static int calcuIS (STACK * intStack)
{
	long long sum = 0;
	int avg = 0;
	int *item;
	int num = intStack->item_c;

	if (num < 100)
	{
		return avg;
	}

	stackBackup (intStack);

	while ((item = (int *) stackPop (intStack)) != NULL)
	{
		sum += *item;
	}

	stackRecover (intStack);
	num = intStack->item_c;
	avg = sum / num;
	sum = 0;
	stackBackup (intStack);

	while ((item = (int *) stackPop (intStack)) != NULL)
	{
		sum += (*item - avg) * (*item - avg);
	}

	int SD = sqrt (sum / (num - 1));

	if (SD == 0)
	{
		printf ("SD=%d, ", SD);
		return avg;
	}

	stackRecover (intStack);
	sum = num = 0;

	while ((item = (int *) stackPop (intStack)) != NULL)
		if (abs (*item - avg) < 3 * SD)
		{
			sum += *item;
			num++;
		}

	if(num == 0) avg = 0;
	else avg = sum / num;
	printf ("SD=%d, ", SD);
	return avg;
}
Beispiel #2
0
//search linear structure starting with the root of a tree
static int startEdgeFromNode ( kmer_t * node1, FILE * fp )
{
	int node_c, palindrome;
	unsigned char flag;
	KMER_PT * ite_pt, *temp_pt;
	Kmer word1, bal_word1;
	char ch1;

	if ( node1->linear || node1->deleted )
		{ return 0; }

	// ignore floating loop
	word1 = node1->seq;
	bal_word1 = reverseComplement ( word1, overlaplen );

	// linear structure
	for ( ch1 = 0; ch1 < 4; ch1++ )     // for every node on outgoing list
	{
		flag = get_kmer_right_cov ( *node1, ch1 );

		if ( !flag )
			{ continue; }

		emptyStack ( nodeStack );
		temp_pt = ( KMER_PT * ) stackPush ( nodeStack );
		temp_pt->node = node1;
		temp_pt->isSmaller = 1;
		temp_pt->kmer = word1;
		stringBeads ( temp_pt, ch1, &node_c );

		//printf("%d nodes\n",node_c);
		if ( node_c < 2 )
			{ printf ( "%d nodes in this line!!!!!!!!!!!\n", node_c ); }
		else
		{
			//make a reverse complement node list
			stackBackup ( nodeStack );
			emptyStack ( bal_nodeStack );

			while ( ( ite_pt = ( KMER_PT * ) stackPop ( nodeStack ) ) != NULL )
			{
				temp_pt = ( KMER_PT * ) stackPush ( bal_nodeStack );
				temp_pt->kmer = reverseComplement ( ite_pt->kmer, overlaplen );
			}

			stackRecover ( nodeStack );
			palindrome = check_iden_kmerList ( nodeStack, bal_nodeStack );
			stackRecover ( nodeStack );

			if ( palindrome )
			{
				merge_linearV2 ( 0, nodeStack, node_c, fp );
			}
			else
				{ merge_linearV2 ( 1, nodeStack, node_c, fp ); }
		}
	} //every possible outgoing edges

	for ( ch1 = 0; ch1 < 4; ch1++ )     // for every node on incoming list
	{
		flag = get_kmer_left_cov ( *node1, ch1 );

		if ( !flag )
			{ continue; }

		emptyStack ( nodeStack );
		temp_pt = ( KMER_PT * ) stackPush ( nodeStack );
		temp_pt->node = node1;
		temp_pt->isSmaller = 0;
		temp_pt->kmer = bal_word1;
		stringBeads ( temp_pt, int_comp ( ch1 ), &node_c );

		if ( node_c < 2 )
			{ printf ( "%d nodes in this line!!!!!!!!!!!\n", node_c ); }
		else
		{
			//make a reverse complement node list
			stackBackup ( nodeStack );
			emptyStack ( bal_nodeStack );

			while ( ( ite_pt = ( KMER_PT * ) stackPop ( nodeStack ) ) != NULL )
			{
				temp_pt = ( KMER_PT * ) stackPush ( bal_nodeStack );
				temp_pt->kmer = reverseComplement ( ite_pt->kmer, overlaplen );
			}

			stackRecover ( nodeStack );
			palindrome = check_iden_kmerList ( nodeStack, bal_nodeStack );
			stackRecover ( nodeStack );

			if ( palindrome )
			{
				merge_linearV2 ( 0, nodeStack, node_c, fp );
				//printf("edge is palindrome with length %d\n",temp_edge.length);
			}
			else
				{ merge_linearV2 ( 1, nodeStack, node_c, fp ); }
		}
	} //every possible incoming edges

	return 0;
}