
    and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)   

    If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or   
    B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.   

    B must have been previously factorized as U**T*U or L*L**T by SPOTRF.   

    Arguments   
    =========   

    ITYPE   (input) INTEGER   
            = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);   
            = 2 or 3: compute U*A*U**T or L**T*A*L.   

    UPLO    (input) CHARACTER   
            = 'U':  Upper triangle of A is stored and B is factored as   
                    U**T*U;   
            = 'L':  Lower triangle of A is stored and B is factored as   
                    L*L**T.   

    N       (input) INTEGER   
            The order of the matrices A and B.  N >= 0.   

    A       (input/output) REAL array, dimension (LDA,N)   
            On entry, the symmetric matrix A.  If UPLO = 'U', the leading   
            N-by-N upper triangular part of A contains the upper   
            triangular part of the matrix A, and the strictly lower   
            triangular part of A is not referenced.  If UPLO = 'L', the   
            leading N-by-N lower triangular part of A contains the lower   
            triangular part of the matrix A, and the strictly upper   
            triangular part of A is not referenced.   

            On exit, if INFO = 0, the transformed matrix, stored in the   
            same format as A.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    B       (input) REAL array, dimension (LDB,N)   
            The triangular factor from the Cholesky factorization of B,   
            as returned by SPOTRF.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c_n1 = -1;
    static real c_b14 = 1.f;
    static real c_b16 = -.5f;
    static real c_b19 = -1.f;
    static real c_b52 = .5f;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
    /* Local variables */
    static integer k;
    extern logical lsame_(char *, char *);
    static logical upper;
    extern /* Subroutine */ int strmm_(char *, char *, char *, char *, 
	    integer *, integer *, real *, real *, integer *, real *, integer *
	    ), ssymm_(char *, char *, integer 
	    *, integer *, real *, real *, integer *, real *, integer *, real *
	    , real *, integer *), strsm_(char *, char *, char 
	    *, char *, integer *, integer *, real *, real *, integer *, real *
	    , integer *);
    static integer kb, nb;
    extern /* Subroutine */ int ssygs2_(integer *, char *, integer *, real *, 
	    integer *, real *, integer *, integer *), ssyr2k_(char *, 
	    char *, integer *, integer *, real *, real *, integer *, real *, 
	    integer *, real *, real *, integer *), xerbla_(
	    char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (*itype < 1 || *itype > 3) {
	*info = -1;
    } else if (! upper && ! lsame_(uplo, "L")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSYGST", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine the block size for this environment. */

    nb = ilaenv_(&c__1, "SSYGST", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);

    if (nb <= 1 || nb >= *n) {

/*        Use unblocked code */

	ssygs2_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
    } else {

/*        Use blocked code */

	if (*itype == 1) {
	    if (upper) {

/*              Compute inv(U')*A*inv(U) */

		i__1 = *n;
		i__2 = nb;
		for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
/* Computing MIN */
		    i__3 = *n - k + 1;
		    kb = min(i__3,nb);

/*                 Update the upper triangle of A(k:n,k:n) */

		    ssygs2_(itype, uplo, &kb, &a_ref(k, k), lda, &b_ref(k, k),
			     ldb, info);
		    if (k + kb <= *n) {
			i__3 = *n - k - kb + 1;
			strsm_("Left", uplo, "Transpose", "Non-unit", &kb, &
				i__3, &c_b14, &b_ref(k, k), ldb, &a_ref(k, k 
				+ kb), lda);
			i__3 = *n - k - kb + 1;
			ssymm_("Left", uplo, &kb, &i__3, &c_b16, &a_ref(k, k),
				 lda, &b_ref(k, k + kb), ldb, &c_b14, &a_ref(
				k, k + kb), lda);
			i__3 = *n - k - kb + 1;
			ssyr2k_(uplo, "Transpose", &i__3, &kb, &c_b19, &a_ref(
				k, k + kb), lda, &b_ref(k, k + kb), ldb, &
				c_b14, &a_ref(k + kb, k + kb), lda);
			i__3 = *n - k - kb + 1;
			ssymm_("Left", uplo, &kb, &i__3, &c_b16, &a_ref(k, k),
				 lda, &b_ref(k, k + kb), ldb, &c_b14, &a_ref(
				k, k + kb), lda);
			i__3 = *n - k - kb + 1;
			strsm_("Right", uplo, "No transpose", "Non-unit", &kb,
				 &i__3, &c_b14, &b_ref(k + kb, k + kb), ldb, &
				a_ref(k, k + kb), lda);
		    }
/* L10: */
		}
	    } else {

/*              Compute inv(L)*A*inv(L') */

		i__2 = *n;
		i__1 = nb;
		for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
/* Computing MIN */
		    i__3 = *n - k + 1;
		    kb = min(i__3,nb);

/*                 Update the lower triangle of A(k:n,k:n) */

		    ssygs2_(itype, uplo, &kb, &a_ref(k, k), lda, &b_ref(k, k),
			     ldb, info);
		    if (k + kb <= *n) {
			i__3 = *n - k - kb + 1;
			strsm_("Right", uplo, "Transpose", "Non-unit", &i__3, 
				&kb, &c_b14, &b_ref(k, k), ldb, &a_ref(k + kb,
				 k), lda);
			i__3 = *n - k - kb + 1;
			ssymm_("Right", uplo, &i__3, &kb, &c_b16, &a_ref(k, k)
				, lda, &b_ref(k + kb, k), ldb, &c_b14, &a_ref(
				k + kb, k), lda);
			i__3 = *n - k - kb + 1;
			ssyr2k_(uplo, "No transpose", &i__3, &kb, &c_b19, &
				a_ref(k + kb, k), lda, &b_ref(k + kb, k), ldb,
				 &c_b14, &a_ref(k + kb, k + kb), lda);
			i__3 = *n - k - kb + 1;
			ssymm_("Right", uplo, &i__3, &kb, &c_b16, &a_ref(k, k)
				, lda, &b_ref(k + kb, k), ldb, &c_b14, &a_ref(
				k + kb, k), lda);
			i__3 = *n - k - kb + 1;
			strsm_("Left", uplo, "No transpose", "Non-unit", &
				i__3, &kb, &c_b14, &b_ref(k + kb, k + kb), 
				ldb, &a_ref(k + kb, k), lda);
		    }
/* L20: */
		}
	    }
	} else {
	    if (upper) {

/*              Compute U*A*U' */

		i__1 = *n;
		i__2 = nb;
		for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
/* Computing MIN */
		    i__3 = *n - k + 1;
		    kb = min(i__3,nb);

/*                 Update the upper triangle of A(1:k+kb-1,1:k+kb-1) */

		    i__3 = k - 1;
		    strmm_("Left", uplo, "No transpose", "Non-unit", &i__3, &
			    kb, &c_b14, &b[b_offset], ldb, &a_ref(1, k), lda);
		    i__3 = k - 1;
		    ssymm_("Right", uplo, &i__3, &kb, &c_b52, &a_ref(k, k), 
			    lda, &b_ref(1, k), ldb, &c_b14, &a_ref(1, k), lda);
		    i__3 = k - 1;
		    ssyr2k_(uplo, "No transpose", &i__3, &kb, &c_b14, &a_ref(
			    1, k), lda, &b_ref(1, k), ldb, &c_b14, &a[
			    a_offset], lda);
		    i__3 = k - 1;
		    ssymm_("Right", uplo, &i__3, &kb, &c_b52, &a_ref(k, k), 
			    lda, &b_ref(1, k), ldb, &c_b14, &a_ref(1, k), lda);
		    i__3 = k - 1;
		    strmm_("Right", uplo, "Transpose", "Non-unit", &i__3, &kb,
			     &c_b14, &b_ref(k, k), ldb, &a_ref(1, k), lda);
		    ssygs2_(itype, uplo, &kb, &a_ref(k, k), lda, &b_ref(k, k),
			     ldb, info);
/* L30: */
		}
	    } else {

/*              Compute L'*A*L */

		i__2 = *n;
		i__1 = nb;
		for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
/* Computing MIN */
		    i__3 = *n - k + 1;
		    kb = min(i__3,nb);

/*                 Update the lower triangle of A(1:k+kb-1,1:k+kb-1) */

		    i__3 = k - 1;
		    strmm_("Right", uplo, "No transpose", "Non-unit", &kb, &
			    i__3, &c_b14, &b[b_offset], ldb, &a_ref(k, 1), 
			    lda);
		    i__3 = k - 1;
		    ssymm_("Left", uplo, &kb, &i__3, &c_b52, &a_ref(k, k), 
			    lda, &b_ref(k, 1), ldb, &c_b14, &a_ref(k, 1), lda);
		    i__3 = k - 1;
		    ssyr2k_(uplo, "Transpose", &i__3, &kb, &c_b14, &a_ref(k, 
			    1), lda, &b_ref(k, 1), ldb, &c_b14, &a[a_offset], 
			    lda);
		    i__3 = k - 1;
		    ssymm_("Left", uplo, &kb, &i__3, &c_b52, &a_ref(k, k), 
			    lda, &b_ref(k, 1), ldb, &c_b14, &a_ref(k, 1), lda);
		    i__3 = k - 1;
		    strmm_("Left", uplo, "Transpose", "Non-unit", &kb, &i__3, 
			    &c_b14, &b_ref(k, k), ldb, &a_ref(k, 1), lda);
		    ssygs2_(itype, uplo, &kb, &a_ref(k, k), lda, &b_ref(k, k),
			     ldb, info);
/* L40: */
		}
	    }
	}
    }
    return 0;

/*     End of SSYGST */

} /* ssygst_ */
Beispiel #3
0
/* Subroutine */ int ssytrd_(char *uplo, integer *n, real *a, integer *lda, 
	real *d__, real *e, real *tau, real *work, integer *lwork, integer *
	info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;

    /* Local variables */
    integer i__, j, nb, kk, nx, iws;
    integer nbmin, iinfo;
    logical upper;
    integer ldwork, lwkopt;
    logical lquery;

/*  -- LAPACK routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  SSYTRD reduces a real symmetric matrix A to real symmetric */
/*  tridiagonal form T by an orthogonal similarity transformation: */
/*  Q**T * A * Q = T. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) REAL array, dimension (LDA,N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
/*          N-by-N upper triangular part of A contains the upper */
/*          triangular part of the matrix A, and the strictly lower */
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
/*          leading N-by-N lower triangular part of A contains the lower */
/*          triangular part of the matrix A, and the strictly upper */
/*          triangular part of A is not referenced. */
/*          On exit, if UPLO = 'U', the diagonal and first superdiagonal */
/*          of A are overwritten by the corresponding elements of the */
/*          tridiagonal matrix T, and the elements above the first */
/*          superdiagonal, with the array TAU, represent the orthogonal */
/*          matrix Q as a product of elementary reflectors; if UPLO */
/*          = 'L', the diagonal and first subdiagonal of A are over- */
/*          written by the corresponding elements of the tridiagonal */
/*          matrix T, and the elements below the first subdiagonal, with */
/*          the array TAU, represent the orthogonal matrix Q as a product */
/*          of elementary reflectors. See Further Details. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  D       (output) REAL array, dimension (N) */
/*          The diagonal elements of the tridiagonal matrix T: */
/*          D(i) = A(i,i). */

/*  E       (output) REAL array, dimension (N-1) */
/*          The off-diagonal elements of the tridiagonal matrix T: */
/*          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */

/*  TAU     (output) REAL array, dimension (N-1) */
/*          The scalar factors of the elementary reflectors (see Further */
/*          Details). */

/*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= 1. */
/*          For optimum performance LWORK >= N*NB, where NB is the */
/*          optimal blocksize. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  If UPLO = 'U', the matrix Q is represented as a product of elementary */
/*  reflectors */

/*     Q = H(n-1) . . . H(2) H(1). */

/*  Each H(i) has the form */

/*     H(i) = I - tau * v * v' */

/*  where tau is a real scalar, and v is a real vector with */
/*  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in */
/*  A(1:i-1,i+1), and tau in TAU(i). */

/*  If UPLO = 'L', the matrix Q is represented as a product of elementary */
/*  reflectors */

/*     Q = H(1) H(2) . . . H(n-1). */

/*  Each H(i) has the form */

/*     H(i) = I - tau * v * v' */

/*  where tau is a real scalar, and v is a real vector with */
/*  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), */
/*  and tau in TAU(i). */

/*  The contents of A on exit are illustrated by the following examples */
/*  with n = 5: */

/*  if UPLO = 'U':                       if UPLO = 'L': */

/*    (  d   e   v2  v3  v4 )              (  d                  ) */
/*    (      d   e   v3  v4 )              (  e   d              ) */
/*    (          d   e   v4 )              (  v1  e   d          ) */
/*    (              d   e  )              (  v1  v2  e   d      ) */
/*    (                  d  )              (  v1  v2  v3  e   d  ) */

/*  where d and e denote diagonal and off-diagonal elements of T, and vi */
/*  denotes an element of the vector defining H(i). */

/*  ===================================================================== */

/*     Test the input parameters */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --d__;
    --e;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    lquery = *lwork == -1;
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*n)) {
	*info = -4;
    } else if (*lwork < 1 && ! lquery) {
	*info = -9;
    }

    if (*info == 0) {

/*        Determine the block size. */

	nb = ilaenv_(&c__1, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
	lwkopt = *n * nb;
	work[1] = (real) lwkopt;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSYTRD", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	work[1] = 1.f;
	return 0;
    }

    nx = *n;
    iws = 1;
    if (nb > 1 && nb < *n) {

/*        Determine when to cross over from blocked to unblocked code */
/*        (last block is always handled by unblocked code). */

/* Computing MAX */
	i__1 = nb, i__2 = ilaenv_(&c__3, "SSYTRD", uplo, n, &c_n1, &c_n1, &
		c_n1);
	nx = max(i__1,i__2);
	if (nx < *n) {

/*           Determine if workspace is large enough for blocked code. */

	    ldwork = *n;
	    iws = ldwork * nb;
	    if (*lwork < iws) {

/*              Not enough workspace to use optimal NB:  determine the */
/*              minimum value of NB, and reduce NB or force use of */
/*              unblocked code by setting NX = N. */

/* Computing MAX */
		i__1 = *lwork / ldwork;
		nb = max(i__1,1);
		nbmin = ilaenv_(&c__2, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
		if (nb < nbmin) {
		    nx = *n;
		}
	    }
	} else {
	    nx = *n;
	}
    } else {
	nb = 1;
    }

    if (upper) {

/*        Reduce the upper triangle of A. */
/*        Columns 1:kk are handled by the unblocked method. */

	kk = *n - (*n - nx + nb - 1) / nb * nb;
	i__1 = kk + 1;
	i__2 = -nb;
	for (i__ = *n - nb + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += 
		i__2) {

/*           Reduce columns i:i+nb-1 to tridiagonal form and form the */
/*           matrix W which is needed to update the unreduced part of */
/*           the matrix */

	    i__3 = i__ + nb - 1;
	    slatrd_(uplo, &i__3, &nb, &a[a_offset], lda, &e[1], &tau[1], &
		    work[1], &ldwork);

/*           Update the unreduced submatrix A(1:i-1,1:i-1), using an */
/*           update of the form:  A := A - V*W' - W*V' */

	    i__3 = i__ - 1;
	    ssyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ * a_dim1 
		    + 1], lda, &work[1], &ldwork, &c_b23, &a[a_offset], lda);

/*           Copy superdiagonal elements back into A, and diagonal */
/*           elements into D */

	    i__3 = i__ + nb - 1;
	    for (j = i__; j <= i__3; ++j) {
		a[j - 1 + j * a_dim1] = e[j - 1];
		d__[j] = a[j + j * a_dim1];
	    }
	}

/*        Use unblocked code to reduce the last or only block */

	ssytd2_(uplo, &kk, &a[a_offset], lda, &d__[1], &e[1], &tau[1], &iinfo);
    } else {

/*        Reduce the lower triangle of A */

	i__2 = *n - nx;
	i__1 = nb;
	for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {

/*           Reduce columns i:i+nb-1 to tridiagonal form and form the */
/*           matrix W which is needed to update the unreduced part of */
/*           the matrix */

	    i__3 = *n - i__ + 1;
	    slatrd_(uplo, &i__3, &nb, &a[i__ + i__ * a_dim1], lda, &e[i__], &
		    tau[i__], &work[1], &ldwork);

/*           Update the unreduced submatrix A(i+ib:n,i+ib:n), using */
/*           an update of the form:  A := A - V*W' - W*V' */

	    i__3 = *n - i__ - nb + 1;
	    ssyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ + nb + 
		    i__ * a_dim1], lda, &work[nb + 1], &ldwork, &c_b23, &a[
		    i__ + nb + (i__ + nb) * a_dim1], lda);

/*           Copy subdiagonal elements back into A, and diagonal */
/*           elements into D */

	    i__3 = i__ + nb - 1;
	    for (j = i__; j <= i__3; ++j) {
		a[j + 1 + j * a_dim1] = e[j];
		d__[j] = a[j + j * a_dim1];
	    }
	}

/*        Use unblocked code to reduce the last or only block */

	i__1 = *n - i__ + 1;
	ssytd2_(uplo, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], 
		&tau[i__], &iinfo);
    }

    work[1] = (real) lwkopt;
    return 0;

/*     End of SSYTRD */

} /* ssytrd_ */
void cblas_ssyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
                  const enum CBLAS_TRANSPOSE Trans, const integer N, const integer K,
                  const float alpha, const float  *A, const integer lda,
                  const float  *B, const integer ldb, const float beta,
                  float  *C, const integer ldc)
{
   char UL, TR;   
#ifdef F77_CHAR
   F77_CHAR F77_TA, F77_UL;
#else
   #define F77_TR &TR  
   #define F77_UL &UL  
#endif

   #define F77_N N
   #define F77_K K
   #define F77_lda lda
   #define F77_ldb ldb
   #define F77_ldc ldc

   extern integer CBLAS_CallFromC;
   extern integer RowMajorStrg;
   RowMajorStrg = 0;
   CBLAS_CallFromC = 1;

   if( Order == CblasColMajor )
   {

      if( Uplo == CblasUpper) UL='U';
      else if ( Uplo == CblasLower ) UL='L';
      else 
      {
         cblas_xerbla(2, "cblas_ssyr2k", 
                       "Illegal Uplo setting, %d\n", Uplo);
         CBLAS_CallFromC = 0;
         RowMajorStrg = 0;
         return;
      }

      if( Trans == CblasTrans) TR ='T';
      else if ( Trans == CblasConjTrans ) TR='C';
      else if ( Trans == CblasNoTrans )   TR='N';
      else 
      {
         cblas_xerbla(3, "cblas_ssyr2k", 
                       "Illegal Trans setting, %d\n", Trans);
         CBLAS_CallFromC = 0;
         RowMajorStrg = 0;
         return;
      }


      #ifdef F77_CHAR
         F77_UL = C2F_CHAR(&UL);
         F77_TR = C2F_CHAR(&TR);
      #endif

      ssyr2k_(F77_UL, F77_TR, &F77_N, &F77_K, &alpha, A, &F77_lda, B, &F77_ldb, &beta, C, &F77_ldc);
   } else if (Order == CblasRowMajor)
   {
      RowMajorStrg = 1;
      if( Uplo == CblasUpper) UL='L';
      else if ( Uplo == CblasLower ) UL='U';
      else 
      {
         cblas_xerbla(3, "cblas_ssyr2k", 
                       "Illegal Uplo setting, %d\n", Uplo);
         CBLAS_CallFromC = 0;
         RowMajorStrg = 0;
         return;
      }
      if( Trans == CblasTrans) TR ='N';
      else if ( Trans == CblasConjTrans ) TR='N';
      else if ( Trans == CblasNoTrans )   TR='T';
      else 
      {
         cblas_xerbla(3, "cblas_ssyr2k", 
                       "Illegal Trans setting, %d\n", Trans);
         CBLAS_CallFromC = 0;
         RowMajorStrg = 0;
         return;
      }

      #ifdef F77_CHAR
         F77_UL = C2F_CHAR(&UL);
         F77_TR = C2F_CHAR(&TR);
      #endif

      ssyr2k_(F77_UL, F77_TR, &F77_N, &F77_K, &alpha, A, &F77_lda, B, &F77_ldb, &beta, C, &F77_ldc);
   } else  cblas_xerbla(1, "cblas_ssyr2k",
                     "Illegal Order setting, %d\n", Order);
   CBLAS_CallFromC = 0;
   RowMajorStrg = 0;
   return;
}
Beispiel #5
0
/* Subroutine */ int ssytrd_(char *uplo, integer *n, real *a, integer *lda, 
	real *d, real *e, real *tau, real *work, integer *lwork, integer *
	info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    SSYTRD reduces a real symmetric matrix A to real symmetric   
    tridiagonal form T by an orthogonal similarity transformation:   
    Q**T * A * Q = T.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    A       (input/output) REAL array, dimension (LDA,N)   
            On entry, the symmetric matrix A.  If UPLO = 'U', the leading 
  
            N-by-N upper triangular part of A contains the upper   
            triangular part of the matrix A, and the strictly lower   
            triangular part of A is not referenced.  If UPLO = 'L', the   
            leading N-by-N lower triangular part of A contains the lower 
  
            triangular part of the matrix A, and the strictly upper   
            triangular part of A is not referenced.   
            On exit, if UPLO = 'U', the diagonal and first superdiagonal 
  
            of A are overwritten by the corresponding elements of the   
            tridiagonal matrix T, and the elements above the first   
            superdiagonal, with the array TAU, represent the orthogonal   
            matrix Q as a product of elementary reflectors; if UPLO   
            = 'L', the diagonal and first subdiagonal of A are over-   
            written by the corresponding elements of the tridiagonal   
            matrix T, and the elements below the first subdiagonal, with 
  
            the array TAU, represent the orthogonal matrix Q as a product 
  
            of elementary reflectors. See Further Details.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    D       (output) REAL array, dimension (N)   
            The diagonal elements of the tridiagonal matrix T:   
            D(i) = A(i,i).   

    E       (output) REAL array, dimension (N-1)   
            The off-diagonal elements of the tridiagonal matrix T:   
            E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. 
  

    TAU     (output) REAL array, dimension (N-1)   
            The scalar factors of the elementary reflectors (see Further 
  
            Details).   

    WORK    (workspace/output) REAL array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= 1.   
            For optimum performance LWORK >= N*NB, where NB is the   
            optimal blocksize.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    Further Details   
    ===============   

    If UPLO = 'U', the matrix Q is represented as a product of elementary 
  
    reflectors   

       Q = H(n-1) . . . H(2) H(1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'   

    where tau is a real scalar, and v is a real vector with   
    v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in   
    A(1:i-1,i+1), and tau in TAU(i).   

    If UPLO = 'L', the matrix Q is represented as a product of elementary 
  
    reflectors   

       Q = H(1) H(2) . . . H(n-1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'   

    where tau is a real scalar, and v is a real vector with   
    v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), 
  
    and tau in TAU(i).   

    The contents of A on exit are illustrated by the following examples   
    with n = 5:   

    if UPLO = 'U':                       if UPLO = 'L':   

      (  d   e   v2  v3  v4 )              (  d                  )   
      (      d   e   v3  v4 )              (  e   d              )   
      (          d   e   v4 )              (  v1  e   d          )   
      (              d   e  )              (  v1  v2  e   d      )   
      (                  d  )              (  v1  v2  v3  e   d  )   

    where d and e denote diagonal and off-diagonal elements of T, and vi 
  
    denotes an element of the vector defining H(i).   

    ===================================================================== 
  


       Test the input parameters   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c_n1 = -1;
    static integer c__3 = 3;
    static integer c__2 = 2;
    static real c_b22 = -1.f;
    static real c_b23 = 1.f;
    
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    /* Local variables */
    static integer i, j;
    extern logical lsame_(char *, char *);
    static integer nbmin, iinfo;
    static logical upper;
    static integer nb, kk;
    extern /* Subroutine */ int ssytd2_(char *, integer *, real *, integer *, 
	    real *, real *, real *, integer *), ssyr2k_(char *, char *
	    , integer *, integer *, real *, real *, integer *, real *, 
	    integer *, real *, real *, integer *);
    static integer nx;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int slatrd_(char *, integer *, integer *, real *, 
	    integer *, real *, real *, real *, integer *);
    static integer ldwork, iws;



#define D(I) d[(I)-1]
#define E(I) e[(I)-1]
#define TAU(I) tau[(I)-1]
#define WORK(I) work[(I)-1]

#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]

    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*n)) {
	*info = -4;
    } else if (*lwork < 1) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSYTRD", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	WORK(1) = 1.f;
	return 0;
    }

/*     Determine the block size. */

    nb = ilaenv_(&c__1, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, 6L, 1L);
    nx = *n;
    iws = 1;
    if (nb > 1 && nb < *n) {

/*        Determine when to cross over from blocked to unblocked code 
  
          (last block is always handled by unblocked code).   

   Computing MAX */
	i__1 = nb, i__2 = ilaenv_(&c__3, "SSYTRD", uplo, n, &c_n1, &c_n1, &
		c_n1, 6L, 1L);
	nx = max(i__1,i__2);
	if (nx < *n) {

/*           Determine if workspace is large enough for blocked co
de. */

	    ldwork = *n;
	    iws = ldwork * nb;
	    if (*lwork < iws) {

/*              Not enough workspace to use optimal NB:  deter
mine the   
                minimum value of NB, and reduce NB or force us
e of   
                unblocked code by setting NX = N.   

   Computing MAX */
		i__1 = *lwork / ldwork;
		nb = max(i__1,1);
		nbmin = ilaenv_(&c__2, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1,
			 6L, 1L);
		if (nb < nbmin) {
		    nx = *n;
		}
	    }
	} else {
	    nx = *n;
	}
    } else {
	nb = 1;
    }

    if (upper) {

/*        Reduce the upper triangle of A.   
          Columns 1:kk are handled by the unblocked method. */

	kk = *n - (*n - nx + nb - 1) / nb * nb;
	i__1 = kk + 1;
	i__2 = -nb;
	for (i = *n - nb + 1; -nb < 0 ? i >= kk+1 : i <= kk+1; i += -nb) {

/*           Reduce columns i:i+nb-1 to tridiagonal form and form 
the   
             matrix W which is needed to update the unreduced part
 of   
             the matrix */

	    i__3 = i + nb - 1;
	    slatrd_(uplo, &i__3, &nb, &A(1,1), lda, &E(1), &TAU(1), &
		    WORK(1), &ldwork);

/*           Update the unreduced submatrix A(1:i-1,1:i-1), using 
an   
             update of the form:  A := A - V*W' - W*V' */

	    i__3 = i - 1;
	    ssyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &A(1,i), lda, &WORK(1), &ldwork, &c_b23, &A(1,1), lda);

/*           Copy superdiagonal elements back into A, and diagonal
   
             elements into D */

	    i__3 = i + nb - 1;
	    for (j = i; j <= i+nb-1; ++j) {
		A(j-1,j) = E(j - 1);
		D(j) = A(j,j);
/* L10: */
	    }
/* L20: */
	}

/*        Use unblocked code to reduce the last or only block */

	ssytd2_(uplo, &kk, &A(1,1), lda, &D(1), &E(1), &TAU(1), &iinfo);
    } else {

/*        Reduce the lower triangle of A */

	i__2 = *n - nx;
	i__1 = nb;
	for (i = 1; nb < 0 ? i >= *n-nx : i <= *n-nx; i += nb) {

/*           Reduce columns i:i+nb-1 to tridiagonal form and form 
the   
             matrix W which is needed to update the unreduced part
 of   
             the matrix */

	    i__3 = *n - i + 1;
	    slatrd_(uplo, &i__3, &nb, &A(i,i), lda, &E(i), &TAU(i),
		     &WORK(1), &ldwork);

/*           Update the unreduced submatrix A(i+ib:n,i+ib:n), usin
g   
             an update of the form:  A := A - V*W' - W*V' */

	    i__3 = *n - i - nb + 1;
	    ssyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &A(i+nb,i), lda, &WORK(nb + 1), &ldwork, &c_b23, &A(i+nb,i+nb), lda);

/*           Copy subdiagonal elements back into A, and diagonal 
  
             elements into D */

	    i__3 = i + nb - 1;
	    for (j = i; j <= i+nb-1; ++j) {
		A(j+1,j) = E(j);
		D(j) = A(j,j);
/* L30: */
	    }
/* L40: */
	}

/*        Use unblocked code to reduce the last or only block */

	i__1 = *n - i + 1;
	ssytd2_(uplo, &i__1, &A(i,i), lda, &D(i), &E(i), &TAU(i), &
		iinfo);
    }

    WORK(1) = (real) iws;
    return 0;

/*     End of SSYTRD */

} /* ssytrd_ */