Beispiel #1
0
void pulsesequence()
{

  double pwx;
  char rcvrsflag[MAXSTR];

  pwx = getval("pwx");
  getstr("rcvrs",rcvrsflag);

  /* check decoupling modes */

  if ( (dm[C] == 'y') || (dm[D] == 'y') || (h**o[0] == 'y') )
  {
    printf("dm[C], dm[D] should be set to 'n' and/or h**o should set to 'n'");
    psg_abort(1);
  }

  if (strcmp(rcvrsflag,"yy"))
    printf("rcvrs parameter should be set to 'yy'\n");
  
  settable(t1,4,ph1);
  getelem(t1,ct,v1);
  assign(v1,oph);

  settable(t2,4,ph2);

  status(A);
  obspower(tpwr);
  decpower(dpwr);
  delay(d1);

  status(B);
  delay(d2);
  rgpulse(pw, t2, rof1, rof2);
 
  status(C);
  setactivercvrs("yn");
  startacq(alfa);
  acquire(np,1.0/sw);
  endacq();

  status(B);
  delay(d2);
  decrgpulse(pwx, t2, rof1, rof2);

  status(D);
  setactivercvrs("ny");
  startacq(alfa);
  acquire(np,1.0/sw);
  endacq();

}
Beispiel #2
0
pulsesequence() {

// Define Variables and Objects and Get Parameter Values
   MPSEQ dec = getblew("blewH",0,0.0,0.0,0,1);
   strncpy(dec.ch,"dec",3);
   putCmd("chHblew='dec'\n");

   CP hx = getcp("HX",0.0,0.0,0,1);
   strncpy(hx.fr,"dec",3);
   strncpy(hx.to,"obs",3);
   putCmd("frHX='dec'\n");
   putCmd("toHX='obs'\n");

//--------------------------------------
// Copy Current Parameters to Processed
//-------------------------------------

   putCmd("groupcopy('current','processed','acquisition')");

// Dutycycle Protection

   DUTY d = init_dutycycle();
   d.dutyon = getval("pwH90") + getval("tHX") + getval("rd") + getval("ad") + at;
   d.dutyoff = d1 + 4.0e-6;
   d = update_dutycycle(d);
   abort_dutycycle(d,10.0);

// Set Phase Tables

   settable(phH90,4,table1);
   settable(phXhx,4,table2);
   settable(phHhx,4,table3);
   settable(phRec,4,table4);
   setreceiver(phRec);

// Begin Sequence

   txphase(phXhx); decphase(phH90);
   obspwrf(getval("aXhx")); decpwrf(getval("aH90"));
   obsunblank(); decunblank(); _unblank34();
   delay(d1);
   sp1on(); delay(2.0e-6); sp1off(); delay(2.0e-6);

// H to X Cross Polarization

   decrgpulse(getval("pwH90"),phH90,0.0,0.0);
   decphase(phHhx);
    _cp_(hx,phHhx,phXhx);

// Begin Acquisition

   _mpseqon(dec, phHhx);
   obsblank(); _blank34();
   delay(getval("rd"));
   startacq(getval("ad"));
   acquire(np, 1/sw);
   endacq();
   _mpseqoff(dec);
   obsunblank(); decunblank(); _unblank34();
}
Beispiel #3
0
void pulsesequence()
{
   double tro;
   char gread,gphase,gslice; 
   char grdname[MAXSTR];

   gread = 'z';
   if (getorientation(&gread,&gphase,&gslice,"orient") < 0) 
     abort_message("illegal value in orient parameter");
   gro = getval("gro");
   tro = getval("tro");
   getstr("gname",grdname);
   /* equilibrium period */
   status(A);
      hsdelay(d1);

   /* --- tau delay --- */
   status(B);
      pulse(p1, zero);
      hsdelay(d2);

   /* --- observe period --- */
   status(C);
   pulse(pw,oph);
   delay(0.0001);
   shapedgradient(grdname,tro,gro,gread,1,1); 
   hsdelay(d2);

   startacq(alfa);
   acquire(np,1.0/sw);
   endacq();
}
Beispiel #4
0
pulsesequence()
{
   double pd, seqtime;

   initparms_sis();  /* initialize standard imaging parameters */

   seqtime = at+pw+rof1+rof2;
   pd = tr - seqtime;  /* predelay based on tr */
    if (pd <= 0.0) {
      abort_message("%s: Requested tr too short.  Min tr = %f ms",seqfil,seqtime*1e3);
    }

   status(A);
   delay(pd);
   xgate(ticks);

   /* --- observe period --- */
   obspower(tpwr);
   
   shapedpulse(pwpat,pw,oph,rof1,rof2);
   
   startacq(alfa);
   acquire(np,1.0/sw);
   endacq();
   
}
Beispiel #5
0
void pulsesequence() {

// Define Variables and Objects and Get Parameter Values
   DSEQ dec = getdseq("H");
   strncpy(dec.t.ch,"dec",3);
   putCmd("chHtppm='dec'\n");
   strncpy(dec.s.ch,"dec",3);
   putCmd("chHspinal='dec'\n");

//--------------------------------------
// Copy Current Parameters to Processed
//-------------------------------------

   putCmd("groupcopy('current','processed','acquisition')");

// Dutycycle Protection

   DUTY d = init_dutycycle();
   d.dutyon = getval("pwX90");
   d.dutyoff = d1 + 4.0e-6;
   d.c1 = d.c1 + (!strcmp(dec.seq,"tppm"));
   d.c1 = d.c1 + ((!strcmp(dec.seq,"tppm")) && (dec.t.a > 0.0));
   d.t1 = getval("rd") + getval("ad") + at;
   d.c2 = d.c2 + (!strcmp(dec.seq,"spinal"));
   d.c2 = d.c2 + ((!strcmp(dec.seq,"spinal")) && (dec.s.a > 0.0));
   d.t2 = getval("rd") + getval("ad") + at;
   d = update_dutycycle(d);
   abort_dutycycle(d,10.0);

// Set Phase Tables

   settable(phX90,4,table1);
   settable(phRec,4,table2);
   setreceiver(phRec);

// Begin Sequence

   txphase(phX90); decphase(zero);
   obspwrf(getval("aX90"));
   obsunblank(); decunblank(); _unblank34();
   delay(d1);
   sp1on(); delay(2.0e-6); sp1off(); delay(2.0e-6);

// X Direct Polarization

   rgpulse(getval("pwX90"),phX90,0.0,0.0);

// Begin Acquisition

   _dseqon(dec);
   obsblank(); _blank34();
   delay(getval("rd"));
   startacq(getval("ad"));
   acquire(np, 1/sw);
   endacq();
   _dseqoff(dec);
   obsunblank(); decunblank(); _unblank34();
}
Beispiel #6
0
void pulsesequence()
{
   double pd, seqtime;
   double n,r,bigtau;
   double restol, resto_local;

   init_mri();

   restol=getval("restol");   //local frequency offset
   roff=getval("roff");       //receiver offset

   init_rf(&p1_rf,p1pat,p1,flip1,rof1,rof2);   /* hard pulse */
   calc_rf(&p1_rf,"tpwr1","tpwr1f");
   init_rf(&p2_rf,p2pat,p2,flip2,rof1,rof2);   /* hard pulse */
   calc_rf(&p2_rf,"tpwr2","tpwr2f");

/* calculate 'big tau' values */
   bigtau = getval("bigtau");
   n =  bigtau/(2.0*d2);
   n = (double)((int)((n/2.0) + 0.5)) * 2.0;
   initval(n,v3);

   seqtime = at+p1+rof1+rof2;
   seqtime += 2*d2+p2+rof1+rof2;  /* cpmg pulse and delay */
   
   pd = tr - seqtime;  /* predelay based on tr */
   if (pd <= 0.0) {
      abort_message("%s: Requested tr too short.  Min tr = %f ms",seqfil,seqtime*1e3);
    }

   resto_local=resto-restol; 

   status(A);
   delay(pd);
   xgate(ticks);
   
/* calculate exact delay and phases */

   r = d2-p2/2.0-rof2;   /* correct delay for pulse width */
   mod2(oph,v2);   /* 0,1,0,1 */
   incr(v2);   /* 1,2,1,2 = y,y,-y,-y */

   obsoffset(resto_local); 
   obspower(p1_rf.powerCoarse);
   obspwrf(p1_rf.powerFine);
   rgpulse(p1,oph,rof1,rof2);  /* 90deg */
   obspower(p2_rf.powerCoarse);
   obspwrf(p2_rf.powerFine);
   starthardloop(v3);
      delay(r);
      rgpulse(p2,v2,rof1,rof2);   /* 180deg pulse */
      delay(r);
   endhardloop();
   startacq(alfa);
   acquire(np,1.0/sw);
   endacq();
}
Beispiel #7
0
pulsesequence()
{
   double pd, seqtime;
   double minte,ted1,ted2;
   double restol, resto_local;

   int  vph180     = v2;  /* Phase of 180 pulse */
   init_mri();              /****needed ****/

   restol=getval("restol");   //local frequency offset
   roff=getval("roff");       //receiver offset

   init_rf(&p1_rf,p1pat,p1,flip1,rof1,rof2);   /* hard pulse */
   calc_rf(&p1_rf,"tpwr1","tpwr1f");
   init_rf(&p2_rf,p2pat,p2,flip2,rof1,rof2);   /* hard pulse */
   calc_rf(&p2_rf,"tpwr2","tpwr2f");

   seqtime = at+(p1/2.0)+rof1+d2;

   pd = tr - seqtime;  /* predelay based on tr */
   if (pd <= 0.0) {
      abort_message("%s: Requested tr too short.  Min tr = %f ms",seqfil,seqtime*1e3);
    }
   minte = p1/2.0 + p2 + 2*rof2 + rof1;
   if(d2 > 0) {
     if(d2 < minte+4e-6) 
       abort_message("%s: TE too short. Min te = %f ms",seqfil,minte*1e3);
   }
   ted1 = d2/2 - p1/2 - p2/2 + rof2 + rof1;
   ted2 = d2/2 - p2/2 + rof2;
   resto_local=resto-restol; 

   status(A);
   xgate(ticks);
   delay(pd);

   /* --- observe period --- */
   obsoffset(resto_local);
   obspower(p1_rf.powerCoarse);
   obspwrf(p1_rf.powerFine);
   shapedpulse(p1pat,p1,oph,rof1,rof2);
   /* if d2=0 no 180 pulse applied */
   if (d2 > 0) {
     obspower(p2_rf.powerCoarse);
     obspwrf(p2_rf.powerFine);   
     settable(t2,2,ph180);        /* initialize phase tables and variables */
     getelem(t2,ct,v6);  /* 180 deg pulse phase alternates +/- 90 off the rcvr */
     add(oph,v6,vph180);      /* oph=zero */
     delay(ted1);
     shapedpulse(p2pat,p2,vph180,rof1,rof2);
     delay(ted2);
   }
   startacq(alfa);
   acquire(np,1.0/sw);
   endacq();
}
Beispiel #8
0
pulsesequence()
{
  double sign,currentlimit,RMScurrentlimit,dutycycle;
  int calcpower;

  /* Initialize paramaters **********************************/
  init_mri();
  calcpower=(int)getval("calcpower");
  dutycycle=getval("dutycycle");
  currentlimit=getval("currentlimit");
  RMScurrentlimit=getval("RMScurrentlimit");

  if (gspoil>0.0) sign = 1.0;
  else sign = -1.0;

  init_rf(&p1_rf,p1pat,p1,flip1,rof1,rof2);
  if (calcpower) calc_rf(&p1_rf,"tpwr1","tpwr1f");

  if (tspoil>0.0) {
    gspoil = sqrt(dutycycle/100.0)*gmax*RMScurrentlimit/currentlimit;
    init_generic(&spoil_grad,"spoil",gspoil,tspoil);
    spoil_grad.rollOut=FALSE;
    calc_generic(&spoil_grad,WRITE,"gspoil","tspoil");
  }

  xgate(ticks);

  rotate();

  status(A);
  mod4(ct,oph);
  delay(d1);

  /* TTL scope trigger **********************************/       
  sp1on(); delay(4e-6); sp1off();

  if (calcpower) {
    obspower(p1_rf.powerCoarse);
    obspwrf(p1_rf.powerFine);
  } 
  else obspower(tpwr1);
  delay(4e-6);

  if (tspoil>0.0) {
    obl_shapedgradient(spoil_grad.name,spoil_grad.duration,0,0,spoil_grad.amp*sign,WAIT);
    delay(d2);
  }

  shapedpulse(p1pat,p1,ct,rof1,rof2);

  startacq(alfa);
  acquire(np,1.0/sw);
  endacq();
		
}
Beispiel #9
0
pulsesequence() {

// Define Variables and Objects and Get Parameter Values

   initval(getval("periods"),v2); 

//--------------------------------------
// Copy Current Parameters to Processed
//-------------------------------------

   putCmd("groupcopy('current','processed','acquisition')");

// Set Phase Tables

   settable(phX90,4,table1);
   settable(phRec,4,table2);
   setreceiver(phRec);

// Begin Sequence

   txphase(phX90); decphase(zero);
   obspwrf(getval("aX90"));
   obsunblank(); decunblank(); _unblank34();
   delay(d1);

   xgate(1.0);
   sp1on(); delay(2.0e-6); sp1off(); delay(2.0e-6);

// Apply a Rotorsync Delay

   rgpulse(getval("pwX90"),phX90,0.0,0.0);
   rotorsync(v2);
   rgpulse(getval("pwX90"),phX90,0.0,0.0);
   xgate(getval("xperiods")); 
   rgpulse(getval("pwX90"),phX90,0.0,0.0);
   delay(10.0e-6); 

// X Direct Polarization

   rgpulse(getval("pwX90"),phX90,0.0,0.0);

// Begin Acquisition

   obsblank(); _blank34();
   delay(getval("rd"));
   startacq(getval("ad"));
   acquire(np, 1/sw);
   endacq();
   obsunblank(); decunblank(); _unblank34();
}
Beispiel #10
0
pulsesequence() {

// Define Variables and Objects and Get Parameter Values

   double pw1Xstmas = getval("pw1Xstmas");
   double pw2Xstmas = getval("pw2Xstmas");

   double tXzfselinit = getval("tXzfsel");
   double tXzfsel = tXzfselinit - 3.0e-6;
   if (tXzfsel < 0.0) tXzfsel = 0.0;

   double d2init = getval("d2");
   double d2 = d2init - pw1Xstmas/2.0 - pw2Xstmas/2.0;
   if (d2 < 0.0) d2 = 0.0;

   DSEQ dec = getdseq("H");
   strncpy(dec.t.ch,"dec",3);
   putCmd("chHtppm='dec'\n"); 
   strncpy(dec.s.ch,"dec",3);
   putCmd("chHspinal='dec'\n");

// Set Constant-time Period for d2. 

   if (d2_index == 0) d2_init = getval("d2");
   double d2_ = (ni - 1)/sw1 + d2_init;
   putCmd("d2acqret = %f\n",roundoff(d2_,12.5e-9));
   putCmd("d2dwret = %f\n",roundoff(1.0/sw1,12.5e-9));

//--------------------------------------
// Copy Current Parameters to Processed
//-------------------------------------

   putCmd("groupcopy('current','processed','acquisition')");

// Dutycycle Protection
   DUTY d = init_dutycycle();
   d.dutyon = getval("pw1Xstmas") + getval("pw2Xstmas") + getval("pwXzfsel");
   d.dutyoff = d1 + 4.0e-6;
   d.c1 = d.c1 + (!strcmp(dec.seq,"tppm"));
   d.c1 = d.c1 + ((!strcmp(dec.seq,"tppm")) && (dec.t.a > 0.0));
   d.t1 = d2_ + tXzfsel + getval("rd") + getval("ad") + at;
   d.c2 = d.c2 + (!strcmp(dec.seq,"spinal"));
   d.c2 = d.c2 + ((!strcmp(dec.seq,"spinal")) && (dec.s.a > 0.0));
   d.t2 = d2_ + tXzfsel + getval("rd") + getval("ad") + at;
   d = update_dutycycle(d);
   abort_dutycycle(d,10.0);

// Set Phase Tables

   settable(ph1Xstmas,4,table1);
   settable(ph2Xstmas,4,table2);
   settable(phXzfsel,8,table3);
   settable(phRec,8,table4);

   if (phase1 == 2) {
      tsadd(ph1Xstmas,1,4);
   }
   setreceiver(phRec);

// Begin Sequence

   txphase(ph1Xstmas); decphase(zero);
   obspower(getval("tpwr"));
   obspwrf(getval("aXstmas"));
   obsunblank(); decunblank(); _unblank34();
   delay(d1);
   sp1on(); delay(2.0e-6); sp1off(); delay(2.0e-6);

// H Decoupler on Before STMAS

   _dseqon(dec);

// Two-Pulse STMAS

   rgpulse(getval("pw1Xstmas"),ph1Xstmas,0.0,0.0);
   txphase(ph2Xstmas);
   delay(d2);
   rgpulse(getval("pw2Xstmas"),ph2Xstmas,0.0,0.0);

// Z-filter Pulse

   txphase(phXzfsel);
   obsblank(); 
   obspower(getval("dbXzfsel"));
   obspwrf(getval("aXzfsel"));
   delay(3.0e-6);
   obsunblank();
   delay(tXzfsel);
   rgpulse(getval("pwXzfsel"),phXzfsel,0.0,0.0);

// Begin Acquisition

   obsblank(); _blank34();
   delay(getval("rd"));
   startacq(getval("ad"));
   acquire(np, 1/sw);
   endacq();
   _dseqoff(dec);
   obsunblank(); decunblank(); _unblank34();
}
Beispiel #11
0
void pulsesequence()
{

/* DECLARE AND LOAD VARIABLES */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            mag_flg[MAXSTR],                            /*magic angle gradient*/
            f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
	    stCdec[MAXSTR],	       /* calls STUD+ waveforms from shapelib */
	    STUD[MAXSTR];   /* apply automatically calculated STUD decoupling */
 
int         icosel1,          			  /* used to get n and p type */
	    icosel2,
            t1_counter,  		        /* used for states tppi in t1 */
            t2_counter,  	 	        /* used for states tppi in t2 */
	    ni2 = getval("ni2");

double      tau1,         				         /*  t1 delay */
            tau2,        				         /*  t2 delay */
	    del = getval("del"),     /* time delays for CH coupling evolution */
         BPdpwrspinlock,        /*  user-defined upper limit for spinlock(Hz) */
         BPpwrlimits,           /*  =0 for no limit, =1 for limit             */

	    del1 = getval("del1"),
	    del2 = getval("del2"),
/* STUD+ waveforms automatically calculated by macro "biocal"  	      */
/* and string parameter stCdec calls them from your shapelib. 	              */
   stdmf,                                /* dmf for STUD decoupling           */
   studlvl,	                         /* coarse power for STUD+ decoupling */
   rf80 = getval("rf80"), 			  /* rf in Hz for 80ppm STUD+ */
   bw, ofs, ppm,                            /* temporary Pbox parameters */
	pwClvl = getval("pwClvl"), 	        /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
	rf0,            	  /* maximum fine power when using pwC pulses */

/* p_d is used to calculate the isotropic mixing on the Cab region            */
        spinlock = getval("spinlock"), /* DIPSI-3 spinlock field strength in Hz */
        p_d,                  	       /* 50 degree pulse for DIPSI-2 at rfd  */
        rfd,                    /* fine power for 7 kHz rf for 500MHz magnet  */
	ncyc = getval("ncyc"), 			  /* no. of cycles of DIPSI-3 */

/* the following pulse lengths for SLP pulses are automatically calculated    */
/* by the macro "ghcch_tocsy" .  SLP pulse shapes, "offC10" etc are called   */
/* directly from your shapelib.                    			      */
   pwC10,                       /* 180 degree selective sinc pulse on CO(174ppm) */
   pwZ,					  /* the largest of pwC10 and 2.0*pwN */
   rf10,	                 /* fine power for the pwC10 ("offC10") pulse */

   compC = getval("compC"),         /* adjustment for C13 amplifier compression */

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),

	gt1 = getval("gt1"),  		       /* coherence pathway gradients */
	gzcal = getval("gzcal"),               /* G/cm to DAC coversion factor*/
        gzlvl1 = getval("gzlvl1"),
	gzlvl2 = getval("gzlvl2"),

	gt3 = getval("gt3"),				   /* other gradients */
	gt5 = getval("gt5"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5"),
	gzlvl6 = getval("gzlvl6");

    getstr("STUD",STUD);
    getstr("mag_flg",mag_flg);
    getstr("f1180",f1180);
    getstr("f2180",f2180);
   strcpy(stCdec, "stCdec80");
   stdmf = getval("dmf80");
   studlvl = pwClvl + 20.0*log10(compC*pwC*4.0*rf80);
   studlvl = (int) (studlvl + 0.5);
  P_getreal(GLOBAL,"BPpwrlimits",&BPpwrlimits,1);
  P_getreal(GLOBAL,"BPdpwrspinlock",&BPdpwrspinlock,1);


/*   LOAD PHASE TABLE    */

	settable(t3,2,phi3);
	settable(t6,1,phi6);
	settable(t5,4,phi5);
	settable(t10,1,phi10);
	settable(t11,4,rec);

        

/*   INITIALIZE VARIABLES   */


  if (BPpwrlimits > 0.5)
  {
   if (spinlock > BPdpwrspinlock)
    {
     spinlock = BPdpwrspinlock;  
     printf("spinlock too large, reset to user-defined limit (BPdpwrspinlock)");
     psg_abort(1);
    }
  }
    if( dpwrf < 4095 )
	{ printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse");
	  psg_abort(1); }

    /* maximum fine power for pwC pulses */
	rf0 = 4095.0;

      setautocal();                        /* activate auto-calibration flags */ 
        
      if (autocal[0] == 'n') 
      {
        /* "offC10": 180 degree one-lobe sinc pulse on CO, null at Ca 139ppm away */
        pwC10 = getval("pwC10");
	  rf10 = (compC*4095.0*pwC*2.0*1.65)/pwC10;     /* needs 1.65 times more     */
	  rf10 = (int) (rf10 + 0.5);		           /* power than a square pulse */

        if( pwC > (24.0e-6*600.0/sfrq) )
	  { printf("Increase pwClvl so that pwC < 24*600/sfrq");
	    psg_abort(1); 
        }
      }
      else        /* if autocal = 'y'(yes), 'q'(quiet), r(read), or 's'(semi) */
      {
        if(FIRST_FID)                                            /* call Pbox */
        {
          ppm = getval("dfrq"); 
          bw = 118.0*ppm; ofs = 139.0*ppm;
          offC10 = pbox_make("offC10", "sinc180n", bw, ofs, compC*pwC, pwClvl);
          if(dm3[B] == 'y') H2ofs = 3.2;    
          ofs_check(H1ofs, C13ofs, N15ofs, H2ofs);
        }
        rf10 = offC10.pwrf;  pwC10 = offC10.pw;
      }
				
   /* dipsi-3 decoupling on CbCa */	
 	p_d = (5.0)/(9.0*4.0*spinlock);      /*  DIPSI-3 Field Strength */
 	rfd = (compC*4095.0*pwC*5.0)/(p_d*9.0);
	rfd = (int) (rfd + 0.5);
  	ncyc = (int) (ncyc + 0.5);


/* CHECK VALIDITY OF PARAMETER RANGES */

    if( gt1 > 0.5*del - 1.0e-4)
    {
        printf(" gt1 is too big. Make gt1 less than %f.\n", (0.5*del - 1.0e-4));
        psg_abort(1);
    }

    if( dm[A] == 'y' )
    {
        printf("incorrect dec1 decoupler flag! Should be 'nny' or 'nnn' ");
        psg_abort(1);
    }

    if((dm2[A] == 'y' || dm2[C] == 'y'))
    {
        printf("incorrect dec2 decoupler flags! Should be 'nnn' ");
        psg_abort(1);
    }
    if((dm3[A] == 'y' || dm3[C] == 'y'))
    {
        printf("incorrect dec3 decoupler flags! Should be 'nnn' or 'nyn' ");
        psg_abort(1);
    }

    if( dpwr > 52 )
    {
        printf("don't fry the probe, DPWR too large!  ");
        psg_abort(1);
    }

    if( pw > 50.0e-6 )
    {
        printf("dont fry the probe, pw too high ! ");
        psg_abort(1);
    } 
  
    if( pwN > 100.0e-6 )
    {
        printf("dont fry the probe, pwN too high ! ");
        psg_abort(1);
    } 
 

/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    icosel1 = -1;  icosel2 = -1;
    if (phase1 == 2) 
	{ tsadd(t6,2,4); icosel1 = -1*icosel1; }
    if (phase2 == 2) 
	{ tsadd(t10,2,4); icosel2 = -1*icosel2; tsadd(t6,2,4); }


/*  Set up f1180  */
   
    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0)) 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }
    tau1 = tau1/2.0;


/*  Set up f2180  */

    tau2 = d3;
    if((f2180[A] == 'y') && (ni2 > 1.0)) 
	{ tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; }
    tau2 = tau2/2.0;



/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t3,2,4); tsadd(t11,2,4); }

   if( ix == 1) d3_init = d3;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) 
	{ tsadd(t5,2,4); tsadd(t11,2,4); }



/*   BEGIN PULSE SEQUENCE   */

status(A);
        if ( dm3[B] == 'y' )
          lk_sample();  
        if ((ni/sw1-d2)>0) 
         delay(ni/sw1-d2);       /*decreases as t1 increases for const.heating*/
        if ((ni2/sw2-d3)>0) 
         delay(ni2/sw2-d3);      /*decreases as t2 increases for const.heating*/
   	delay(d1);
        if ( dm3[B] == 'y' )
          { lk_hold(); lk_sampling_off();}  /*freezes z0 correction, stops lock pulsing*/

	rcvroff();
	obspower(tpwr);
	decpower(pwClvl);
 	dec2power(pwNlvl);
	decpwrf(rf0);
	obsoffset(tof);
	txphase(t3);
	delay(1.0e-5);

	decrgpulse(pwC, zero, 0.0, 0.0);	   /*destroy C13 magnetization*/
	zgradpulse(gzlvl1, 0.5e-3);
	delay(1.0e-4);
	decrgpulse(pwC, one, 0.0, 0.0);
	zgradpulse(0.7*gzlvl1, 0.5e-3);
	delay(5.0e-4);

      if ( dm3[B] == 'y' )     /* begins optional 2H decoupling */
        {
          dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6);
          dec3unblank();
          dec3phase(zero);
          delay(2.0e-6);
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
        }
	rgpulse(pw, t3, 0.0, 0.0);                    /* 1H pulse excitation */

        decphase(zero);
	delay(0.5*del + tau1 - 2.0*pwC);

        decrgpulse(2.0*pwC, zero, 0.0, 0.0);

        txphase(zero);
	delay(tau1);

	rgpulse(2.0*pw, zero, 0.0, 0.0);

                if (mag_flg[A] == 'y')
                {
                   magradpulse(icosel1*gzcal*gzlvl1,0.1*gt1);
                }
                else
                {
                   zgradpulse(icosel1*gzlvl1, 0.1*gt1);
                }
        decphase(t5);
	delay(0.5*del - 0.1*gt1);

	simpulse(pw, pwC, zero, t5, 0.0, 0.0);

	zgradpulse(gzlvl3, gt3);
        decphase(zero);
	delay(0.5*del2 - gt3);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl3, gt3);
        txphase(t6);
        decphase(one);
	delay(0.5*del2 - gt3);

	simpulse(pw, pwC, t6, one, 0.0, 0.0);

	zgradpulse(gzlvl4, gt3);
        txphase(zero);
        decphase(zero);
	delay(0.5*del1 - gt3);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl4, gt3);
	delay(0.5*del1 - gt3);

	decrgpulse(pwC, zero, 0.0, 0.0);
	decpwrf(rfd);
	delay(2.0e-6);
	initval(ncyc, v2);
	starthardloop(v2);
     decrgpulse(4.9*p_d,zero,0.0,0.0);
     decrgpulse(7.9*p_d,two,0.0,0.0);
     decrgpulse(5.0*p_d,zero,0.0,0.0);
     decrgpulse(5.5*p_d,two,0.0,0.0);
     decrgpulse(0.6*p_d,zero,0.0,0.0);
     decrgpulse(4.6*p_d,two,0.0,0.0);
     decrgpulse(7.2*p_d,zero,0.0,0.0);
     decrgpulse(4.9*p_d,two,0.0,0.0);
     decrgpulse(7.4*p_d,zero,0.0,0.0);
     decrgpulse(6.8*p_d,two,0.0,0.0);
     decrgpulse(7.0*p_d,zero,0.0,0.0);
     decrgpulse(5.2*p_d,two,0.0,0.0);
     decrgpulse(5.4*p_d,zero,0.0,0.0);
     decrgpulse(0.6*p_d,two,0.0,0.0);
     decrgpulse(4.5*p_d,zero,0.0,0.0);
     decrgpulse(7.3*p_d,two,0.0,0.0);
     decrgpulse(5.1*p_d,zero,0.0,0.0);
     decrgpulse(7.9*p_d,two,0.0,0.0);

     decrgpulse(4.9*p_d,two,0.0,0.0);
     decrgpulse(7.9*p_d,zero,0.0,0.0);
     decrgpulse(5.0*p_d,two,0.0,0.0);
     decrgpulse(5.5*p_d,zero,0.0,0.0);
     decrgpulse(0.6*p_d,two,0.0,0.0);
     decrgpulse(4.6*p_d,zero,0.0,0.0);
     decrgpulse(7.2*p_d,two,0.0,0.0);
     decrgpulse(4.9*p_d,zero,0.0,0.0);
     decrgpulse(7.4*p_d,two,0.0,0.0);
     decrgpulse(6.8*p_d,zero,0.0,0.0);
     decrgpulse(7.0*p_d,two,0.0,0.0);
     decrgpulse(5.2*p_d,zero,0.0,0.0);
     decrgpulse(5.4*p_d,two,0.0,0.0);
     decrgpulse(0.6*p_d,zero,0.0,0.0);
     decrgpulse(4.5*p_d,two,0.0,0.0);
     decrgpulse(7.3*p_d,zero,0.0,0.0);
     decrgpulse(5.1*p_d,two,0.0,0.0);
     decrgpulse(7.9*p_d,zero,0.0,0.0);

     decrgpulse(4.9*p_d,two,0.0,0.0);
     decrgpulse(7.9*p_d,zero,0.0,0.0);
     decrgpulse(5.0*p_d,two,0.0,0.0);
     decrgpulse(5.5*p_d,zero,0.0,0.0);
     decrgpulse(0.6*p_d,two,0.0,0.0);
     decrgpulse(4.6*p_d,zero,0.0,0.0);
     decrgpulse(7.2*p_d,two,0.0,0.0);
     decrgpulse(4.9*p_d,zero,0.0,0.0);
     decrgpulse(7.4*p_d,two,0.0,0.0);
     decrgpulse(6.8*p_d,zero,0.0,0.0);
     decrgpulse(7.0*p_d,two,0.0,0.0);
     decrgpulse(5.2*p_d,zero,0.0,0.0);
     decrgpulse(5.4*p_d,two,0.0,0.0);
     decrgpulse(0.6*p_d,zero,0.0,0.0);
     decrgpulse(4.5*p_d,two,0.0,0.0);
     decrgpulse(7.3*p_d,zero,0.0,0.0);
     decrgpulse(5.1*p_d,two,0.0,0.0);
     decrgpulse(7.9*p_d,zero,0.0,0.0);

     decrgpulse(4.9*p_d,zero,0.0,0.0);
     decrgpulse(7.9*p_d,two,0.0,0.0);
     decrgpulse(5.0*p_d,zero,0.0,0.0);
     decrgpulse(5.5*p_d,two,0.0,0.0);
     decrgpulse(0.6*p_d,zero,0.0,0.0);
     decrgpulse(4.6*p_d,two,0.0,0.0);
     decrgpulse(7.2*p_d,zero,0.0,0.0);
     decrgpulse(4.9*p_d,two,0.0,0.0);
     decrgpulse(7.4*p_d,zero,0.0,0.0);
     decrgpulse(6.8*p_d,two,0.0,0.0);
     decrgpulse(7.0*p_d,zero,0.0,0.0);
     decrgpulse(5.2*p_d,two,0.0,0.0);
     decrgpulse(5.4*p_d,zero,0.0,0.0);
     decrgpulse(0.6*p_d,two,0.0,0.0);
     decrgpulse(4.5*p_d,zero,0.0,0.0);
     decrgpulse(7.3*p_d,two,0.0,0.0);
     decrgpulse(5.1*p_d,zero,0.0,0.0);
     decrgpulse(7.9*p_d,two,0.0,0.0);
	endhardloop();

        dec2phase(zero);
        decphase(zero);
        txphase(zero);
	decpwrf(rf10);
	delay(tau2);
							  /* WFG3_START_DELAY */
	sim3shaped_pulse("", "offC10", "", 2.0*pw, pwC10, 2.0*pwN, zero, zero, zero, 0.0, 0.0);
        if(pwC10>2.0*pwN) pwZ=0.0; else pwZ=2.0*pwN - pwC10;

	delay(tau2);
	decpwrf(rf0);
                if (mag_flg[A] == 'y')
                {
                   magradpulse(-icosel2*gzcal*gzlvl2, 1.8*gt1);
                }
                else
                {
                   zgradpulse(-icosel2*gzlvl2, 1.8*gt1);
                }
	delay(2.02e-4);

	decrgpulse(2.0*pwC, zero, 0.0, 0.0);

	decpwrf(rf10);
                if (mag_flg[A] == 'y')
                {
                   magradpulse(icosel2*gzcal*gzlvl2, 1.8*gt1);
                }
                else
                {
                   zgradpulse(icosel2*gzlvl2, 1.8*gt1);
                }
	delay(2.0e-4 + WFG3_START_DELAY + pwZ);

	decshaped_pulse("offC10", pwC10, zero, 0.0, 0.0);
	decpwrf(rf0);
	decrgpulse(pwC, zero, 2.0e-6, 0.0);

	zgradpulse(gzlvl5, gt5);
	delay(0.5*del1 - gt5);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl5, gt5);
	txphase(one);
	decphase(t10);
	delay(0.5*del1 - gt5);

	simpulse(pw, pwC, one, t10, 0.0, 0.0);

	zgradpulse(gzlvl6, gt5);
	txphase(zero);
	decphase(zero);
	delay(0.5*del2 - gt5);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl6, gt5);
	delay(0.5*del2 - gt5);

	simpulse(pw, pwC, zero, zero, 0.0, 0.0);

	delay(0.5*del - 0.5*pwC);

	simpulse(2.0*pw,2.0*pwC, zero, zero, 0.0, 0.0);
        if (mag_flg[A] == 'y')
            magradpulse(gzcal*gzlvl1, gt1);
        else
            zgradpulse(gzlvl1, gt1);
        rcvron();
   if ((STUD[A]=='n') && (dm[C] == 'y'))
        decpower(dpwr);
        if ( dm3[B] == 'y' )   /* turns off 2H decoupling  */
        {
           delay(0.5*del-40.0e-6 -gt1 -1/dmf3);
           setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
           dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6);
           dec3blank();
           lk_autotrig();   /* resumes lock pulsing */
           lk_sample();
           if (mag_flg[A] == 'y')
            statusdelay(C,40.0e-6  - 2.0*VAGRADIENT_DELAY - POWER_DELAY);
           else
            statusdelay(C,40.0e-6  - 2.0*GRADIENT_DELAY - POWER_DELAY);
        }
      else
        {
         delay(0.5*del-40.0e-6 -gt1);
        if (mag_flg[A] == 'y')
         statusdelay(C,40.0e-6  - 2.0*VAGRADIENT_DELAY - POWER_DELAY);
        else
         statusdelay(C,40.0e-6  - 2.0*GRADIENT_DELAY - POWER_DELAY);
        }
  if ((STUD[A]=='y') && (dm[C] == 'y'))
        {decpower(studlvl);
         decunblank();
         decon();
         decprgon(stCdec,1/stdmf, 1.0);
         startacq(alfa);
         acquire(np, 1.0/sw);
         decprgoff();
         decoff();
         decblank();
        }
 setreceiver(t11);
}		 
Beispiel #12
0
pulsesequence()
{
   double pd, seqtime;
   double mintDELTA,ted1,ted2,gf;
   double restol, resto_local;

   init_mri();              /****needed ****/

   restol=getval("restol");   //local frequency offset
   roff=getval("roff");       //receiver offset

   init_rf(&p1_rf,p1pat,p1,flip1,rof1,rof2);   /* hard pulse */
   calc_rf(&p1_rf,"tpwr1","tpwr1f");
   init_rf(&p2_rf,p2pat,p2,flip2,rof1,rof2);   /* hard pulse */
   calc_rf(&p2_rf,"tpwr2","tpwr2f");

   gf=1.0;
   if(diff[0] == 'n') gf=0;
   int  vph180     = v2;  /* Phase of 180 pulse */

   mintDELTA = tdelta + trise + rof1 + p2 + rof2;
   if(tDELTA <= mintDELTA) {
       abort_message("%s: tDELTA too short. Min tDELTA = %f ms",seqfil,mintDELTA*1e3);
   }
   ted1 = tDELTA - tdelta + trise + p2 + rof1 + rof2;
   te = p1/2 + rof2 + tdelta + trise + ted1 + rof1 + p2/2;   /* first half-te */
   ted2 = te - p2/2 - rof2 - tdelta - trise;
   if((ted1 <= 0)||(ted2 <= 0) ) {
       abort_message("%s: tDELTA too short. Min tDELTA = %f ms",seqfil,mintDELTA*1e3);
   }
   te = te*2.0;
   putvalue("te",te);
   seqtime = at+(p1/2.0)+rof1+te;
   pd = tr - seqtime;  /* predelay based on tr */
   if (pd <= 0.0) {
      abort_message("%s: Requested tr too short.  Min tr = %f ms",seqfil,seqtime*1e3);
   }

   resto_local=resto-restol; 

   status(A);
   rotate();
   delay(pd);
   xgate(ticks);

   /* --- observe period --- */
   obsoffset(resto_local); 
   obspower(p1_rf.powerCoarse);
   obspwrf(p1_rf.powerFine);
   shapedpulse(p1pat,p1,oph,rof1,rof2);

   obl_gradient(0,0,gdiff*gf);   /* x,y,z gradients selected via orient */
   delay(tdelta);
   zero_all_gradients();
   delay(trise);
   delay(ted1);
     
   obspower(p2_rf.powerCoarse);
   obspwrf(p2_rf.powerFine);   
   settable(t2,2,ph180);        /* initialize phase tables and variables */
   getelem(t2,ct,v6);  /* 180 deg pulse phase alternates +/- 90 off the rcvr */
   add(oph,v6,vph180);      /* oph=zero */
   shapedpulse(p2pat,p2,vph180,rof1,rof2);

   obl_gradient(0,0,gdiff);   /* x,y,z gradients selected via orient */
   delay(tdelta);
   zero_all_gradients();
   delay(trise);
   delay(ted2);
   startacq(alfa);
   acquire(np,1.0/sw);
   endacq();
}
Beispiel #13
0
pulsesequence() {

// Set the Maximum Dynamic Table and v-var Numbers

   settablenumber(10);
   setvvarnumber(30);

// Define Variables and Objects and Get Parameter Values

   double aXprep1 = getval("aXprep1");  // Define Tilted Pulses using "prep1X".
   double pw1Xprep1 = getval("pw1Xprep1");
   double pw2Xprep1 = getval("pw2Xprep1");
   double phXprep1 = getval("phXprep1");

   WMPA wpmlg = getwpmlg("wpmlgX");
   strncpy(wpmlg.ch,"obs",3); 
   putCmd("chXwpmlg='obs'\n");

//--------------------------------------
// Copy Current Parameters to Processed
//-------------------------------------

   putCmd("groupcopy('current','processed','acquisition')");

// Dutycycle Protection

   DUTY d = init_dutycycle();
   d.dutyon = getval("pw1Xprep1") + getval("pw2Xprep1") + 2.0*wpmlg.q*wpmlg.cycles*wpmlg.pw;
   d.dutyoff = d1 + 4.0e-6 + 5.0e-6 + wpmlg.r1 + wpmlg.r2 + 
               at - 2.0*wpmlg.q*wpmlg.cycles*wpmlg.pw;
   d = update_dutycycle(d);
   abort_dutycycle(d,10.0);

// Set Phase Tables

   settable(ph1Xprep1,4,table1);
   settable(ph2Xprep1,4,table2);
   settable(phXwpmlg,4,table3);
   settable(phRec,4,table4);
   setreceiver(phRec);

// Set the Small-Angle Step

   double obsstep = 360.0/(PSD*8192);
   obsstepsize(obsstep);
   int phfXprep1 = initphase(phXprep1, obsstep);
   int phXzero = initphase(0.0, obsstep);

// Begin Sequence

   xmtrphase(phfXprep1); txphase(ph1Xprep1);
   obspwrf(aXprep1);
   obsunblank(); decunblank(); _unblank34();
   delay(d1);
   sp1on(); delay(2.0e-6); sp1off(); delay(2.0e-6);

// Tilted Preparation Pulse for FSLG or PMLG "prep1X"

   startacq(5.0e-6);
   rcvroff();
   delay(wpmlg.r1);
   rgpulse(pw1Xprep1, ph1Xprep1, 0.0, 0.0);
   rgpulse(pw2Xprep1, ph2Xprep1, 0.0, 0.0);
   xmtrphase(phXzero);
   delay(wpmlg.r2);

// Apply WPMLG Cycles

   decblank(); _blank34();
   _wpmlg(wpmlg, phXwpmlg);
   endacq();
   obsunblank(); decunblank(); _unblank34();
}
Beispiel #14
0
pulsesequence()
{
    /*******************************************************/
    /* Internal variable declarations                      */
    /*******************************************************/
    double  predelay;
    double  agss,grate,gssint, gssrint;      
    double  t_after, acq_delay, min_tr;
    double  t_rampslice, t_plateau_sr, t_plateau_min, t_ramp_sr;
    double  slice_offset,f_offset;
    double  pss0;

    char     slice_select[MAXSTR];
 
    initparms_sis();                        /* Sets default state of receiver to ON */
                                            /*- will be obsolete on future VNMR versions */
      
    /***************************/
    /* initialize variables    */
    /***************************/  
    gssf      = 1.0;                        /* slice select fractional refocus */
    predelay  = PREDELAY;                   /* define predelay [s] */
    acq_delay = ACQ_DELAY;                  /* time delay between end of refocus and acq */
    slice_offset = 0.0;                     /* force slice offset to 0.0 [cm] */
    t_rampslice = 0.0;			    /* slice select ramp time */
    t_ramp_sr   = 0.0;                      /* slice refocusing ramp time */
    t_plateau_min = 0.0005;                 /* min time slice refocusing plateau */
    t_plateau_sr  =0.0;                     /* slice refocusing plateau time*/
    f_offset=getval("resto");

    agss = fabs(gss);			    /* absolute slice select gradient */
    gssr  = gmax;                           /* maximum slice refocusing gradient */
    grate = trise/gmax;                     /* define gradient slew rate [s*cm/g]
                                              trise = gradient rise time
                                              gmax = maximum gradient strength [G/cm] */
        
    ticks = IGNORE_TRIGGER;                 /* ignore trigger pulses */
                                        
    /***************************/
    /* Get parameter           */
    /***************************/  
    at = getval("at");
    pss0 = getval("pss0");    
					       
    getstr("slice_select",slice_select);      /* slice select flag
                                               [y] = ON, [n] = OFF */
					       
    /*******************************************************/
    /* Slice Select gradient area                          */
    /*******************************************************/
    t_rampslice = grate * agss;
    gssint = (agss*p1/2.0) + (agss*t_rampslice/2.0);
    gssrint=gssint;
    /*******************************************************
     * Calculate slice refocussing gradient                *
     *******************************************************/
    t_plateau_sr = (gssint / gssr) - trise;
    if (t_plateau_sr <= 0.0)            /* traingular gradients */
       {
       t_plateau_sr = 0.0;
       gssr = sqrt(gssint / grate);
       }  
    t_ramp_sr = gssr * grate;           /* ramp time for refocusing gradient*/
    gssrint = (gssr * t_plateau_sr) + (t_ramp_sr * gssr);	    

    /***************************************************************************
     * timing calculation                                                      *
     ***************************************************************************/   
    if (slice_select[0] == 'y')
       {
       t_after = tr - (predelay + p1 + t_plateau_sr + at + acq_delay + 2* (t_rampslice + t_ramp_sr));
       min_tr  = predelay + p1 + t_plateau_sr + at + acq_delay + 2* (t_rampslice + t_ramp_sr);
       }
    else
       {
       t_after = tr - (predelay + p1 +  at + acq_delay );
       min_tr  = predelay + p1 + at + acq_delay ;
       }   


    if (t_after < 0.0)
        {
        abort_message("Requested repetition time (TR) too short.  Min tr = %.f[ms]\n",min_tr*1000);
        }

    /******************************************************/
    /*                                                    */
    /*                  S T A R T                         */
    /*        P U L S E    S E Q U E N C E                */
    /*                                                    */
    /******************************************************/
    obspower(tpwr1);                          /* set tranmitter power */
    /***************************************************************************
     *   Predelay                                                              *
     ***************************************************************************/
    obsoffset(f_offset);                    /* set transmitter offset */ 
    delay(predelay);                    
    xgate(ticks);                           /* set gating */
    if (slice_select[0] == 'y')
         {  
	 /***************************************************************************
	  * Slice select gradient & RF pulse                                        *
	  ***************************************************************************/
	 obl_gradient(0.0,0.0,gss);               /* slice select gradient */
	 delay(t_rampslice);                      /* delay - time to ramp up gradient */
	 shaped_pulse(p1pat,p1,oph,rof1,rof1);
	 zero_all_gradients();                    /* force all gradients back to 0 [G/cm] */
	 delay(t_rampslice);                      /* time to ramp down gradient */

	 /***************************************************************************
	  * Slice refocus gradient                                                  *
	  ***************************************************************************/
	 obl_gradient(0.0,0.0,-gssr);             /* slice refocus gradient */
	 delay(t_ramp_sr+t_plateau_sr);          /* ramp up of refocus gradient */
	 zero_all_gradients();                   /* force refocus gradient back to 0 [G/cm] */
	 delay(t_ramp_sr);                       /* time to ramp down gradient */
	 }
    else
         {
         shaped_pulse(p1pat,p1,oph,rof1,rof1);
         }
    /***************************************************************************
     * Pre-acquire delay                                                       *
     ***************************************************************************/
    delay(acq_delay);

    /***************************************************************************
     * Acquire echo                                                            *
     ***************************************************************************/
    startacq(alfa);
    acquire(np,1.0/sw);                 /* acquire FID */
    endacq();

    delay(t_after);                     /* time padding to fill TR */
    /******************************************************/
    /*                                                    */
    /*                    E N D                           */
    /*        P U L S E    S E Q U E N C E                */
    /*                                                    */
    /******************************************************/

}
Beispiel #15
0
void pulsesequence() {

// Define Variables and Objects and Get Parameter Values

   CP hx = getcp("HX",0.0,0.0,0,1);
   strncpy(hx.fr,"dec",3);
   strncpy(hx.to,"obs",3);
   putCmd("frHX='dec'\n");
   putCmd("toHX='obs'\n");
   MPSEQ spc5 = getspc5("spc5X",0,0.0,0.0,0,1);
   MPSEQ spc5ref = getspc5("spc5X",spc5.iSuper,spc5.phAccum,spc5.phInt,1,1); 
   strncpy(spc5.ch,"obs",3);
   putCmd("chXspc5='obs'\n");

   DSEQ dec = getdseq("H");
   strncpy(dec.t.ch,"dec",3);
   putCmd("chHtppm='dec'\n"); 
   strncpy(dec.s.ch,"dec",3);
   putCmd("chHspinal='dec'\n");

// Set Constant-time Period for d2. 

   if (d2_index == 0) d2_init = getval("d2");
   double d2_ = (ni - 1)/sw1 + d2_init;
   putCmd("d2acqret = %f\n",roundoff(d2_,12.5e-9));
   putCmd("d2dwret = %f\n",roundoff(1.0/sw1,12.5e-9));

//--------------------------------------
// Copy Current Parameters to Processed
//-------------------------------------

   putCmd("groupcopy('current','processed','acquisition')");

// Dutycycle Protection

   DUTY d = init_dutycycle();
   d.dutyon = getval("pwH90") + getval("tHX") + getval("pwX90") +
              spc5.t + spc5ref.t;
   d.dutyoff = d1 + 4.0e-6 + 2.0*getval("tZF");
   d.c1 = d.c1 + (!strcmp(dec.seq,"tppm"));
   d.c1 = d.c1 + ((!strcmp(dec.seq,"tppm")) && (dec.t.a > 0.0));
   d.t1 = d2_ +  getval("rd") + getval("ad") + at;
   d.c2 = d.c2 + (!strcmp(dec.seq,"spinal"));
   d.c2 = d.c2 + ((!strcmp(dec.seq,"spinal")) && (dec.s.a > 0.0));
   d.t2 = d2_ +  getval("rd") + getval("ad") + at;
   d = update_dutycycle(d);
   abort_dutycycle(d,10.0);

// Create Phasetables

   settable(phH90,4,table1);
   settable(phHhx,4,table2);
   settable(phXhx,4,table3);
   settable(phXmix1,4,table4);
   settable(phXmix2,4,table5);
   settable(phRec,4,table6);
   setreceiver(phRec);

   if (phase1 == 2)
      tsadd(phXhx,1,4);

// Begin Sequence

   txphase(phXhx); decphase(phH90);
   obspwrf(getval("aXhx")); decpwrf(getval("aH90"));
   obsunblank(); decunblank(); _unblank34();
   delay(d1);
   sp1on(); delay(2.0e-6); sp1off(); delay(2.0e-6);

// H to X Cross Polarization

   decrgpulse(getval("pwH90"),phH90,0.0,0.0);
   decphase(phHhx);
    _cp_(hx,phHhx,phXhx);

// F2 Indirect Period for X

   obspwrf(getval("aX90"));
   _dseqon(dec);
   delay(d2);
   _dseqoff(dec);

// Mixing with SPC5 Recoupling

   rgpulse(getval("pwX90"),phXmix1,0.0,0.0);
   obspwrf(getval("aXspc5"));
   xmtrphase(v1); txphase(phXmix1);
   delay(getval("tZF"));
   decpwrf(getval("aHmix"));
   decon();
   _mpseq(spc5, phXmix1);
   xmtrphase(v2); txphase(phXmix2);
   _mpseq(spc5ref, phXmix2);
   decoff();
   obspwrf(getval("aX90"));
   xmtrphase(zero); txphase(phXmix2);
   delay(getval("tZF"));
   rgpulse(getval("pwX90"),phXmix2,0.0,0.0);

// Begin Acquisition

   _dseqon(dec);
   obsblank(); _blank34();
   delay(getval("rd"));
   startacq(getval("ad"));
   acquire(np, 1/sw);
   endacq();
   _dseqoff(dec);
   obsunblank(); decunblank(); _unblank34();
}
Beispiel #16
0
void pulsesequence()
{
   char    c1d[MAXSTR];               /* option to record only 1D C13 spectrum */
   int     ncyc;
   double  tau1 = 0.002,         			          /*  t1 delay */
           post_del = 0.0,
           pwClvl = getval("pwClvl"), 	  /* coarse power for C13 pulse */
           pwC = getval("pwC"),     	  /* C13 90 degree pulse length at pwClvl */
	   compC = getval("compC"),
	   compH = getval("compH"),
	   mixpwr = getval("mixpwr"),
	   jCH = getval("jCH"),
	   gt0 = getval("gt0"),  		       
	   gt1 = getval("gt1"),  		       
	   gt2 = getval("gt2"),  		       
	   gzlvl0 = getval("gzlvl0"),
	   gzlvl1 = getval("gzlvl1"),
	   gzlvl2 = getval("gzlvl2"),
	   grec = getval("grec"),
	   phase = getval("phase");

           getstr("c1d",c1d);
	   
           ncyc=1;
           if(jCH > 0.0)
             tau1 = 0.25/jCH;

           dbl(ct, v1);                     /* v1 = 0 */
           mod4(v1,oph);
           hlv(ct,v2);
           add(v2,v1,v2);
           if (phase > 1.5)
             incr(v1);                      /* hypercomplex phase increment */           

           initval(2.0*(double)((int)(d2*getval("sw1")+0.5)%2),v10); 
           add(v1,v10,v1);
           add(oph,v10,oph);
           mod4(v1,v1);  mod4(v2,v2); mod4(oph,oph); 
           assign(zero,v3);

           if(FIRST_FID) 
	   {
	     HHmix = pbox_mix("HHmix", "DIPSI2", mixpwr, pw*compH, tpwr);  
	     if(c1d[A] == 'n')
	     {
	       opx("CHdec"); setwave("WURST2 30k/1.2m"); pbox_par("steps","600"); cpx(pwC*compC, pwClvl);
	       CHdec = getDsh("CHdec");
	     }
	   }
	   ncyc = (int) (at/HHmix.pw) + 1;
	   post_del = ncyc*HHmix.pw - at;
	            
             
/* BEGIN PULSE SEQUENCE */

      status(A);

	zgradpulse(gzlvl0, gt0);
	rgpulse(pw, zero, 0.0, 0.0);  /* destroy H-1 magnetization*/
	zgradpulse(gzlvl0, gt0);
	delay(1.0e-4);
	obspower(tpwr);
	txphase(v1);
        decphase(zero);
        dec2phase(zero);

        presat();
	obspower(tpwr);
        	
	delay(1.0e-5);

      status(B);

        if(c1d[A] == 'y')
	{
   	  rgpulse(pw,v1,0.0,0.0);                 /* 1H pulse excitation */
          delay(d2);
   	  rgpulse(pw,two,0.0,0.0);                 /* 1H pulse excitation */
          assign(oph,v3);
	}
	else
	{
          decunblank(); pbox_decon(&CHdec);

   	  rgpulse(pw,v1,0.0,0.0);                 /* 1H pulse excitation */
   	  txphase(zero);
   	
          delay(d2);

          pbox_decoff(); decblank();  
          decpower(pwClvl); decpwrf(4095.0);
   	  
	  delay(tau1 - POWER_DELAY);
          simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);
          txphase(one); decphase(one); dec2phase(one);
	  delay(tau1);
          simpulse(pw, pwC, one, one, 0.0, 0.0);
          txphase(zero); decphase(zero); dec2phase(zero);
	  delay(tau1);
          simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);
	  delay(tau1);
          simpulse(0.0, pwC, zero, zero, 0.0, 0.0);
        }
	zgradpulse(gzlvl1, gt1);
   	delay(grec);
        simpulse(0.0, pwC, zero, v3, 0.0, rof2);
        
        txphase(v2);
        obsunblank(); pbox_xmtron(&HHmix);  

      status(C);
      
        setactivercvrs("ny");
        startacq(alfa);
        acquire(np,1.0/sw);
        endacq();
        
	delay(post_del);
        pbox_xmtroff(); obsblank();
        zgradpulse(gzlvl2, gt2);
        obspower(tpwr);
   	delay(grec);
   	rgpulse(pw,zero,0.0,rof2);                 /* 1H pulse excitation */
   	        
      status(D);
      
        setactivercvrs("yn");
        startacq(alfa);
        acquire(np,1.0/sw);
        endacq();

}		 
Beispiel #17
0
pulsesequence()
{



/* DECLARE AND LOAD VARIABLES */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
	    rna_stCdec[MAXSTR],	       /* calls STUD+ waveforms from shapelib */
	    STUD[MAXSTR];   /* apply automatically calculated STUD decoupling */
 
int         icosel1,          			  /* used to get n and p type */
	    icosel2,
            t1_counter,  		        /* used for states tppi in t1 */
            t2_counter,  	 	        /* used for states tppi in t2 */
	    ni2 = getval("ni2");

double      tau1,         				         /*  t1 delay */
            tau2,        				         /*  t2 delay */
	    del = getval("del"),     /* time delays for CH coupling evolution */
	    del1 = getval("del1"),
	    del2 = getval("del2"),
/* STUD+ waveforms automatically calculated by macro "rnacal" */
/* and string parameter rna_stCdec calls them from your shapelib.*/
   stdmf,                              		   /* dmf for STUD decoupling */
   studlvl,	                         /* coarse power for STUD+ decoupling */
   rf80 = getval("rf80"), 			  /* rf in Hz for 80ppm STUD+ */

	pwClvl = getval("pwClvl"), 	        /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
	rfC,            	  /* maximum fine power when using pwC pulses */
	dofa,                             /* dof shifted to 80 ppm for ribose */

/* p_d is used to calculate the isotropic mixing on the Cab region */
        p_d,                   	        /* 50 degree pulse for DIPSI-3 at rfd */
        rfd,                   			     /* fine power for 35 ppm */
	ncyc = getval("ncyc"), 			  /* no. of cycles of DIPSI-3 */

   compC = getval("compC"),       /* adjustment for C13 amplifier compression */


	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),

 grecov = getval("grecov"),   /* Gradient recovery delay, typically 150-200us */

	gt1 = getval("gt1"),  		       /* coherence pathway gradients */
	gzlvl1 = getval("gzlvl1"),
	gzlvl2 = getval("gzlvl2"),

	gt3 = getval("gt3"),				   /* other gradients */
	gt5 = getval("gt5"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5"),
	gzlvl6 = getval("gzlvl6");

    getstr("STUD",STUD);
    getstr("f1180",f1180);
    getstr("f2180",f2180);

/*   LOAD PHASE TABLE    */

	settable(t3,2,phi3);
	settable(t6,1,phi6);
	settable(t5,4,phi5);
	settable(t10,1,phi10);
	settable(t11,4,rec);

        

/*   INITIALIZE VARIABLES   */

    if( dpwrf < 4095 )
	{ text_error("reset dpwrf=4095 and recalibrate C13 90 degree pulse");
	  psg_abort(1); }

/* maximum fine power for pwC pulses */
	rfC = 4095.0;

/*  Center dof in RIBOSE region on 80 ppm. */
        dofa = dof - 30.0*dfrq;
		
/* dipsi-3 decoupling C-ribose */
 	p_d = (5.0)/(9.0*4.0*7000.0*(sfrq/800.0)); /* DIPSI-3 covers 35 ppm */
 	rfd = (compC*4095.0*pwC*5.0)/(p_d*9.0);
	rfd = (int) (rfd + 0.5);
  	ncyc = (int) (ncyc + 0.5);

/* 80 ppm STUD+ decoupling */
        strcpy(rna_stCdec, "wurst80");
	stdmf = getval("dmf80");
        studlvl = pwClvl + 20.0*log10(compC*pwC*4.0*rf80);
        studlvl = (int) (studlvl + 0.5);


/* CHECK VALIDITY OF PARAMETER RANGES */

  if( gt1 > 0.5*del - 0.5*grecov )
  { text_error(" gt1 is too big. Make gt1 less than %f.\n", (0.5*del - 0.5*grecov)); psg_abort(1);}

  if((dm3[A] == 'y' || dm3[C] == 'y' ))
  { text_error("incorrect dec1 decoupler flags! Should be 'nyn' or 'nnn' "); psg_abort(1); }

  if((dm2[A] == 'y' || dm2[B] == 'y'))
  { text_error("incorrect dec2 decoupler flags! Should be 'nnn' or 'nny' "); psg_abort(1); }

  if((dm[A] == 'y' || dm[B] == 'y'))
  { text_error("incorrect dec1 decoupler flags! Should be 'nny' "); psg_abort(1); }

  if( (((dm[C] == 'y') && (dm2[C] == 'y')) && (STUD[A] == 'y')) )
  { text_error("incorrect dec2 decoupler flags! Should be 'nnn' if STUD='y'"); psg_abort(1); }

  if( dpwr > 50 )
  { text_error("don't fry the probe, DPWR too large!  "); psg_abort(1); }

  if( dpwr2 > 50 )
  { text_error("don't fry the probe, DPWR2 too large!  "); psg_abort(1); }

  if( (pw > 20.0e-6) && (tpwr > 56) )
  { text_error("don't fry the probe, pw too high ! "); psg_abort(1); }

  if( (pwC > 40.0e-6) && (pwClvl > 56) )
  { text_error("don't fry the probe, pwN too high ! "); psg_abort(1); }

  if( (pwN > 100.0e-6) && (pwNlvl > 56) )
  { text_error("don't fry the probe, pwN too high ! "); psg_abort(1); }

  if ((dm3[B] == 'y'  &&   dpwr3 > 44 ))
  { text_error ("Deuterium decoupling power too high ! "); psg_abort(1); }

  if ((ncyc > 1 ) && (ix == 1))
  { text_error("mixing time is %f ms.\n",(ncyc*97.8*4*p_d)); }


/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    icosel1 = -1;  icosel2 = -1;
    if (phase1 == 2) 
	{ tsadd(t6,2,4); icosel1 = -1*icosel1; }
    if (phase2 == 2) 
	{ tsadd(t10,2,4); icosel2 = -1*icosel2; tsadd(t6,2,4); }


/*  Set up f1180  */
   
    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0)) 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }
    tau1 = tau1/2.0;


/*  Set up f2180  */

    tau2 = d3;
    if((f2180[A] == 'y') && (ni2 > 1.0)) 
	{ tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; }
    tau2 = tau2/2.0;



/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t3,2,4); tsadd(t11,2,4); }

   if( ix == 1) d3_init = d3;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) 
	{ tsadd(t5,2,4); tsadd(t11,2,4); }



/*   BEGIN PULSE SEQUENCE   */

status(A);
 if (dm3[B]=='y') lk_sample();
   	delay(d1);
 if (dm3[B]=='y') lk_hold();

	rcvroff();
	obspower(tpwr);
	decpower(pwClvl);
 	dec2power(pwNlvl);
	decpwrf(rfC);
	obsoffset(tof);
        decoffset(dofa);
        dec2offset(dof2);
	txphase(t3);
	delay(1.0e-5);

	decrgpulse(pwC, zero, 0.0, 0.0);	   /*destroy C13 magnetization*/
	zgradpulse(gzlvl1, 0.5e-3);
	delay(grecov/2);
	decrgpulse(pwC, one, 0.0, 0.0);
	zgradpulse(0.7*gzlvl1, 0.5e-3);
	delay(5.0e-4);

   if(dm3[B] == 'y')				  /*optional 2H decoupling on */
        { 
          dec3unblank();
          dec3rgpulse(1/dmf3, one, 0.0, 0.0); 
          dec3unblank();
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
         } 
	rgpulse(pw, t3, 0.0, 0.0);                    /* 1H pulse excitation */

        decphase(zero);
	delay(0.5*del + tau1 - 2.0*pwC);

        decrgpulse(2.0*pwC, zero, 0.0, 0.0);

        txphase(zero);
	delay(tau1);

	rgpulse(2.0*pw, zero, 0.0, 0.0);

	zgradpulse(icosel1*gzlvl1, 0.1*gt1);
        decphase(t5);
	delay(0.5*del - 0.1*gt1);

	simpulse(pw, pwC, zero, t5, 0.0, 0.0);

	zgradpulse(gzlvl3, gt3);
        decphase(zero);
	delay(0.5*del2 - gt3);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl3, gt3);
        txphase(t6);
        decphase(one);
	delay(0.5*del2 - gt3);

	simpulse(pw, pwC, t6, one, 0.0, 0.0);

	zgradpulse(gzlvl4, gt3);
        txphase(zero);
        decphase(zero);
	delay(0.5*del1 - gt3);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl4, gt3);
	delay(0.5*del1 - gt3);

	decrgpulse(pwC, zero, 0.0, 0.0);
	decpwrf(rfd);
	delay(2.0e-6);
	initval(ncyc, v2);
	starthardloop(v2);
     decrgpulse(4.9*p_d,zero,0.0,0.0);
     decrgpulse(7.9*p_d,two,0.0,0.0);
     decrgpulse(5.0*p_d,zero,0.0,0.0);
     decrgpulse(5.5*p_d,two,0.0,0.0);
     decrgpulse(0.6*p_d,zero,0.0,0.0);
     decrgpulse(4.6*p_d,two,0.0,0.0);
     decrgpulse(7.2*p_d,zero,0.0,0.0);
     decrgpulse(4.9*p_d,two,0.0,0.0);
     decrgpulse(7.4*p_d,zero,0.0,0.0);
     decrgpulse(6.8*p_d,two,0.0,0.0);
     decrgpulse(7.0*p_d,zero,0.0,0.0);
     decrgpulse(5.2*p_d,two,0.0,0.0);
     decrgpulse(5.4*p_d,zero,0.0,0.0);
     decrgpulse(0.6*p_d,two,0.0,0.0);
     decrgpulse(4.5*p_d,zero,0.0,0.0);
     decrgpulse(7.3*p_d,two,0.0,0.0);
     decrgpulse(5.1*p_d,zero,0.0,0.0);
     decrgpulse(7.9*p_d,two,0.0,0.0);

     decrgpulse(4.9*p_d,two,0.0,0.0);
     decrgpulse(7.9*p_d,zero,0.0,0.0);
     decrgpulse(5.0*p_d,two,0.0,0.0);
     decrgpulse(5.5*p_d,zero,0.0,0.0);
     decrgpulse(0.6*p_d,two,0.0,0.0);
     decrgpulse(4.6*p_d,zero,0.0,0.0);
     decrgpulse(7.2*p_d,two,0.0,0.0);
     decrgpulse(4.9*p_d,zero,0.0,0.0);
     decrgpulse(7.4*p_d,two,0.0,0.0);
     decrgpulse(6.8*p_d,zero,0.0,0.0);
     decrgpulse(7.0*p_d,two,0.0,0.0);
     decrgpulse(5.2*p_d,zero,0.0,0.0);
     decrgpulse(5.4*p_d,two,0.0,0.0);
     decrgpulse(0.6*p_d,zero,0.0,0.0);
     decrgpulse(4.5*p_d,two,0.0,0.0);
     decrgpulse(7.3*p_d,zero,0.0,0.0);
     decrgpulse(5.1*p_d,two,0.0,0.0);
     decrgpulse(7.9*p_d,zero,0.0,0.0);

     decrgpulse(4.9*p_d,two,0.0,0.0);
     decrgpulse(7.9*p_d,zero,0.0,0.0);
     decrgpulse(5.0*p_d,two,0.0,0.0);
     decrgpulse(5.5*p_d,zero,0.0,0.0);
     decrgpulse(0.6*p_d,two,0.0,0.0);
     decrgpulse(4.6*p_d,zero,0.0,0.0);
     decrgpulse(7.2*p_d,two,0.0,0.0);
     decrgpulse(4.9*p_d,zero,0.0,0.0);
     decrgpulse(7.4*p_d,two,0.0,0.0);
     decrgpulse(6.8*p_d,zero,0.0,0.0);
     decrgpulse(7.0*p_d,two,0.0,0.0);
     decrgpulse(5.2*p_d,zero,0.0,0.0);
     decrgpulse(5.4*p_d,two,0.0,0.0);
     decrgpulse(0.6*p_d,zero,0.0,0.0);
     decrgpulse(4.5*p_d,two,0.0,0.0);
     decrgpulse(7.3*p_d,zero,0.0,0.0);
     decrgpulse(5.1*p_d,two,0.0,0.0);
     decrgpulse(7.9*p_d,zero,0.0,0.0);

     decrgpulse(4.9*p_d,zero,0.0,0.0);
     decrgpulse(7.9*p_d,two,0.0,0.0);
     decrgpulse(5.0*p_d,zero,0.0,0.0);
     decrgpulse(5.5*p_d,two,0.0,0.0);
     decrgpulse(0.6*p_d,zero,0.0,0.0);
     decrgpulse(4.6*p_d,two,0.0,0.0);
     decrgpulse(7.2*p_d,zero,0.0,0.0);
     decrgpulse(4.9*p_d,two,0.0,0.0);
     decrgpulse(7.4*p_d,zero,0.0,0.0);
     decrgpulse(6.8*p_d,two,0.0,0.0);
     decrgpulse(7.0*p_d,zero,0.0,0.0);
     decrgpulse(5.2*p_d,two,0.0,0.0);
     decrgpulse(5.4*p_d,zero,0.0,0.0);
     decrgpulse(0.6*p_d,two,0.0,0.0);
     decrgpulse(4.5*p_d,zero,0.0,0.0);
     decrgpulse(7.3*p_d,two,0.0,0.0);
     decrgpulse(5.1*p_d,zero,0.0,0.0);
     decrgpulse(7.9*p_d,two,0.0,0.0);
	endhardloop();

        dec2phase(zero);
        decphase(zero);
        txphase(zero);
	decpwrf(rfC);
	delay(tau2);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	delay(tau2);
	decpwrf(rfC);
	zgradpulse(-icosel2*gzlvl2, 1.8*gt1);
	delay(grecov+2.0e-6);

	decrgpulse(2.0*pwC, zero, 0.0, 0.0);

	decpwrf(rfC);
	zgradpulse(icosel2*gzlvl2, 1.8*gt1);
	delay(grecov + pwN);

	decrgpulse(pwC, zero, 0.0, 0.0);
	decpwrf(rfC);
	decrgpulse(pwC, zero, 2.0e-6, 0.0);

	zgradpulse(gzlvl5, gt5);
	delay(0.5*del1 - gt5);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl5, gt5);
	txphase(one);
	decphase(t10);
	delay(0.5*del1 - gt5);

	simpulse(pw, pwC, one, t10, 0.0, 0.0);

	zgradpulse(gzlvl6, gt5);
	txphase(zero);
	decphase(zero);
	delay(0.5*del2 - gt5);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl6, gt5);
	delay(0.5*del2 - gt5);

	simpulse(pw, pwC, zero, zero, 0.0, 0.0);

	delay(0.5*del - 0.5*pwC);

	simpulse(2.0*pw,2.0*pwC, zero, zero, 0.0, 0.0);
   if (STUD[A]=='y') decpower(studlvl);

   else
    {
	decpower(dpwr);
	dec2power(dpwr2);
    }
	zgradpulse(gzlvl1, gt1);         		/* 2.0*GRADIENT_DELAY */
   if(dm3[B] == 'y') 
	delay(0.5*del - gt1 -1/dmf3 - 2.0*GRADIENT_DELAY - POWER_DELAY);
      else
	delay(0.5*del - gt1 - 2.0*GRADIENT_DELAY - POWER_DELAY);
   if(dm3[B] == 'y')			         /*optional 2H decoupling off */
        {
          dec3rgpulse(1/dmf3, three, 0.0, 0.0); dec3blank();
          setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3);
          dec3blank();
        }
	decpower(dpwr);				               /* POWER_DELAY */
  if (dm3[B]=='y') lk_sample();
  if ((STUD[A]=='y') && (dm[C] == 'y'))
        {decpower(studlvl);
         decunblank();
         decon();
         decprgon(rna_stCdec,1/stdmf, 1.0);
         startacq(alfa);
         acquire(np, 1.0/sw);
         decprgoff();
         decoff();
         decblank();
        }
      else
	 status(C);
 setreceiver(t11);
}		 
void pulsesequence() {

// Set the Maximum Dynamic Table and v-var Numbers

   settablenumber(20);
   setvvarnumber(30);

// Define Variables and Objects and Get Parameter Values

   MPSEQ dumbo = getdumbogen("dumboX","dcf1X",0,0.0,0.0,0,1);
   strncpy(dumbo.ch,"obs",3); 
   putCmd("chXdumbo='obs'\n");

   MPSEQ c7 = getpostc7("c7X",0,0.0,0.0,0,1);  
   MPSEQ c7ref = getpostc7("c7X",c7.iSuper,c7.phAccum,c7.phInt,1,1);
   strncpy(c7.ch,"obs",3);
   putCmd("chXc7='obs'\n");

   WMPA wdumbo = getwdumbogen("wdumboX","dcfX");
   strncpy(wdumbo.ch,"obs",3);
   putCmd("chXwdumbo='obs'\n");

   double tXzfinit = getval("tXzf");            //Define the Z-filter delay in the sequence
   double tXzf = tXzfinit - 5.0e-6 - wdumbo.r1;

// Set Constant-time Period for d2. 

   if (d2_index == 0) d2_init = getval("d2");
   double d2_ = (ni - 1)/sw1 + d2_init;
   putCmd("d2acqret = %f\n",roundoff(d2_,12.5e-9));
   putCmd("d2dwret = %f\n",roundoff(1.0/sw1,12.5e-9));

//--------------------------------------
// Copy Current Parameters to Processed
//-------------------------------------

   putCmd("groupcopy('current','processed','acquisition')");

// Dutycycle Protection

   DUTY d = init_dutycycle();
   d.dutyon = c7.t + getval("pwXtilt") + d2_ + getval("pwXtilt") + c7ref.t + getval("pwX90") +
                   + wdumbo.q*wdumbo.cycles*wdumbo.pw;
   d.dutyoff = 4.0e-6 + d1 + tXzfinit + wdumbo.r2 + at - wdumbo.q*wdumbo.cycles*wdumbo.pw;
   d = update_dutycycle(d);
   abort_dutycycle(d,10.0); 

// Set Phase Tables

   settable(ph1Xc7,4,table1);
   settable(phXdumbo,4,table2);
   settable(ph2Xc7,4,table3);
   settable(phX90,16,table4);
   settable(phXwdumbo,4,table5);
   settable(phRec,16,table6);
   settable(ph1Xtilt,4,table7);
   settable(ph2Xtilt,4,table8);

// Set the Small-Angle Prep Phase

   double obsstep = 360.0/(PSD*8192);
   obsstepsize(obsstep);
   int phfX90 = initphase(0.0, obsstep);

//Add STATES Quadrature Phase

   if (phase1 == 2)
      initval((45.0/obsstep),v1);
   else
      initval(0.0,v1);

   initval((d2*c7.of[0]*360.0/obsstep),v2);
   initval(0.0,v3);
   obsstepsize(obsstep);
   setreceiver(phRec);

// Begin Sequence

   xmtrphase(v1); txphase(ph1Xc7);
   obspwrf(getval("aXc7"));
   obsunblank(); decunblank(); _unblank34();
   delay(d1);
   sp1on(); delay(2.0e-6); sp1off(); delay(2.0e-6);

// C7 Recoupling of 2Q coherence

   _mpseq(c7, ph1Xc7);

// F1 Evolution With DUMBO

   xmtrphase(v3);
   if (!getval("scXdcf1")){
   	obspwrf(getval("aX90"));
   	rgpulse(getval("pwXtilt"),ph1Xtilt,0.0,0.0);
   }
   obspwrf(getval("aXdumbo"));
   obsunblank();
   _mpseqon(dumbo,phXdumbo);
   delay(d2);
   _mpseqoff(dumbo);
   if (!getval("scXdcf1")){
   	obspwrf(getval("aX90"));
   	rgpulse(getval("pwXtilt"),ph2Xtilt,0.0,0.0);
   }
   obspwrf(getval("aX90"));
   obsunblank();

// C7 Transfer to 1Q Coherence

   xmtrphase(v2);
   _mpseq(c7ref, ph2Xc7);

// Z-filter Delay

   delay(tXzf);

// Detection Pulse

   txphase(phX90);
   obspwrf(getval("aX90"));
   startacq(5.0e-6);
   rcvroff();
   delay(wdumbo.r1);
   rgpulse(getval("pwX90"), phX90, 0.0, 0.0);
   obsunblank();
   xmtrphase(v3);
   delay(wdumbo.r2);

// Apply WPMLG Cycles During Acqusition

   decblank(); _blank34();
   _wdumbo(wdumbo,phXwdumbo);
   endacq();
   obsunblank(); decunblank(); _unblank34();  
}
Beispiel #19
0
pulsesequence()
{

  /* Internal variable declarations *************************/

  /*timing*/
  double tr_delay;
  double te_d1,te_d2,te_d3;             /* delays */
  double tau1,tau2,tau3;
  
  
  /*voxel crusher multipliers */
  double fx,fy,fz;
  
  /*localization parameters*/
  double freq1,freq2,freq3;
  double vox1_cr,vox2_cr, vox3_cr;
  int nDim;
 

  double rprof,pprof,sprof;
  char profile_vox[MAXSTR],profile_ovs[MAXSTR];

  double restol, resto_local, csd_ppm;

  /*phase cycle****/
  int counter,noph;
  char autoph[MAXSTR], pcflag[MAXSTR];
  int rf1_phase[64]  = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
			1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}; 
  int rf2_phase[64]  = {0,0,0,0,2,2,2,2,1,1,1,1,3,3,3,3,0,0,0,0,2,2,2,2,1,1,1,1,3,3,3,3,
			0,0,0,0,2,2,2,2,1,1,1,1,3,3,3,3,0,0,0,0,2,2,2,2,1,1,1,1,3,3,3,3}; 
  int rf3_phase[64]  = {0,2,1,3,0,2,1,3,0,2,1,3,0,2,1,3,0,2,1,3,0,2,1,3,0,2,1,3,0,2,1,3,
			0,2,1,3,0,2,1,3,0,2,1,3,0,2,1,3,0,2,1,3,0,2,1,3,0,2,1,3,0,2,1,3}; 
 
 
  /* Initialize paramaters **********************************/
  init_mri();  //this gets all the parameters that are defined in acqparms.h, etc
  get_wsparameters();
  get_ovsparameters();

  rprof = getval("rprof");
  pprof = getval("pprof");
  sprof = getval("sprof");

  //read the crusher factors that are designed to create grad on the same axis without refoc 
  fx=getval("fx");
  fy=getval("fy");
  fz=getval("fz");

  
  getstr("profile_vox",profile_vox);
  getstr("profile_ovs",profile_ovs);

  /*set voxel sizes for butterfly crushers to 10^6 to set the slice portion to zero ***/
  vox1_cr=1000000;
  vox2_cr=1000000;
  vox3_cr=1000000;
  
  /***** RF power initialize *****/
  init_rf(&p1_rf,p1pat,p1,flip1,rof1,rof2);
  init_rf(&p2_rf,p2pat,p2,flip2,rof1,rof2);

 

  
  
  /***** Initialize gradient structs *****/
  trampfixed=trise; //rise time =trise 
  tcrush=granularity(tcrush,GRADIENT_RES); //this is to avoid the granularity errors
  //if trampfixed is used, rise time needs to be checked 
  if (trise*2>tcrush){
  
   abort_message("tcrush too short. Minimum tcrush = %fms \n",1000*trise*2);
  }

  if (gcrush>gmax){
  
   abort_message("gcrush too large. Max gcrush = %f \n",gmax*0.95);
  }

  init_slice_butterfly(&vox1_grad,"vox1",vox1,gcrush,tcrush);
  init_slice_butterfly(&vox2_grad,"vox2",vox2,gcrush,tcrush);
  init_slice_butterfly(&vox3_grad,"vox3",vox3,gcrush,tcrush);

  init_slice_butterfly(&vox1_crush,"vox1_crush",vox1_cr,gcrush,tcrush);
  init_slice_butterfly(&vox2_crush,"vox2_crush",vox2_cr,gcrush,tcrush);
  init_slice_butterfly(&vox3_crush,"vox3_crush",vox3_cr,gcrush,tcrush); 
  if (profile_vox[0] == 'y') {
    init_readout_butterfly(&ro_grad,"ro",lro,np,sw,gcrushro,tcrushro);
    init_readout_refocus(&ror_grad,"ror");
  }
 
  /***** RF and Gradient calculations *****/
  calc_rf(&p1_rf,"tpwr1","tpwr1f");
  calc_rf(&p2_rf,"tpwr2","tpwr2f");
  
  calc_slice(&vox1_grad,&p2_rf,WRITE,"gvox1");
  calc_slice(&vox2_grad,&p2_rf,WRITE,"gvox2");
  calc_slice(&vox3_grad,&p2_rf,WRITE,"gvox3");

  calc_slice(&vox1_crush,&p2_rf,WRITE,"vox1_crush");
  calc_slice(&vox2_crush,&p2_rf,WRITE,"vox2_crush");
  calc_slice(&vox3_crush,&p2_rf,WRITE,"vox3_crush");

  if (profile_vox[0] == 'y') {
    calc_readout(&ro_grad,WRITE,"gro","sw","at");
    putvalue("gro",ro_grad.roamp);       // RO grad
    calc_readout_refocus(&ror_grad,&ro_grad,WRITE,"gror");
    putvalue("tror",ror_grad.duration);  // ROR duration
  }

  //set all gradients along a particular direction to zero if profile is needed

  if (profile_ovs[0]=='y'){
     if (rprof==1) {
       vox1_grad.amp=0; //set slice selection in read direction to none 
       vox3_crush.amp=0; // set corresponding crusher gradients to none
       
     }
     else if(pprof==1) {
     vox2_grad.amp=0;
     vox1_crush.amp=0;
     }     
     else if(sprof==1) {
     vox3_grad.amp=0;
     vox2_crush.amp=0;
     }
  }


  

  /* Optional OVS and Water Suppression */
  
  if (ovs[0] == 'y')  create_ovsbands();
  if (sat[0] == 'y')  create_satbands();
  if (ws[0]  == 'y')  create_watersuppress();

  //Read in parameters not defined in acqparms.h and sglHelper 
  nDim=getval("nDim");
  restol=getval("restol");  //local frequency offset 
  roff=getval("roff");       //receiver offset
  csd_ppm=getval("csd_ppm"); //chemical shift displacement factor
  
  noph=getval("noph");
  getstr("autoph",autoph);
  getstr("pcflag",pcflag);
  settable(t3,noph,rf1_phase);
  settable(t2,noph,rf2_phase);
  settable(t1,noph,rf3_phase);

  /* tau1, tau2 and tau3 are sums of all events in TE*/
  tau1 = vox1_grad.rfCenterFront+GDELAY+rof2;
  tau2 = vox1_grad.rfCenterBack + vox1_grad.rfCenterFront+2*(GDELAY+rof2);
  tau3 = vox3_grad.rfCenterBack+GDELAY+rof2;
  temin  = tau1+5.0*tau2+tau3;  

  if (minte[0] == 'y') {
   
    te = temin;
    putvalue("te",te);
   }
  if (te < temin) {
    abort_message("te too short. Minimum te = %.2f ms\n",temin*1000);
  }
  

  /***** Calculate TE delays *****/
  te_d1 = te/12.0 - tau1+GDELAY;
  te_d2 = te/6.0 - tau2+2*(GDELAY+rof2);
  te_d3 = te/12.0 - tau3+GDELAY+rof2;

  
  //Calculate delta from resto to include local frequency line+ chemical shift offset
  resto_local=resto-restol;  


/***** Min TR *****/
  trmin = GDELAY + p1 + te + at+rof1+rof2;

  if (ws[0]  == 'y') trmin += wsTime;
  if (ovs[0] == 'y') trmin += ovsTime;
  if (sat[0] == 'y') trmin += satTime;
  if (profile_vox[0] == 'y') trmin += ror_grad.duration + ro_grad.duration - at; 

  if (mintr[0] == 'y') {
    tr = trmin;  // ensure at least 4us between gradient events
    putvalue("tr",tr);
  }
  if ((trmin-tr) > 12.5e-9) {
    abort_message("TR too short.  Minimum TR= %.2fms\n",trmin*1000);
  }
/***** Calculate TR delay *****/
  tr_delay = tr - trmin;

/* Frequency offsets */
  freq1    = poffset(pos1,vox1_grad.ssamp); // First  RF pulse
  freq2    = poffset(pos2,vox2_grad.ssamp); // Second RF pulse
  freq3    = poffset(pos3,vox3_grad.ssamp); // Third  RF pulse
 

  freq1=freq1-csd_ppm*sfrq;
  freq2=freq2-csd_ppm*sfrq;
  freq3=freq3-csd_ppm*sfrq;
  


 /* Frequency offsets */
  if (profile_vox[0] == 'y') {
    /* Shift DDR for pro ************************************/
    roff = -poffset(pro,ro_grad.roamp);
  } 


  /* Put gradient information back into VnmrJ parameters */
  putvalue("gvox1",vox1_grad.ssamp);
  putvalue("gvox2",vox2_grad.ssamp);
  putvalue("gvox3",vox3_grad.ssamp);
  putvalue("rgvox1",vox1_grad.tramp);
  putvalue("rgvox2",vox2_grad.tramp);
  putvalue("rgvox3",vox3_grad.tramp);
  
  
  
  sgl_error_check(sglerror);
  
  if (ss<0) g_setExpTime(tr*(nt-ss)*arraydim);
  else g_setExpTime(tr*(nt*arraydim+ss));

/**[2.7] PHASE CYCLING ******************************************************/

  assign(zero, oph); 
  counter=(double)nt*(ix-1);
  if (autoph[0] == 'n') counter=0.0; //only goes through nt, if 'y' goes through nt*array
  initval(counter,v1);
  initval(noph,v3);
  add(v1,ct,v2);
  modn(v2,v3,v2);
  
  /* Full phase cycling requires 64 steps*/
  
  if (pcflag[0] == 'n') {
  assign(zero,v2);
  getelem(t1,v2,v10);
  getelem(t2,v2,v11);
  getelem(t3,v2,v12); 
  }
  else
  {
  getelem(t1,v2,v10);
  getelem(t2,v2,v11);
  getelem(t3,v2,v12); 
  }
  

 
 
  /*Start of the sequence*/
  obsoffset(resto_local);  // need it here for water suppression to work
  delay(GDELAY);
  rot_angle(vpsi,vphi,vtheta);

  if (ticks) {
    xgate(ticks);
    grad_advance(gpropdelay);
    delay(4e-6);
  }

  /* TTL scope trigger **********************************/
  //sp1on(); delay(4e-6); sp1off();

  /* Saturation bands ***********************************/
  
  
  if (ovs[0] == 'y') ovsbands();
  if (sat[0] == 'y') satbands();

  /* Water suppression **********************************/
  if (ws[0]  == 'y') watersuppress();

  /* Slice selective 90 degree RF pulse *****/
  obspower(p1_rf.powerCoarse);
  obspwrf(p1_rf.powerFine);
  delay(GDELAY);
  
  shaped_pulse(p1pat,p1,zero,rof1,rof2);

   /* start localization */
  obspower(p2_rf.powerCoarse);
  obspwrf(p2_rf.powerFine);
  
  if (nDim > 2.5) {
  
  delay(te_d1);   //this is at least GDELAY == 4 us
  
  obl_shaped3gradient(vox1_grad.name,vox1_crush.name,"",vox1_grad.duration,vox1_grad.amp,fy*vox1_crush.amp,0,NOWAIT);
  delay(vox1_grad.rfDelayFront);
  if (profile_ovs[0]=='y'&& rprof==1) freq1=0.0;
  shapedpulseoffset(p2_rf.pulseName,vox1_grad.rfDuration,v12,rof1,rof2,freq1);
  delay(vox1_grad.rfDelayBack);  
  delay(te_d2);
  obl_shaped3gradient (vox1_grad.name,vox1_crush.name,"",vox1_grad.duration,vox1_grad.amp,fy*0.777*vox1_crush.amp,0,NOWAIT);
  delay(vox1_grad.rfDelayFront);
  if (profile_ovs[0]=='y'&& rprof==1) freq1=0.0;
  shapedpulseoffset(p2_rf.pulseName,vox1_grad.rfDuration,v12,rof1,rof2,freq1);
  delay(vox1_grad.rfDelayBack);
  
  delay(te_d2);
  }
  
  if (nDim > 1.5) {   //this is 2nd slice selection
  obl_shaped3gradient("",vox2_grad.name,vox2_crush.name,vox2_grad.duration,0,vox2_grad.amp,fz*vox2_crush.amp,NOWAIT);
  delay(vox2_grad.rfDelayFront);
  if (profile_ovs[0]=='y'&& pprof==1) freq2=0.0;
  shapedpulseoffset(p2_rf.pulseName,vox2_grad.rfDuration,v11,rof1,rof2,freq2);
  delay(vox2_grad.rfDelayBack);
  
  delay(te_d2);
  
  obl_shaped3gradient("",vox2_grad.name,vox2_crush.name,vox2_grad.duration,0,vox2_grad.amp,fz*0.777*vox2_crush.amp,NOWAIT);
  delay(vox2_grad.rfDelayFront);
  if (profile_ovs[0]=='y'&& pprof==1) freq2=0.0;
  shapedpulseoffset(p2_rf.pulseName,vox2_grad.rfDuration,v11,rof1,rof2,freq2);
  delay(vox2_grad.rfDelayBack);
  
  delay(te_d2);
  }

  if (nDim > 0.5){    //this is 3rd slice selection
  obl_shaped3gradient(vox3_crush.name,"",vox3_grad.name,vox3_grad.duration,fx*vox3_crush.amp,0,vox3_grad.amp,NOWAIT);
  delay(vox3_grad.rfDelayFront);
  if (profile_ovs[0]=='y'&& sprof==1) freq3=0.0;
  shapedpulseoffset(p2_rf.pulseName,vox3_grad.rfDuration,v10,rof1,rof2,freq3);
  delay(vox3_grad.rfDelayBack);
  
  delay(te_d2);
   obl_shaped3gradient(vox3_crush.name,"",vox3_grad.name,vox3_grad.duration,fx*vox3_crush.amp,0,vox3_grad.amp,NOWAIT);
  delay(vox3_grad.rfDelayFront);
  if (profile_ovs[0]=='y'&& sprof==1) freq3=0.0;
  shapedpulseoffset(p2_rf.pulseName,vox3_grad.rfDuration,v10,rof1,rof2,freq3);
  delay(vox3_grad.rfDelayBack);
  
  delay(te_d3);
  }
  if (profile_vox[0] == 'y') {
    obl_shapedgradient(ror_grad.name,ror_grad.duration,
      -rprof*ror_grad.amp,-pprof*ror_grad.amp,-sprof*ror_grad.amp,WAIT);
    delay(GDELAY);
    obl_shapedgradient(ro_grad.name,ro_grad.duration,
      rprof*ro_grad.amp,pprof*ro_grad.amp,sprof*ro_grad.amp,NOWAIT); 
    delay(ro_grad.atDelayFront);
    startacq(alfa);
    acquire(np,1.0/sw);
    delay(ro_grad.atDelayBack);
    endacq();
  } else {
    startacq(alfa);
    acquire(np,1.0/sw);
    endacq();
  }

  delay(tr_delay);
Beispiel #20
0
pulsesequence()
{
  /* Internal variable declarations *************************/
  double  freqEx[MAXNSLICE];
  double  maxgradtime,spoilMoment,perTime,tau1,te_delay,tr_delay;
  double  te2=0.0,te3=0.0,te2min,te3min,tau2,tau3,te2_delay,te3_delay=0;
  char    minte2[MAXSTR],minte3[MAXSTR],spoilflag[MAXSTR];
  int     sepSliceRephase,sepReadRephase=0,readrev,table,shapeEx;
  int     i;

  /* Real-time variables used in this sequence **************/
  int  vpe_steps    = v1;      // Number of PE steps
  int  vpe_ctr      = v2;      // PE loop counter
  int  vms_slices   = v3;      // Number of slices
  int  vms_ctr      = v4;      // Slice loop counter
  int  vpe_offset   = v5;      // PE/2 for non-table offset
  int  vpe_mult     = v6;      // PE multiplier, ranges from -PE/2 to PE/2
  int  vper_mult    = v7;      // PE rewinder multiplier; turn off rewinder when 0
  int  vssc         = v8;      // Compressed steady-states
  int  vacquire     = v9;      // Argument for setacqvar, to skip steady state acquires
  int  vrfspoil_ctr = v10;     // RF spoil counter
  int  vrfspoil     = v11;     // RF spoil multiplier
  int  vtrimage     = v12;     // Counts down from nt, trimage delay when 0
  int  vne          = v13;     // Number of echoes
  int  vne_ctr      = v14;     // Echo loop counter
  int  vneindex     = v15;     // Echo index, odd or even
  int  vnelast      = v16;     // Check for last echo
  int  vtrigblock   = v17;     // Number of slices per trigger block

  /* Initialize paramaters **********************************/
  init_mri();

  getstr("spoilflag",spoilflag);
  te2=getval("te2");
  te3=getval("te3");
  getstr("minte2",minte2);
  getstr("minte3",minte3);
  readrev=(int)getval("readrev");

  /*  Check for external PE table ***************************/
  table = 0;
  if (strcmp(petable,"n") && strcmp(petable,"N") && strcmp(petable,"")) {
    loadtable(petable);
    table = 1;
  }

  /* Set Rcvr/Xmtr phase increments for RF Spoiling ********/
  /* Ref:  Zur, Y., Magn. Res. Med., 21, 251, (1991) *******/
  if (rfspoil[0] == 'y') {
    rcvrstepsize(rfphase);
    obsstepsize(rfphase);
  }

  /* Initialize gradient structures *************************/
  shape_rf(&p1_rf,"p1",p1pat,p1,flip1,rof1,rof2 );   // excitation pulse
  init_slice(&ss_grad,"ss",thk);                     // slice select gradient
  init_slice_refocus(&ssr_grad,"ssr");               // slice refocus gradient
  init_readout(&ro_grad,"ro",lro,np,sw);             // readout gradient
  ro_grad.pad1=alfa; ro_grad.pad2=alfa;
  init_readout_refocus(&ror_grad,"ror");             // dephase gradient
  init_phase(&pe_grad,"pe",lpe,nv);                  // phase encode gradient
  init_dephase(&spoil_grad,"spoil");                 // optimized spoiler
  init_dephase(&ref_grad,"ref");                     // readout rephase

  /* RF Calculations ****************************************/
  calc_rf(&p1_rf,"tpwr1","tpwr1f");

  /* Gradient calculations **********************************/
  calc_slice(&ss_grad,&p1_rf,WRITE,"gss");
  calc_slice_refocus(&ssr_grad, &ss_grad,WRITE,"gssr");
  calc_readout(&ro_grad, WRITE,"gro","sw","at");
  calc_readout_refocus(&ror_grad,&ro_grad,NOWRITE,"gror");
  calc_phase(&pe_grad, NOWRITE,"gpe","tpe");
  calc_dephase(&ref_grad,WRITE,ro_grad.m0,"","");

  spoilMoment = ro_grad.acqTime*ro_grad.roamp;   // Optimal spoiling is at*gro for 2pi per pixel
  spoilMoment -= ro_grad.m0def;                  // Subtract partial spoiling from back half of readout
  calc_dephase(&spoil_grad,WRITE,spoilMoment,"gspoil","tspoil");

  /* Is TE long enough for separate slice refocus? ******/
  maxgradtime = MAX(ror_grad.duration,pe_grad.duration);
  if (spoilflag[0] == 'y')
    maxgradtime = MAX(maxgradtime,spoil_grad.duration);
  tau1 = ss_grad.rfCenterBack + ssr_grad.duration + maxgradtime + ro_grad.timeToEcho + GRADIENT_RES;

  /* Equalize refocus and PE gradient durations *********/
  if ((te >= tau1) && (minte[0] != 'y')) {
    sepSliceRephase = 1;                         // Set flag for separate slice rephase
    calc_sim_gradient(&ror_grad,&pe_grad,&spoil_grad,tpemin,WRITE);
  } else {
    sepSliceRephase = 0;
    calc_sim_gradient(&ror_grad,&pe_grad,&ssr_grad,tpemin,WRITE);
    calc_sim_gradient(&ror_grad,&spoil_grad,&null_grad,tpemin,NOWRITE);
  }

  perTime = 0.0;
  if ((perewind[0] == 'y') || (spoilflag[0] == 'y'))
    perTime = spoil_grad.duration;
  if (spoilflag[0] == 'n')
    spoil_grad.amp = 0.0;

  /* Create optional prepulse events ************************/
  if (sat[0] == 'y')  create_satbands();
  if (fsat[0] == 'y') create_fatsat();
  if (mt[0] == 'y')   create_mtc();
  if (ir[0] == 'y')   create_inversion_recovery();

  /* Set up frequency offset pulse shape list ********/   	
  offsetlist(pss,ss_grad.ssamp,0,freqEx,ns,seqcon[1]);
  shapeEx = shapelist(p1_rf.pulseName,ss_grad.rfDuration,freqEx,ns,ss_grad.rfFraction,seqcon[1]);
  
  /* Check that all Gradient calculations are ok ************/
  sgl_error_check(sglerror);

  /* Min TE ******************************************/
  tau1 = ss_grad.rfCenterBack + pe_grad.duration + ro_grad.timeToEcho;
  tau1 += (sepSliceRephase) ? ssr_grad.duration : 0.0;   // Add slice refocusing if separate event

  temin = tau1 + GRADIENT_RES;  /* ensure that te_delay is at least GRADIENT_RES */
  te = granularity(te,GRADIENT_RES);
  if (minte[0] == 'y') {
    te = temin;
    putvalue("te",te);
  }
  if (FP_LT(te,temin)) {
    abort_message("TE too short.  Minimum TE= %.3fms\n",temin*1000);   
  }
  te_delay = te - tau1;

  /* Min TE2 *****************************************/
  tau2 = (readrev) ? 2*ro_grad.timeFromEcho : ro_grad.duration+ref_grad.duration;
  te2min = tau2 + GRADIENT_RES;
  te2 = granularity(te2,GRADIENT_RES);
  if (minte2[0] == 'y') {
    te2 = te2min;
    putvalue("te2",te2);
  }
  if (FP_LT(te2,te2min)) {
    abort_message("TE2 too short.  Minimum TE2= %.3fms\n",te2min*1000);
  }

  if (readrev) te2_delay = te2 - tau2;
  else {
    tau2 = ro_grad.duration + 3*ror_grad.duration;
    if (te2 >= tau2) {
      sepReadRephase = 1; // Set flag for separate read rephase
      te2_delay = te2 - ro_grad.duration - 2*ror_grad.duration;
    } else {
      sepReadRephase = 0;
      if (te2 > te2min+GRADIENT_RES) {
        ref_grad.duration = granularity(te2-ro_grad.duration-2*GRADIENT_RES,GRADIENT_RES);
        ref_grad.calcFlag = AMPLITUDE_FROM_MOMENT_DURATION;
        calc_dephase(&ref_grad,WRITE,ro_grad.m0,"","");
      }
      te2_delay = te2 - ro_grad.duration - ref_grad.duration;
    }
  }

  /* Min TE3 *****************************************/
  if (readrev) {  
    tau3 = 2*ro_grad.timeToEcho;
    te3min = tau3 + GRADIENT_RES;
    te3 = granularity(te3,GRADIENT_RES);
    if (minte3[0] == 'y') {
      te3 = te3min;
      putvalue("te3",te3);
    }
    if (FP_LT(te3,te3min)) {
      abort_message("TE3 too short.  Minimum TE3= %.3fms\n",te3min*1000);
    }
    te3_delay = te3 - tau3;
  }

  /* Now set the TE array accordingly */
  putCmd("TE = 0"); /* Re-initialize TE */
  putCmd("TE[1] = %f",te*1000);
  if (readrev) {
    for (i=1;i<ne;i++) {
      if (i%2 == 0) putCmd("TE[%d] = TE[%d]+%f",i+1,i,te3*1000);
      else putCmd("TE[%d] = TE[%d]+%f",i+1,i,te2*1000);
    }
  } else {
    for (i=1;i<ne;i++) putCmd("TE[%d] = TE[%d]+%f",i+1,i,te2*1000);
  }

  /* Check nsblock, the number of slices blocked together
     (used for triggering and/or inversion recovery) */
  check_nsblock();

  /* Min TR ******************************************/
  trmin  = ss_grad.duration + te_delay + pe_grad.duration + ne*ro_grad.duration + perTime + 2*GRADIENT_RES;
  trmin += (sepSliceRephase) ? ssr_grad.duration : 0.0;   // Add slice refocusing if separate event
  if (readrev) trmin += (ne/2)*te2_delay + ((ne-1)/2)*te3_delay;
  else trmin += (sepReadRephase) ? (ne-1)*(te2_delay+2*ror_grad.duration) : (ne-1)*(te2_delay+ref_grad.duration);

  /* Increase TR if any options are selected *********/
  if (sat[0] == 'y')  trmin += satTime;
  if (fsat[0] == 'y') trmin += fsatTime;
  if (mt[0] == 'y')   trmin += mtTime;
  if (ticks > 0) trmin += GRADIENT_RES;

  /* Adjust for all slices ***************************/
  trmin *= ns;

  /* Inversion recovery *********************************/
  if (ir[0] == 'y') {
    /* tauti is the additional time beyond IR component to be included in ti */
    /* satTime, fsatTime and mtTime all included as those modules will be after IR */
    tauti = satTime + fsatTime + mtTime + GRADIENT_RES + ss_grad.rfCenterFront;
    /* calc_irTime checks ti and returns the time of all IR components */
    trmin += calc_irTime(tauti,trmin,mintr[0],tr,&trtype);
  }

  if (mintr[0] == 'y') {
    tr = trmin;
    putvalue("tr",tr);
  }
  if (FP_LT(tr,trmin)) {
    abort_message("TR too short.  Minimum TR = %.3fms\n",trmin*1000);
  }

  /* Calculate tr delay */
  tr_delay = granularity((tr-trmin)/ns,GRADIENT_RES);

  /* Set pe_steps for profile or full image **********/   	
  pe_steps = prep_profile(profile[0],nv,&pe_grad,&per_grad);
  F_initval(pe_steps/2.0,vpe_offset);

  /* Shift DDR for pro *******************************/   	
  roff = -poffset(pro,ro_grad.roamp);

  /* Adjust experiment time for VnmrJ *********************/
  if (ssc<0) {
    if (seqcon[2] == 'c') g_setExpTime(trmean*(ntmean*pe_steps*arraydim - ssc*arraydim));
    else g_setExpTime(trmean*(ntmean*pe_steps*arraydim - ssc*pe_steps*arraydim));
  }
  else g_setExpTime(trmean*ntmean*pe_steps*arraydim + tr*ssc);

  /* PULSE SEQUENCE ***************************************/
  status(A);
  rotate();
  triggerSelect(trigger);       // Select trigger input 1/2/3
  obsoffset(resto);
  delay(GRADIENT_RES);
  initval(fabs(ssc),vssc);      // Compressed steady-state counter
  if (seqcon[2]=='s') assign(zero,vssc); // Zero for standard peloop
  assign(zero,vrfspoil_ctr);    // RF spoil phase counter
  assign(zero,vrfspoil);        // RF spoil multiplier
  assign(one,vacquire);         // real-time acquire flag
  setacqvar(vacquire);          // Turn on acquire when vacquire is zero 

  /* trigger */
  if (ticks > 0) F_initval((double)nsblock,vtrigblock);

  /* Begin phase-encode loop ****************************/       
  peloop(seqcon[2],pe_steps,vpe_steps,vpe_ctr);

    if (trtype) delay(ns*tr_delay);   // relaxation delay

    /* Compressed steady-states: 
       1st array & transient, all arrays if ssc is negative */
    if ((ix > 1) && (ssc > 0))
      assign(zero,vssc);
    sub(vpe_ctr,vssc,vpe_ctr);  // vpe_ctr counts up from -ssc
    assign(zero,vssc);
    if (seqcon[2] == 's')
      assign(zero,vacquire);    // Always acquire for non-compressed loop
    else {
      ifzero(vpe_ctr);
        assign(zero,vacquire);  // Start acquiring when vpe_ctr reaches zero
      endif(vpe_ctr);
    }

    /* Set rcvr/xmtr phase for RF spoiling *******************/
    if (rfspoil[0] == 'y') {
      incr(vrfspoil_ctr);                    // vrfspoil_ctr = 1  2  3  4  5  6
      add(vrfspoil,vrfspoil_ctr,vrfspoil);   // vrfspoil =     1  3  6 10 15 21
      xmtrphase(vrfspoil);
      rcvrphase(vrfspoil);
    }

    /* Read external kspace table if set ******************/       
    if (table)
      getelem(t1,vpe_ctr,vpe_mult);
    else {
      ifzero(vacquire);
        sub(vpe_ctr,vpe_offset,vpe_mult);
      elsenz(vacquire);
        sub(zero,vpe_offset,vpe_mult);  // Hold PE mult at initial value for steady states
      endif(vacquire);
    }

    /* PE rewinder follows PE table; zero if turned off ***/       
    if (perewind[0] == 'y') assign(vpe_mult,vper_mult);
    else assign(zero,vper_mult);

    /* Begin multislice loop ******************************/       
    msloop(seqcon[1],ns,vms_slices,vms_ctr);

      if (!trtype) delay(tr_delay);   // Relaxation delay

      if (ticks > 0) {
        modn(vms_ctr,vtrigblock,vtest);
        ifzero(vtest);                // if the beginning of an trigger block
          xgate(ticks);
          grad_advance(gpropdelay);
          delay(GRADIENT_RES);
        elsenz(vtest);
          delay(GRADIENT_RES);
        endif(vtest);
      }

      /* TTL scope trigger **********************************/       
      sp1on(); delay(GRADIENT_RES); sp1off();

      /* Prepulse options ***********************************/       
      if (ir[0] == 'y')   inversion_recovery();
      if (sat[0] == 'y')  satbands();
      if (fsat[0] == 'y') fatsat();
      if (mt[0] == 'y')   mtc();

      /* Slice select RF pulse ******************************/ 
      obspower(p1_rf.powerCoarse);
      obspwrf(p1_rf.powerFine);
      delay(GRADIENT_RES);
      obl_shapedgradient(ss_grad.name,ss_grad.duration,0,0,ss_grad.amp,NOWAIT);
      delay(ss_grad.rfDelayFront);
      shapedpulselist(shapeEx,ss_grad.rfDuration,oph,rof1,rof2,seqcon[1],vms_ctr);
      delay(ss_grad.rfDelayBack);

     /* Phase encode, refocus, and dephase gradient ********/
      if (sepSliceRephase) {                // separate slice refocus gradient
        obl_shapedgradient(ssr_grad.name,ssr_grad.duration,0,0,-ssr_grad.amp,WAIT);
        delay(te_delay);                    // delay between slab refocus and pe
        pe_shapedgradient(pe_grad.name,pe_grad.duration,-ror_grad.amp,0,0,
            -pe_grad.increment,vpe_mult,WAIT);
      } else {
        pe_shapedgradient(pe_grad.name,pe_grad.duration,-ror_grad.amp,0,-ssr_grad.amp,
            -pe_grad.increment,vpe_mult,WAIT);
        delay(te_delay);                    // delay after refocus/pe
      }

      F_initval(ne,vne);
      loop(vne,vne_ctr);

        if (readrev) {
          mod2(vne_ctr,vneindex);
          ifzero(vneindex);
            /* Shift DDR for pro *******************************/
            roff = -poffset(pro,ro_grad.roamp);
            /* Readout gradient ********************************/
            obl_shapedgradient(ro_grad.name,ro_grad.duration,ro_grad.amp,0,0,NOWAIT);
            delay(ro_grad.atDelayFront-alfa);
            /* Acquisition ***************************************/
            startacq(alfa);
            acquire(np,1.0/sw);
            delay(ro_grad.atDelayBack);
            endacq();
            sub(vne,vne_ctr,vnelast);
            sub(vnelast,one,vnelast);
            ifzero(vnelast);
            elsenz(vnelast);
              delay(te2_delay);
            endif(vnelast);
          elsenz(vneindex);
            /* Shift DDR for pro *******************************/
            roff = -poffset(pro,-ro_grad.roamp);
            /* Readout gradient ********************************/
            obl_shapedgradient(ro_grad.name,ro_grad.duration,-ro_grad.amp,0,0,NOWAIT);
            delay(ro_grad.atDelayFront-alfa);
            /* Acquisition ***************************************/
            startacq(alfa);
            acquire(np,1.0/sw);
            delay(ro_grad.atDelayBack);
            endacq();
            sub(vne,vne_ctr,vnelast);
            sub(vnelast,one,vnelast);
            ifzero(vnelast);
            elsenz(vnelast);
              delay(te3_delay);
            endif(vnelast);
          endif(vneindex);
        } else {
          /* Shift DDR for pro *******************************/
          roff = -poffset(pro,ro_grad.roamp);
          /* Readout gradient ********************************/
          obl_shapedgradient(ro_grad.name,ro_grad.duration,ro_grad.amp,0,0,NOWAIT);
          delay(ro_grad.atDelayFront-alfa);
          /* Acquisition ***************************************/
          startacq(alfa);
          acquire(np,1.0/sw);
          delay(ro_grad.atDelayBack);
          endacq();
	  sub(vne,vne_ctr,vnelast);
	  sub(vnelast,one,vnelast);
	  ifzero(vnelast);
	  elsenz(vnelast);
            if (sepReadRephase) {
              obl_shapedgradient(ror_grad.name,ror_grad.duration,-ror_grad.amp,0,0,WAIT);
              delay(te2_delay);
              obl_shapedgradient(ror_grad.name,ror_grad.duration,-ror_grad.amp,0,0,WAIT);
            } else {
              obl_shapedgradient(ref_grad.name,ref_grad.duration,-ref_grad.amp,0,0,WAIT);
              delay(te2_delay);
            }
	  endif(vnelast);
        }

      endloop(vne_ctr);

      /* Rewind / spoiler gradient **************************/
      if ((perewind[0] == 'y') || (spoilflag[0] == 'y')) {
        pe_shapedgradient(pe_grad.name,pe_grad.duration,spoil_grad.amp,0,0,pe_grad.increment,vper_mult,WAIT);
      }

    endmsloop(seqcon[1],vms_ctr);

  endpeloop(seqcon[2],vpe_ctr);

  /* Inter-image delay **********************************/
  sub(ntrt,ct,vtrimage);
  decr(vtrimage);
  ifzero(vtrimage);
    delay(trimage);
  endif(vtrimage);
}
Beispiel #21
0
pulsesequence()
{
	/* declaration of SGL kernel structures */
	SGL_KERNEL_INFO_T read, phase, slice, ss_pre, ss_post;


	/* declaration of internal variables */
	double freqlist[MAXNSLICE];
	double pe_steps;
	int shapelist1, table;
	double xtime, grad_duration, ror_pad,rod_pad;
	double temp_tr;

	double readAmp, phaseAmp, sliceAmp;
	double tepad, tepad2, temin2, htrmin, delayToRF, delayRFToAcq, delayAcqToRF;
	double rof_pad, delRof;

	double sliceRephTrim, sliceDephTrim;
	double readRephTrim, readDephTrim;

	int rfPhase[2] = {0,2};
	
	/* declaration of realtime variables */
	int  vpe_steps  = v1;
	int  vpe_ctr    = v2;
	int  vms_slices = v3;
	int  vms_ctr    = v4;
	int  vpe_offset = v5;
	int  vpe_index  = v6;
	int  vss        = v7;
	int  vssc       = v8;
	int  vacquire   = v9;
	int  vphase	= v10;
	
	settable(t2,2,rfPhase);

	/* setup phase encoding order */
	table = set_pe_order();

	init_mri();

	if( (sliceRephTrim = getvalnwarn("sliceRephTrim")) == 0.0 ) {
		sliceRephTrim = 1.0;
	}	
	
	if( (sliceDephTrim = getvalnwarn("sliceDephTrim")) == 0.0 ) {
		sliceDephTrim = 1.0;
	}	

	if( (readRephTrim = getvalnwarn("readRephTrim")) == 0.0 ) {
		readRephTrim = 1.0;
	}	
	
	if( (readDephTrim = getvalnwarn("readDephTrim")) == 0.0 ) {
		readDephTrim = 1.0;
	}	

	shape_rf( &p1_rf, "p1", p1pat, p1, flip1, rof1, rof2 );	// excitation pulse

	init_slice( &ss_grad, "ss", thk );					// slice gradient
	init_slice_refocus( &ssr_grad, "ssr" );				// slice refocus
	init_slice_refocus( &ssd_grad, "ssd" );				// slice refocus

	init_readout( &ro_grad, "ro", lro, np, sw );		// read gradient
	init_readout_refocus( &ror_grad, "ror" );			// read dephase
	init_readout_refocus( &rod_grad, "ror" );			// read dephase

	init_phase( &pe_grad, "pe", lpe, nv );				// phase gradient

	ss_grad.maxGrad = gmax * 0.57;
	ssr_grad.maxGrad = gmax * 0.57;
	ssd_grad.maxGrad = gmax * 0.57;
	ro_grad.maxGrad = gmax * 0.57;
	ror_grad.maxGrad = gmax * 0.57;
	rod_grad.maxGrad = gmax * 0.57;
	pe_grad.maxGrad = glimpe < 0.57? gmax*glimpe : gmax * 0.57;

	/* calculate the RF pulses, gradient pulses and their interdependencies */
	calc_rf( &p1_rf, "tpwr1", "tpwr1f" );
	calc_slice( &ss_grad, &p1_rf, NOWRITE, "gss" );

	ssr_grad.amp = ss_grad.amp;	
	ssr_grad.gmult = sliceRephTrim;
	ssr_grad.calcFlag = DURATION_FROM_MOMENT_AMPLITUDE;
	calc_slice_refocus( &ssr_grad, &ss_grad, NOWRITE, "gssr" );
	ssd_grad.amp = ss_grad.amp;	
	ssd_grad.gmult = sliceDephTrim; 
	ssd_grad.calcFlag = DURATION_FROM_MOMENT_AMPLITUDE;
	calc_slice_dephase( &ssd_grad, &ss_grad, NOWRITE, "gssd" ); 
	
	calc_readout( &ro_grad, NOWRITE, "gro", "sw", "at" );

	ror_grad.amp = ro_grad.amp;	
	ror_grad.calcFlag = DURATION_FROM_MOMENT_AMPLITUDE;

	rod_grad.amp = ro_grad.amp;	
	rod_grad.calcFlag = DURATION_FROM_MOMENT_AMPLITUDE;

	ror_grad.gmult = readRephTrim;
	calc_readout_refocus( &ror_grad, &ro_grad, NOWRITE, "gror" );
	rod_grad.gmult = readDephTrim;
	calc_readout_rephase( &rod_grad, &ro_grad, NOWRITE, "grod" );

	calc_phase( &pe_grad, NOWRITE, "gpe", "tpe" );

	/* work out the position of the markers */
	/* markerA */
	/* ss_grad.rfDelayFront indicates the starting point of the
	   RF pulse measured from the start of the slice gradient
       ( rof1:pulse length:rof2 ) */	

	double granulatedRFDelayFront = granularity( ss_grad.rfDelayFront, GRADIENT_RES );
	if( granulatedRFDelayFront > ss_grad.rfDelayFront ) {
		granulatedRFDelayFront -= GRADIENT_RES;
	}

	/* ss_grad.rfDelayBack indicates the end point of the
	   RF pulse measured to the end of the slice gradient
       ( rof1:pulse length:rof2 ) */	

	double granulatedRFDelayBack = granularity( ss_grad.rfDelayBack, GRADIENT_RES );
	if( granulatedRFDelayBack > ss_grad.rfDelayBack ) {
		granulatedRFDelayBack -= GRADIENT_RES;
	}
	
	double granulatedRFDelay = granulatedRFDelayFront < granulatedRFDelayBack ? granulatedRFDelayFront : granulatedRFDelayBack;

	double markerADelay = granulatedRFDelay;

	/* read and phase gradients can overlap the start or end of the slice gradient by max of granulatedRFDElay */

	double granulatedATDelayFront = granularity(ro_grad.atDelayFront, GRADIENT_RES);
	if( granulatedATDelayFront > ro_grad.atDelayFront ) {
		granulatedATDelayFront -= GRADIENT_RES;
	}
	double granulatedATDelayBack = granularity(ro_grad.atDelayBack, GRADIENT_RES);
	if( granulatedATDelayBack > ro_grad.atDelayBack ) {
		granulatedATDelayBack -= GRADIENT_RES;
	}
	double granulatedATDelay = granulatedATDelayFront < granulatedATDelayBack ? granulatedATDelayFront : granulatedATDelayBack;

	/* longest gradient between RF pulse and acquire dominates */

	xtime = ssr_grad.duration + granulatedRFDelay;
	xtime = xtime > ssd_grad.duration + granulatedRFDelay ? xtime : ssd_grad.duration + granulatedRFDelay;
	xtime = xtime > ror_grad.duration + granulatedATDelay ? xtime : ror_grad.duration + granulatedATDelay;
	xtime = xtime > rod_grad.duration + granulatedATDelay ? xtime : rod_grad.duration + granulatedATDelay;
	xtime = xtime > pe_grad.duration ? xtime : pe_grad.duration;

	ror_pad = xtime - ror_grad.duration - granulatedATDelay;
	rod_pad = xtime - rod_grad.duration - granulatedATDelay;

	/* make a gradient list */
	start_kernel( &sk );
	add_gradient( (void*)&ss_grad,  "slice",    	SLICE, START_TIME,	"",         0.0,	PRESERVE );
	add_gradient( (void*)&ssr_grad, "sliceReph", 	SLICE, BEHIND,		"slice",    0.0,	INVERT );
	add_gradient( (void*)&ror_grad, "readDeph", 	READ,  BEHIND,		"slice",   -granulatedRFDelay + ror_pad, INVERT );
	add_gradient( (void*)&ro_grad,  "read",     	READ,  BEHIND,		"readDeph", 0.0,	PRESERVE );	
	add_gradient( (void*)&pe_grad,  "phase",    	PHASE, SAME_START,	"readDeph", 0.0,	PRESERVE );
	add_gradient( (void*)&rod_grad, "readReph", 	READ,  BEHIND,		"read",     0.0,	INVERT );
	add_gradient( (void*)&pe_grad,  "rewind",		PHASE, SAME_END,	"readReph", 0.0, INVERT );
	add_gradient( (void*)&ss_grad,	"nextSlice",	SLICE, BEHIND,		"readReph", rod_pad - granulatedRFDelay, PRESERVE );
	add_gradient( (void*)&ssd_grad,	"sliceDeph",	SLICE, BEFORE,		"nextSlice",    0, INVERT );

	add_marker( "markerA", SAME_START, "slice", granulatedRFDelay );
	add_marker( "markerB", SAME_START, "nextSlice", granulatedRFDelay );

	/* get the minimum echo time */
	temin = get_timing( FROM_RF_CENTER_OF, "slice", TO_ECHO_OF, "read" );
	temin2 = get_timing( FROM_ECHO_OF, "read", TO_RF_CENTER_OF, "nextSlice" );
	
	htrmin = MAX( temin, temin2 );
	
	if( minte[0] == 'y' ){
		te = htrmin;
	}
	
	tepad = granularity( te - temin, GRADIENT_RES );
	tepad2 = granularity( te - temin2, GRADIENT_RES );

	te = temin + tepad;	
	putCmd("setvalue('te', %f, 'current')\n", te );

	if( tepad>0.0 )		change_timing( "readDeph", tepad );
	if( tepad2>0.0 )	change_timing( "nextSlice", tepad2 );

	tr = get_timing( FROM_START_OF, "slice", TO_START_OF, "nextSlice" );
	putvalue("tr", tr );

	delayRFToAcq = get_timing( FROM_RF_PULSE_OF, "slice", TO_ACQ_OF, "read" );
	delayAcqToRF = get_timing( FROM_ACQ_OF, "read", TO_RF_PULSE_OF, "nextSlice" );

	set_comp_info( &ss_pre, "ss_pre" );
	write_comp_grads_snippet( NULL, NULL, &ss_pre, "START_OF_KERNEL", "markerA" );

	set_comp_info( &read, "ro" );
	set_comp_info( &phase, "pe" );
	set_comp_info( &slice, "ss" );
	write_comp_grads_snippet( &read, &phase, &slice, "markerA", "markerB" );

	set_comp_info( &ss_post, "ss_post" );
	write_comp_grads_snippet( NULL, NULL, &ss_post, "markerB", "END_OF_KERNEL" );

	/* Set up frequency offset pulse shape list ********/   	
	offsetlist(pss,ss_grad.ssamp,0,freqlist,ns,seqcon[1]);
	shapelist1 = shapelist(p1_rf.pulseName,ss_grad.rfDuration,freqlist,ns,ss_grad.rfFraction, seqcon[1]);

	/* Set pe_steps for profile or full image **********/   	
	pe_steps = prep_profile(profile[0],nv,&pe_grad,&pe_grad);/* profile[0] is n y or r */
	F_initval(pe_steps/2.0,vpe_offset);

	g_setExpTime(trmean*(ntmean*pe_steps*arraydim + (1+fabs(ssc))*arraydim));

	/* Shift DDR for pro *******************************/   	
	roff = -poffset(pro,ro_grad.roamp);

	/* PULSE SEQUENCE */
	status( A );
	rotate();
        triggerSelect(trigger);
	obsoffset( resto );
	delay( GRADIENT_RES );
	initval( 1+fabs( ssc ), vss );
	
	obspower( p1_rf.powerCoarse );
	obspwrf( p1_rf.powerFine );
	delay( GRADIENT_RES );

	assign(one,vacquire);         // real-time acquire flag
	setacqvar(vacquire);          // Turn on acquire when vacquire is zero 
					
	obl_shapedgradient(ss_pre.name,ss_pre.dur,0,0,ss_pre.amp,NOWAIT);		
	sp1on();
	delay(GRADIENT_RES);
	sp1off();
	delay(ss_pre.dur-GRADIENT_RES );
	msloop( seqcon[1], ns, vms_slices, vms_ctr );
		
		assign(vss,vssc);

		peloop( seqcon[2], pe_steps, vpe_steps, vpe_ctr );

			sub(vpe_ctr,vssc,vpe_ctr);     // vpe_ctr counts up from -ssc
			assign(zero,vssc);
			if (seqcon[2] == 's')
				assign(zero,vacquire); // Always acquire for non-compressed loop
			else {
				ifzero(vpe_ctr);
				assign(zero,vacquire); // Start acquiring when vpe_ctr reaches zero
				endif(vpe_ctr);
			}
		
			if (table)
				getelem(t1,vpe_ctr,vpe_index);
			else {
				ifzero(vacquire);
					sub(vpe_ctr,vpe_offset,vpe_index);
				elsenz(vacquire);
					sub(zero,vpe_offset,vpe_index);
				endif(vacquire);
			}		
			
			pe_shaped3gradient( read.name, phase.name, slice.name,
								read.dur, read.amp, 0, slice.amp,
								-pe_grad.increment, vpe_index, NOWAIT );
			delay(ss_grad.rfDelayFront - granulatedRFDelay);
			shapedpulselist( shapelist1, ss_grad.rfDuration, oph, rof1, rof2, seqcon[1], vms_ctr );

			delay( delayRFToAcq - alfa );
			startacq(alfa);
			acquire( np, 1/ro_grad.bandwidth );
			endacq();
			delay( delayAcqToRF - ss_grad.rfDelayFront + granulatedRFDelay - GRADIENT_RES );
			sp1on();
			delay(GRADIENT_RES);
			sp1off();
			
		endpeloop( seqcon[2], vpe_ctr ); 

	endmsloop( seqcon[1], vms_ctr );

	obl_shapedgradient(ss_post.name,ss_post.dur,0,0,ss_post.amp,WAIT);
}
Beispiel #22
0
pulsesequence() {

// Define Variables and Objects and Get Parameter Values

   double aYxy8 = getval("aYxy8");  
   double pwYxy8 = getval("pwYxy8");
   double nYxy8 = getval("nYxy8");
   int cycles = (int) nYxy8/2.0;
   nYxy8 = 2.0*cycles;
   int counter = (int) (nYxy8 - 1.0);
   initval((nYxy8 - 1.0),v8);
   double onYxy8 = getval("onYxy8");
   double srate = getval("srate");

   DSEQ dec = getdseq("H");
   strncpy(dec.t.ch,"dec",3);
   putCmd("chHtppm='dec'\n"); 
   strncpy(dec.s.ch,"dec",3);
   putCmd("chHspinal='dec'\n");

   DSEQ mix = getdseq("Hmix");
   strncpy(mix.t.ch,"dec",3);
   putCmd("chHmixtppm='mix'\n"); 
   strncpy(mix.s.ch,"dec",3);
   putCmd("chHmixspinal='mix'\n");

//--------------------------------------
// Copy Current Parameters to Processed
//-------------------------------------

   putCmd("groupcopy('current','processed','acquisition')");

// Dutycycle Protection

   DUTY d = init_dutycycle();
   d.dutyon = getval("pwX90") + 4.0*nYxy8*pwYxy8 + getval("pwX180");
   d.dutyoff = d1 + 4.0e-6;
   d.c1 = d.c1 + (!strcmp(dec.seq,"tppm"));
   d.c1 = d.c1 + ((!strcmp(dec.seq,"tppm")) && (dec.t.a > 0.0));
   d.t1 = getval("rd") + getval("ad") + at;
   d.c2 = d.c2 + (!strcmp(dec.seq,"spinal"));
   d.c2 = d.c2 + ((!strcmp(dec.seq,"spinal")) && (dec.s.a > 0.0));
   d.t2 = getval("rd") + getval("ad") + at;
   d.c3 = d.c3 + (!strcmp(mix.seq,"tppm"));
   d.c3 = d.c3 + ((!strcmp(mix.seq,"tppm")) && (mix.t.a > 0.0));
   d.t3 = 2.0*nYxy8*(1.0/srate - 2.0*pwYxy8) + 1.0/srate - getval("pwX180");
   d.c4 = d.c4 + (!strcmp(mix.seq,"spinal"));
   d.c4 = d.c4 + ((!strcmp(mix.seq,"spinal")) && (mix.s.a > 0.0));
   d.t4 = 2.0*nYxy8*(1.0/srate - 2.0*pwYxy8) + 1.0/srate - getval("pwX180");
   d = update_dutycycle(d);
   abort_dutycycle(d,10.0);

// Set Phase Tables

   settable(phX90,4,table1);
   settable(ph1Yxy8,8,table2);
   settable(ph2Yxy8,4,table3);
   settable(phX180,4,table4);
   settable(phRec,4,table5);

   if (counter < 0) tsadd(phRec,2,4);
   setreceiver(phRec);

// Begin Sequence

   txphase(phX90); decphase(zero);
   obspwrf(getval("aX90")); 
   obsunblank(); decunblank(); _unblank34();
   delay(d1);
   sp1on(); delay(2.0e-6); sp1off(); delay(2.0e-6);

// X Single Pulse

  rgpulse(getval("pwX90"),phX90,0.0,0.0);

// xy8Y Period One

  obspwrf(getval("aX180"));
  txphase(phX180); 
  if (counter >= 0) {
      _dseqon(mix);
      delay(pwYxy8/2.0);
      dec2pwrf(aYxy8);
      sub(v1,v1,v1);
      if (counter >= 1) {
         if (counter > 1) loop(v8,v9);
	    getelem(ph1Yxy8,v1,v4);
	    incr(v1);
	    getelem(ph2Yxy8,ct,v2);
	    add(v4,v2,v2);
	    dec2phase(v2);
	    delay(0.5/srate - pwYxy8);
	    if (onYxy8 == 2)
               dec2rgpulse(pwYxy8,v2,0.0,0.0);
            else
               delay(pwYxy8);
	 if (counter > 1) endloop(v9);
      }

// X Refocussing Pulse

      delay(0.5/srate - pwYxy8/2.0 - getval("pwX180")/2.0);
      rgpulse(getval("pwX180"),phX180,0.0,0.0);
      dec2pwrf(aYxy8);
      delay(0.5/srate - pwYxy8/2.0 - getval("pwX180")/2.0);

// xy8Y Period Two

      if (counter >= 1) {
         if (counter > 1) loop(v8,v9);
	    if (onYxy8 == 2)
               dec2rgpulse(pwYxy8,v2,0.0,0.0);
            else
               delay(pwYxy8);
            getelem(ph1Yxy8,v1,v4);
	    incr(v1);
	    getelem(ph2Yxy8,ct,v2);
	    add(v4,v2,v2);
	    dec2phase(v2);
	    delay(0.5/srate - pwYxy8);
	 if (counter > 1) endloop(v9);
      }
      delay(pwYxy8/2.0);
      _dseqoff(mix);
   }

// Begin Acquisition

   _dseqon(dec);
   obsblank(); _blank34();
   delay(getval("rd"));
   startacq(getval("ad"));
   acquire(np, 1/sw);
   endacq();
   _dseqoff(dec);
   obsunblank(); decunblank(); _unblank34();
}
Beispiel #23
0
pulsesequence() {
  /* Internal variable declarations *************************/
  int     shapelist90,shapelist180,shapelistIR;
  double  nseg;
  double  seqtime,tau1,tau2,tau3,
          te1_delay,te2_delay,te3_delay,
	  iti_delay, ti_delay,
	  tr_delay;
  double  kzero;
  double  freq90[MAXNSLICE], freq180[MAXNSLICE], freqIR[MAXNSLICE];

  /* Real-time variables used in this sequence **************/
  int  vpe_ctr    = v2;      // PE loop counter
  int  vpe_mult   = v3;      // PE multiplier, ranges from -PE/2 to PE/2
  int  vms_slices = v4;      // Number of slices
  int  vms_ctr    = v5;      // Slice loop counter
  int  vseg       = v6;      // Number of ETL segments 
  int  vseg_ctr   = v7;      // Segment counter
  int  vetl       = v8;      // Echo train length
  int  vetl_ctr   = v9;      // Echo train loop counter
  int  vssc       = v10;     // Compressed steady-states
  int  vtrimage   = v11;     // Counts down from nt, trimage delay when 0
  int  vacquire   = v12;     // Argument for setacqvar, to skip steady state acquires
  int  vphase180  = v13;     // phase of 180 degree refocusing pulse

  /* Initialize paramaters **********************************/
  init_mri();

  /*  Load external PE table ********************************/
  if (strcmp(petable,"n") && strcmp(petable,"N") && strcmp(petable,"")) {
    loadtable(petable);
  } else {
    abort_message("petable undefined");
  }
    
  seqtime = 0.0;
  espmin = 0.0;
  kzero = getval("kzero");

  /* RF Power & Bandwidth Calculations **********************/
  init_rf(&p1_rf,p1pat,p1,flip1,rof1,rof2);
  init_rf(&p2_rf,p2pat,p2,flip2,rof1,rof2);
  calc_rf(&p1_rf,"tpwr1","tpwr1f");
  calc_rf(&p2_rf,"tpwr2","tpwr2f");
 
  /* Initialize gradient structures *************************/
  init_readout_butterfly(&ro_grad,"ro",lro,np,sw,gcrushro,tcrushro);
  init_readout_refocus(&ror_grad,"ror");
  init_phase(&pe_grad,"pe",lpe,nv);
  init_slice(&ss_grad,"ss",thk);   /* NOTE assume same band widths for p1 and p2 */     
  init_slice_butterfly(&ss2_grad,"ss2",thk,gcrush,tcrush); 
  init_slice_refocus(&ssr_grad,"ssr");

  /* Gradient calculations **********************************/
  calc_readout(&ro_grad,WRITE,"gro","sw","at");
  calc_readout_refocus(&ror_grad,&ro_grad,NOWRITE,"gror");
  calc_phase(&pe_grad,WRITE,"gpe","tpe");
  calc_slice(&ss_grad,&p1_rf,WRITE,"gss");
  calc_slice(&ss2_grad,&p1_rf,WRITE,"");
  calc_slice_refocus(&ssr_grad,&ss_grad,NOWRITE,"gssr");

  /* Equalize refocus and PE gradient durations *************/
  calc_sim_gradient(&ror_grad,&null_grad,&ssr_grad,0.0,WRITE);

  /* Create optional prepulse events ************************/
  if (sat[0] == 'y')  create_satbands();
  if (fsat[0] == 'y') create_fatsat();
  if (mt[0] == 'y')   create_mtc();

  if (ir[0] == 'y') {
    init_rf(&ir_rf,pipat,pi,flipir,rof1,rof2);
    calc_rf(&ir_rf,"tpwri","tpwrif");
    init_slice_butterfly(&ssi_grad,"ssi",thk,gcrushir,tcrushir);
    calc_slice(&ssi_grad,&ir_rf,WRITE,"gssi");
  }

  /* Set up frequency offset pulse shape list ********/
  offsetlist(pss,ss_grad.ssamp, 0,freq90, ns,seqcon[1]);
  offsetlist(pss,ss2_grad.ssamp,0,freq180,ns,seqcon[1]);
  offsetlist(pss,ssi_grad.ssamp,0,freqIR, ns,seqcon[1]);
  shapelist90  = shapelist(p1pat,ss_grad.rfDuration, freq90, ns,0,seqcon[1]);
  shapelist180 = shapelist(p2pat,ss2_grad.rfDuration,freq180,ns,0,seqcon[1]);
  shapelistIR  = shapelist(pipat,ssi_grad.rfDuration,freqIR, ns,0,seqcon[1]);

  /* same slice selection gradient and RF pattern used */
  if (ss_grad.rfFraction != 0.5)
    abort_message("ERROR %s: RF pulse must be symmetric (RF fraction = %.2f)",
      seqfil,ss_grad.rfFraction);
  if (ro_grad.echoFraction != 1)
    abort_message("ERROR %s: Echo Fraction must be 1",seqfil);

  /* Find sum of all events in each half-echo period ********/
  tau1 = ss_grad.rfCenterBack  + ssr_grad.duration + ss2_grad.rfCenterFront;
  tau2 = ss2_grad.rfCenterBack + pe_grad.duration  + ro_grad.timeToEcho; 
  tau3 = ro_grad.timeFromEcho  + pe_grad.duration  + ss2_grad.rfCenterFront;

  espmin = 2*MAX(MAX(tau1,tau2),tau3);   // Minimum echo spacing

  if (minesp[0] == 'y') {
    esp = espmin + 8e-6;  // ensure at least 4us delays in both TE periods
    putvalue("esp",esp);
  }
  else if (((espmin+8e-6)-esp) > 12.5e-9) {
    abort_message("ERROR %s: Echo spacing too small, minimum is %.2fms\n",seqfil,(espmin+8e-6)*1000);
  }
  te1_delay = esp/2.0 - tau1;    // Intra-esp delays
  te2_delay = esp/2.0 - tau2;
  te3_delay = esp/2.0 - tau3;

  te = kzero*esp;                // Return effective TE
  putvalue("te",te);

  /* Minimum TR **************************************/
  /* seqtime is total time per slice */
  seqtime = 2*4e-6 + ss_grad.rfCenterFront + etl*esp + ro_grad.timeFromEcho + pe_grad.duration + te3_delay;

  /* Increase TR if any options are selected****************/
  if (sat[0]  == 'y') seqtime += ns*satTime;
  if (fsat[0] == 'y') seqtime += ns*fsatTime;
  if (mt[0]   == 'y') seqtime += ns*mtTime;


  if (ir[0] == 'y') {

    /* Inter-IR delay */
    if (ns > 1) 
      iti_delay = seqtime - ssi_grad.duration;
      /* it is probably safe to assume that seqtime is always > the pulse widths */
    else 
      iti_delay = 0;

    /* Inversion Recovery */
    timin  = ssi_grad.rfCenterBack + ss_grad.rfCenterFront;
    timin += 8e-6; // from sp1on/off and after 90 pulse power setting 
    timin += seqtime*(ns-1) + iti_delay;

    if (ti < timin + 4e-6)  // ensure at least a 4us delay
      abort_message("%s: ti too short, minimum is %.2fms",seqfil,timin*1000);

    /* Delay after the last IR pulse */
    ti_delay = ti - timin;
    
    /* force all slices to be acquired back-to-back, with a single TR delay at end */
    trtype = 1;  

  }
  else {
    iti_delay = ti_delay = 0;
  }

  trmin = ns*(seqtime + 4e-6);
  
  if (ir[0] == 'y') {
    trmin += (4e-6 + ssi_grad.rfCenterFront + ti);
  }
  if (mintr[0] == 'y'){
    tr = trmin;
    putvalue("tr",tr);
  }


  if ((trmin-tr) > 12.5e-9) {
    abort_message("TR too short.  Minimum TR = %.2fms\n",trmin*1000);
  }
  tr_delay = (tr - trmin)/ns;



  /* Set number of segments for profile or full image **********/
  nseg = prep_profile(profile[0],nv/etl,&pe_grad,&per_grad);

  /* Shift DDR for pro *******************************/
  roff = -poffset(pro,ro_grad.roamp);

  /* Calculate total acquisition time */
  g_setExpTime(tr*(nt*nseg*getval("arraydim") + ssc) + trimage*getval("arraydim"));


  /* Return parameters to VnmrJ */
  putvalue("rgss",ss_grad.tramp);  //90  slice ramp
  if (ss2_grad.enableButterfly) {   //180 slice ramps
    putvalue("rcrush",ss2_grad.crusher1RampToCrusherDuration);
    putvalue("rgss2",ss2_grad.crusher1RampToSsDuration);
  }
  else {
    putvalue("rgss2",ss2_grad.tramp);
  }
  if (ro_grad.enableButterfly) {
    putvalue("rgro",ro_grad.crusher1RampToSsDuration);
  }
  else {   
    putvalue("rgro",ro_grad.tramp);      //RO ramp
  }
  putvalue("tror",ror_grad.duration);  //ROR duration
  putvalue("rgror",ror_grad.tramp);    //ROR ramp
  putvalue("gpe",pe_grad.peamp);         //PE max amp
  putvalue("gss",ss_grad.ssamp);
  putvalue("gro",ro_grad.roamp);



  /* PULSE SEQUENCE *************************************/
  initval(fabs(ssc),vssc);      // Compressed steady-state counter
  assign(one,vacquire);         // real-time acquire flag

  /* Phase cycle: Alternate 180 phase to cancel residual FID */
  mod2(ct,vphase180);           // 0101
  dbl(vphase180,vphase180);     // 0202
  add(vphase180,one,vphase180); // 1313 Phase difference from 90
  add(vphase180,oph,vphase180);

  obsoffset(resto);
  delay(4e-6);
    
  initval(nseg,vseg);
  loop(vseg,vseg_ctr);

    /* TTL scope trigger **********************************/       
    sp1on(); delay(4e-6); sp1off();

    /* Compressed steady-states: 1st array & transient, all arrays if ssc is negative */
    if ((ix > 1) && (ssc > 0))
      assign(zero,vssc);
    sub(vseg_ctr,vssc,vseg_ctr);   // vpe_ctr counts up from -ssc
    assign(zero,vssc);
    ifzero(vseg_ctr);
      assign(zero,vacquire);       // Start acquiring when vseg_ctr reaches zero
    endif(vseg_ctr);
    setacqvar(vacquire);           // Turn on acquire when vacquire is zero

    if (ticks) {
      xgate(ticks);
      grad_advance(gpropdelay);
      delay(4e-6);
    }

    if(ir[0] == 'y') {  /* IR for all slices prior to data acquisition */
      obspower(ir_rf.powerCoarse);
      obspwrf(ir_rf.powerFine);
      delay(4e-6);
      msloop(seqcon[1],ns,vms_slices,vms_ctr);
	obl_shapedgradient(ssi_grad.name,ssi_grad.duration,0,0,ssi_grad.amp,NOWAIT);   
	delay(ssi_grad.rfDelayFront);
	shapedpulselist(shapelistIR,ssi_grad.rfDuration,oph,rof1,rof2,seqcon[1],vms_ctr);
	delay(ssi_grad.rfDelayBack);
	delay(iti_delay);
      endmsloop(seqcon[1],vms_ctr);
      delay(ti_delay);
    }

    msloop(seqcon[1],ns,vms_slices,vms_ctr);

      /* Prepulse options ***********************************/
      if (sat[0]  == 'y') satbands();
      if (fsat[0] == 'y') fatsat();
      if (mt[0]   == 'y') mtc();

      /* 90 degree pulse ************************************/         
      rotate();
      obspower(p1_rf.powerCoarse);
      obspwrf(p1_rf.powerFine);
      delay(4e-6);
      obl_shapedgradient(ss_grad.name,ss_grad.duration,0,0,ss_grad.amp,NOWAIT);   
      delay(ss_grad.rfDelayFront);
      shapedpulselist(shapelist90,ss_grad.rfDuration,oph,rof1,rof2,seqcon[1],vms_ctr);
      delay(ss_grad.rfDelayBack);

      /* Read dephase and Slice refocus *********************/
      obl_shapedgradient(ssr_grad.name,ssr_grad.duration,ror_grad.amp,0.0,-ssr_grad.amp,WAIT);

      /* First half-TE delay ********************************/
      obspower(p2_rf.powerCoarse);
      obspwrf(p2_rf.powerFine);
      delay(te1_delay);
	
      peloop(seqcon[2],etl,vetl,vetl_ctr);
        mult(vseg_ctr,vetl,vpe_ctr);
        add(vpe_ctr,vetl_ctr,vpe_ctr);
        getelem(t1,vpe_ctr,vpe_mult);

        /* 180 degree pulse *******************************/
        /* Note, ss2_grad.amp is max gradient for butterfly shape; flat top = _.ssamp */ 
        obl_shapedgradient(ss2_grad.name,ss2_grad.duration,0,0,ss2_grad.amp,NOWAIT);   
    	delay(ss2_grad.rfDelayFront); 
        shapedpulselist(shapelist180,ss2_grad.rfDuration,vphase180,rof1,rof2,seqcon[1],vms_ctr);
        delay(ss2_grad.rfDelayBack);   

        /* Phase-encode gradient ******************************/
        pe_shapedgradient(pe_grad.name,pe_grad.duration,0,0,0,-pe_grad.increment,vpe_mult,WAIT);

        /* Second half-TE period ******************************/
	delay(te2_delay);
	 
        /* Readout gradient ************************************/
        obl_shapedgradient(ro_grad.name,ro_grad.duration,ro_grad.amp,0,0,NOWAIT);
        delay(ro_grad.atDelayFront);

        /* Acquire data ****************************************/
        startacq(alfa);
        acquire(np,1.0/sw);
        endacq();

        delay(ro_grad.atDelayBack);

        /* Rewinding phase-encode gradient ********************/
        /* Phase encode, refocus, and dephase gradient ******************/
        pe_shapedgradient(pe_grad.name,pe_grad.duration,0,0,0,pe_grad.increment,vpe_mult,WAIT);

        /* Second half-TE delay *******************************/
        delay(te3_delay);
      endpeloop(seqcon[2],vetl_ctr);

      /* Relaxation delay ***********************************/
      if (!trtype)
        delay(tr_delay);
    endmsloop(seqcon[1],vms_ctr);
    if (trtype)
      delay(ns*tr_delay);
  endloop(vseg_ctr);

  /* Inter-image delay **********************************/
  sub(ntrt,ct,vtrimage);
  decr(vtrimage);
  ifzero(vtrimage);
    delay(trimage);
  endif(vtrimage);
}
Beispiel #24
0
pulsesequence() {

// Define Variables and Objects and Get Parameter Values

   CP hx = getcp("HX",0.0,0.0,0,1); 
   strncpy(hx.fr,"dec",3);
   strncpy(hx.to,"obs",3);
   putCmd("frHX='dec'\n"); 
   putCmd("toHX='obs'\n");

   DSEQ dec = getdseq("H");
   strncpy(dec.t.ch,"dec",3);
   putCmd("chHtppm='dec'\n"); 
   strncpy(dec.s.ch,"dec",3);
   putCmd("chHspinal='dec'\n");

//--------------------------------------
// Copy Current Parameters to Processed
//-------------------------------------

   putCmd("groupcopy('current','processed','acquisition')");

// Dutycycle Protection

   DUTY d = init_dutycycle();
   d.dutyon = getval("pw1Hhytrap") + getval("pw2Hhytrap") + getval("tHX"); 
   d.dutyoff = d1 + 4.0e-6 + getval("t1HYtrap") + getval("t2HYtrap");
   d.c1 = d.c1 + (!strcmp(dec.seq,"tppm"));
   d.c1 = d.c1 + ((!strcmp(dec.seq,"tppm")) && (dec.t.a > 0.0));
   d.t1 = getval("rd") + getval("ad") + at;
   d.c2 = d.c2 + (!strcmp(dec.seq,"spinal"));
   d.c2 = d.c2 + ((!strcmp(dec.seq,"spinal")) && (dec.s.a > 0.0));
   d.t2 = getval("rd") + getval("ad") + at;
   d = update_dutycycle(d);
   abort_dutycycle(d,10.0);

// Set Phase Tables

   settable(ph1Hhytrap,4,table1);
   settable(phYhytrap,4,table2);
   settable(ph2Hhytrap,4,table3);
   settable(phXhx,4,table4);
   settable(phHhx,4,table5);
   settable(phRec,4,table6);
   setreceiver(phRec);

// Begin Sequence

   txphase(phXhx); decphase(ph1Hhytrap); dec2phase(phYhytrap);
   obspwrf(getval("aXhx")); decpwrf(getval("aHhytrap")); dec2pwrf(getval("aYhytrap"));
   obsunblank(); decunblank(); _unblank34();
   delay(d1);
   sp1on(); delay(2.0e-6); sp1off(); delay(2.0e-6);

// TRAPDOR on H with Y Modulation

   decrgpulse(getval("pw1Hhytrap"),ph1Hhytrap,0.0,0.0);
   decphase(ph2Hhytrap);
   decunblank();
   dec2on();
   delay(getval("t1HYtrap"));
   dec2off();
   decrgpulse(getval("pw2Hhytrap"),ph2Hhytrap,0.0,0.0);
   decphase(phHhx);
   decunblank();
   decphase(phHhx);
   decpwrf(getval("aHhx"));
   delay(getval("t2HYtrap"));

// H to X Cross Polarization

    _cp_(hx,phHhx,phXhx);

// Begin Acquisition

   _dseqon(dec);
   obsblank(); _blank34();
   delay(getval("rd"));
   startacq(getval("ad"));
   acquire(np, 1/sw);
   endacq();
   _dseqoff(dec);
   obsunblank(); decunblank(); _unblank34();
}
pulsesequence() {

// Define Variables and Objects and Get Parameter Values

   double aXfam2 = getval("aXfam2");
   double pw1Xfam2 = getval("pw1Xfam2");
   double pw2Xfam2 = getval("pw2Xfam2"); 
   double pw3Xfam2 = getval("pw3Xfam2");
   double pw4Xfam2 = getval("pw4Xfam2");
   double nXfam2 = getval("nXfam2");
   initval(nXfam2,v4);

   putCmd("pw2Xmqmas=pwXfam1");    // Sequence uses pwXfam1 and sets pw2Xmqmas

   double d2init = getval("d2");   // Define the Split d2 in the Pulse Sequence
   double ival = getval("ival");

   double d20 = 1.0;
   double d21 = 0.0;
   double d22 = 0.0;
   if (ival == 1.5) {
      d20 = 9.0*d2init/16.0;
      d21 = 7.0*d2init/16.0;
      d22 = 0.0;
   }
   else if (ival == 2.5) {
      d20 = 12.0*d2init/31.0;
      d21 = 0.0*d2init/31.0;
      d22 = 19.0*d2init/31.0;
   }
   else { 
      d20 = 1.0*d2init;
      d21 = 0.0*d2init;
      d22 = 0.0*d2init;
   } 

   double tXechselinit = getval("tXechsel"); // Adjust the selective echo delay for the
   double tXechsel = tXechselinit - 3.0e-6;  // attenuator switch time.
   if (tXechsel < 0.0) tXechsel = 0.0;

   DSEQ dec = getdseq("H");
   strncpy(dec.t.ch,"dec",3);
   putCmd("chHtppm='dec'\n");
   strncpy(dec.s.ch,"dec",3);
   putCmd("chHspinal='dec'\n");

// Set Constant-time Period for d2. 

   if (d2_index == 0) d2_init = getval("d2");
   double d2_ = (ni - 1)/sw1 + d2_init;
   putCmd("d2acqret = %f\n",roundoff(d2_,12.5e-9));
   putCmd("d2dwret = %f\n",roundoff(1.0/sw1,12.5e-9));

//--------------------------------------
// Copy Current Parameters to Processed
//-------------------------------------

   putCmd("groupcopy('current','processed','acquisition')");

// Dutycycle Protection

   DUTY d = init_dutycycle();
   d.dutyon = getval("pw1Xmqmas") + nXfam2*(pw1Xfam2 + pw2Xfam2 + pw3Xfam2 +pw4Xfam2) + 
              getval("pwXechsel");
   d.dutyoff = d1 + 4.0e-6;
   d.c1 = d.c1 + (!strcmp(dec.seq,"tppm"));
   d.c1 = d.c1 + ((!strcmp(dec.seq,"tppm")) && (dec.t.a > 0.0));
   d.t1 = d2_ + tXechselinit + getval("rd") + getval("ad") + at;
   d.c2 = d.c2 + (!strcmp(dec.seq,"spinal"));
   d.c2 = d.c2 + ((!strcmp(dec.seq,"spinal")) && (dec.s.a > 0.0));
   d.t2 = d2_ + tXechselinit + getval("rd") + getval("ad") + at;
   d = update_dutycycle(d);
   abort_dutycycle(d,10.0);

// Set Phase Tables

   if (phase1 == 0) {
      settable(phf1Xmqmas,12,table1);
      settable(ph1Xfam2,6,table2);
      settable(ph2Xfam2,6,table3);
      settable(phfXechsel,96,table4);
      settable(phRec,48,table5);
   }
   else {
      settable(phf1Xmqmas,6,table6);
      settable(ph1Xfam2,6,table7);
      settable(ph2Xfam2,6,table8);
      settable(phfXechsel,48,table9);
      settable(phRec,24,table10);
      if (phase1 == 2) {
         tsadd(phf1Xmqmas,30,360);
      }
   } 

   setreceiver(phRec);
   obsstepsize(1.0);

// Begin Sequence

   xmtrphase(phf1Xmqmas); decphase(zero);
   obspower(getval("tpwr"));
   obspwrf(getval("aXmqmas"));
   obsunblank(); decunblank(); _unblank34();
   delay(d1);
   sp1on(); delay(2.0e-6); sp1off(); delay(2.0e-6);

// H Decoupler on Before MQMAS

   _dseqon(dec);

// Two-Pulse MQMAS with DFS Conversion 

   rgpulse(getval("pw1Xmqmas"),zero,0.0,0.0);
   xmtrphase(zero); txphase(ph1Xfam2);
   obspwrf(aXfam2); 
   delay(d20);

// X FAM2 Pulse

   loop(v4,v5);
      xmtron();
      delay(pw1Xfam2);
      xmtroff();
      txphase(ph2Xfam2);
      delay(pw2Xfam2);
      xmtron();
      delay(pw3Xfam2);
      xmtroff();
      txphase(ph2Xfam2);
      delay(pw4Xfam2);
   endloop(v5);

// Tau Delay and Second Selective Echo Pulse

   xmtrphase(phfXechsel);
   obsblank();
   obspower(getval("dbXechsel"));
   obspwrf(getval("aXechsel"));
   delay(3.0e-6);
   obsunblank();
   delay(d21 + tXechsel);
   rgpulse(getval("pwXechsel"),zero,0.0,0.0);
   delay(d22);
 
// Begin Acquisition
 
   obsblank(); _blank34();
   delay(getval("rd"));
   startacq(getval("ad"));
   acquire(np, 1/sw);
   endacq();
   _dseqoff(dec);
   obsunblank(); decunblank(); _unblank34();
}
Beispiel #26
0
pulsesequence()
{
  /* Internal variable declarations *********************/
  double  freq90[MAXNSLICE],freq180[MAXNSLICE];
  double  te_delay1,te_delay2,tr_delay,tau1,tau2,thk2fact,te_delay3=0.0,te_delay4=0.0,navTime=0.0;
  double  crushm0,pem0,gcrushr,gcrushp,gcrushs,pecrush;
  double  refsign=1,crushsign=1,navsign=1;
  int     shape90,shape180,table=0,sepRefocus;
  char    slprofile[MAXSTR];

  /* sequence dependent diffusion variables */
  double Gro,Gss;          // "gdiff" for readout/readout refocus and slice/slice refocus
  double dgro,dgss;        // "delta" for readout/readout refocus and slice/slice refocus
  double Dgro,Dgss;        // "DELTA" for readout/readout refocus and slice/slice refocus
  double dcrush,dgss2;     // "delta" for crusher and gss2 gradients
  double Dcrush,Dgss2;     // "DELTA" for crusher and gss2 gradients

  int    i;

  /* Real-time variables used in this sequence **********/
  int  vpe_steps  = v1;    // Number of PE steps
  int  vpe_ctr    = v2;    // PE loop counter
  int  vms_slices = v3;    // Number of slices
  int  vms_ctr    = v4;    // Slice loop counter
  int  vpe_offset = v5;    // PE/2 for non-table offset
  int  vpe_mult   = v6;    // PE multiplier, ranges from -PE/2 to PE/2
  int  vph180     = v7;    // Phase of 180 pulse
  int  vph2       = v8;    // alternate phase of 180 on odd transients
  int  vssc       = v9;    // Compressed steady-states
  int  vtrimage   = v10;   // Counts down from nt, trimage delay when 0
  int  vacquire   = v11;   // Argument for setacqvar, to skip steady state acquires
  int  vtrigblock = v12;   // Number of slices per trigger block

  /*  Initialize paramaters *****************************/
  init_mri();

  thk2fact=getval("thk2fact");
  pecrush=getval("pecrush");
  sepRefocus=getvalnwarn("sepRefocus");
  getstrnwarn("slprofile",slprofile);

  /*  Check for external PE table ***********************/
  init_tablepar("pelist");          // Initialize pelist parameter
  if (strcmp(petable,"n") && strcmp(petable,"N") && strcmp(petable,"")) {
    loadtable(petable);
    writetabletopar(t1,"pelist");   // Write t1 table to pelist parameter
    table = 1;
  }

  /* RF Power & Bandwidth Calculations ******************/
  shape_rf(&p1_rf,"p1",p1pat,p1,flip1,rof1,rof2);
  shape_rf(&p2_rf,"p2",p2pat,p2,flip2,rof1,rof2);
  calc_rf(&p1_rf,"tpwr1","tpwr1f");
  calc_rf(&p2_rf,"tpwr2","tpwr2f");

  /* Initialize gradient structures *********************/
  init_slice(&ss_grad,"ss",thk);
  init_slice(&ss2_grad,"ss2",thk*thk2fact);
  init_dephase(&crush_grad,"crush");
  init_slice_refocus(&ssr_grad,"ssr");
  if (FP_LT(tcrushro,alfa)) tcrushro=alfa;
  init_readout_butterfly(&ro_grad,"ro",lro,np,sw,gcrushro,tcrushro);
  init_readout_refocus(&ror_grad,"ror");
  init_phase(&pe_grad,"pe",lpe,nv);
  init_generic(&spoil_grad,"spoil",gspoil,tspoil);

  /* Gradient calculations ******************************/
  calc_readout(&ro_grad, WRITE,"gro","sw","at");
  ro_grad.m0ref *= grof;
  calc_readout_refocus(&ror_grad,&ro_grad,NOWRITE,"gror");
  calc_phase(&pe_grad,NOWRITE,"gpe","tpe");
  calc_slice(&ss_grad,&p1_rf,WRITE,"gss");
  calc_slice(&ss2_grad,&p2_rf,WRITE,"gss2");
  calc_slice_refocus(&ssr_grad,&ss_grad,WRITE,"gssr");
  calc_generic(&spoil_grad,WRITE,"","");

  /* Make sure crushing in PE dimension does not refocus signal from 180 */
  crushm0=fabs(gcrush*tcrush);
  pem0=0.0; gcrushp=0.0;
  if (pecrush) pem0=pe_grad.m0;
  calc_dephase(&crush_grad,WRITE,crushm0+pem0,"","");
  gcrushr = crush_grad.amp*crushm0/crush_grad.m0;
  if (pecrush) gcrushp = crush_grad.amp;
  gcrushs = crush_grad.amp*crushm0/crush_grad.m0;

  /* Allow phase encode and read dephase to be separated from slice refocus */
  if (sepRefocus) {
    /* Equalize read dephase and PE gradient durations */
    calc_sim_gradient(&ror_grad,&pe_grad,&null_grad,0,WRITE);
    crushsign=-1;
  } else {
    if (slprofile[0] == 'y') {
      /* Combined slice refocusing and read dephasing,
         reverse gradient sign if ror > ssr integral */
      refsign = (ss_grad.m0ref > ro_grad.m0ref) ? 1.0 : -1.0;
      ss_grad.m0ref -= ro_grad.m0ref;
      calc_slice_refocus(&ssr_grad,&ss_grad,NOWRITE,"gssr");
    }
    /* Equalize both refocus and PE gradient durations */
    calc_sim_gradient(&ror_grad,&pe_grad,&ssr_grad,0,WRITE);
  }

  /* Create optional prepulse events ********************/
  if (fsat[0] == 'y') create_fatsat();
  if (sat[0] == 'y')  create_satbands();
  if (mt[0] == 'y')   create_mtc();
  if (ir[0] == 'y')   create_inversion_recovery();
  if (diff[0] == 'y') init_diffusion(&diffusion,&diff_grad,"diff",gdiff,tdelta);

  sgl_error_check(sglerror);

  /* Min TE *********************************************/
  te = granularity(te,2*GRADIENT_RES);
  /* tau1, tau2 are the sum of events in each half echo period */
  /* tau1, tau2 include a GRADIENT_RES as this is minimum delay time */
  tau1 = ss_grad.rfCenterBack + ssr_grad.duration + crush_grad.duration + ss2_grad.rfCenterFront + 2*GRADIENT_RES;
  tau2 = ss2_grad.rfCenterBack + crush_grad.duration + ro_grad.timeToEcho + GRADIENT_RES;
  if (sepRefocus) tau2 += ror_grad.duration;
  temin = 2*MAX(tau1,tau2);

  /* Diffusion ******************************************/
  if (diff[0] == 'y') {
    /* granulate tDELTA */
    tDELTA = granularity(tDELTA,GRADIENT_RES);
    /* taudiff is the duration of events between diffusion gradients */
    taudiff = ss2_grad.duration + 2*crush_grad.duration + GRADIENT_RES;
    /* set minimum diffusion structure requirements for gradient echo: taudiff, tDELTA, te and minte[0] */
    set_diffusion(&diffusion,taudiff,tDELTA,te,minte[0]);
    /* set additional diffusion structure requirements for spin echo: tau1 and tau2 */
    set_diffusion_se(&diffusion,tau1,tau2);
    /* calculate the diffusion structure delays.
       address &temin is required in order to update temin accordingly */
    calc_diffTime(&diffusion,&temin);
  }

  /* TE delays ******************************************/
  if (minte[0] == 'y') {
    te = temin;
    putvalue("te",te);
  }
  if (FP_LT(te,temin)) {
    abort_message("TE too short, minimum TE = %.3f ms\n",temin*1000);
  }
  te_delay1 = te/2 - tau1 + GRADIENT_RES;
  te_delay2 = te/2 - tau2 + GRADIENT_RES;

  if (navigator[0] == 'y') {
    /* tau1, tau2 are the sum of events in each half echo period */
    tau1 = ro_grad.timeFromEcho + pe_grad.duration + crush_grad.duration + ss2_grad.rfCenterFront;
    tau2 = ss2_grad.rfCenterBack + crush_grad.duration + ro_grad.timeToEcho;
    if (FP_GT(tau1,tau2)) {
      te_delay3 = GRADIENT_RES;
      te_delay4 = tau1-tau2+GRADIENT_RES;
    } else {
      te_delay3 = tau2-tau1+GRADIENT_RES;
      te_delay4 = GRADIENT_RES;
    }
    navTime = te_delay3 + ss2_grad.duration + 2*crush_grad.duration + ro_grad.duration + te_delay4 + 2*GRADIENT_RES;
  }

  /* Check nsblock, the number of slices blocked together
     (used for triggering and/or inversion recovery) */
  check_nsblock();

  /* Min TR *********************************************/   	
  trmin = ss_grad.rfCenterFront  + te + ro_grad.timeFromEcho + pe_grad.duration + 2*GRADIENT_RES;

  /* Increase TR if any options are selected ************/
  if (spoilflag[0] == 'y') trmin += spoil_grad.duration;
  if (navigator[0] == 'y') trmin += navTime;
  if (sat[0] == 'y')       trmin += satTime;
  if (fsat[0] == 'y')      trmin += fsatTime;
  if (mt[0] == 'y')        trmin += mtTime;
  if (ticks > 0)           trmin += GRADIENT_RES;

  /* Adjust for all slices ******************************/
  trmin *= ns;

  /* Inversion recovery *********************************/
  if (ir[0] == 'y') {
    /* tauti is the additional time beyond IR component to be included in ti */
    /* satTime, fsatTime and mtTime all included as those modules will be after IR */
    tauti = satTime + fsatTime + mtTime + GRADIENT_RES + ss_grad.rfCenterFront;
    /* calc_irTime checks ti and returns the time of all IR components */
    trmin += calc_irTime(tauti,trmin,mintr[0],tr,&trtype);
  }

  if (mintr[0] == 'y') {
    tr = trmin;
    putvalue("tr",tr);
  }
  if (FP_LT(tr,trmin)) {
    abort_message("TR too short, minimum TR = %.3f ms\n",trmin*1000);
  }

  /* TR delay *******************************************/
  tr_delay = granularity((tr-trmin)/ns,GRADIENT_RES);

  /* Calculate B values *********************************/
  if (ix == 1) {
    /* Calculate bvalues according to main diffusion gradients */
    calc_bvalues(&diffusion,"dro","dpe","dsl");
    /* Add components from additional diffusion encoding imaging gradients peculiar to this sequence */
    /* Initialize variables */
    dgro = 0.5*(ror_grad.duration+ro_grad.timeToEcho);
    Gro = ro_grad.m0ref/dgro; Dgro = dgro;
    if (!sepRefocus) Dgro = te-ss_grad.rfCenterBack-ro_grad.timeToEcho;
    dgss = 0.5*(ss_grad.rfCenterBack+ssr_grad.duration);
    Gss = ss_grad.m0ref/dgss; Dgss = dgss;
    dgss2 = ss2_grad.duration/2; Dgss2 = dgss2;
    dcrush = crush_grad.duration-crush_grad.tramp; Dcrush = crush_grad.duration+ss2_grad.duration;
    for (i = 0; i < diffusion.nbval; i++)  {
      /* set droval, dpeval and dslval */
      set_dvalues(&diffusion,&droval,&dpeval,&dslval,i);
      /* Readout */
      diffusion.bro[i] += bval(Gro,dgro,Dgro);
      diffusion.bro[i] += bval(crushsign*gcrushr,dcrush,Dcrush);
      diffusion.bro[i] += bval_nested(gdiff*droval,tdelta,tDELTA,crushsign*gcrushr,dcrush,Dcrush);
      if (!sepRefocus) {
        diffusion.bro[i] += bval_nested(Gro,dgro,Dgro,gdiff*droval,tdelta,tDELTA);
        diffusion.bro[i] += bval_nested(Gro,dgro,Dgro,crushsign*gcrushr,dcrush,Dcrush);
      }
      /* Phase */
      if (pecrush) {
        diffusion.bpe[i] += bval(gcrushp,dcrush,Dcrush);
        diffusion.bpe[i] += bval_nested(gdiff*dpeval,tdelta,tDELTA,gcrushp,dcrush,Dcrush);
      }
      /* Slice */
      diffusion.bsl[i] += bval(Gss,dgss,Dgss);
      diffusion.bsl[i] += bval(gcrushs,dcrush,Dcrush);
      diffusion.bsl[i] += bval(ss2_grad.ssamp,dgss2,Dgss2);
      diffusion.bsl[i] += bval_nested(gdiff*dslval,tdelta,tDELTA,gcrushs,dcrush,Dcrush);
      diffusion.bsl[i] += bval_nested(gdiff*dslval,tdelta,tDELTA,ss2_grad.ssamp,dgss2,Dgss2);
      diffusion.bsl[i] += bval_nested(gcrushs,dcrush,Dcrush,ss2_grad.ssamp,dgss2,Dgss2);
      /* Readout/Phase Cross-terms */
      diffusion.brp[i] += bval_cross(gdiff*dpeval,tdelta,tDELTA,crushsign*gcrushr,dcrush,Dcrush);
      diffusion.brp[i] += bval_cross(gdiff*dpeval,tdelta,tDELTA,crushsign*gcrushr,dcrush,Dcrush);
      if (pecrush) diffusion.brp[i] += bval_cross(gdiff*droval,tdelta,tDELTA,gcrushp,dcrush,Dcrush);
      if (!sepRefocus) {
        diffusion.brp[i] += bval_cross(Gro,dgro,Dgro,gdiff*dpeval,tdelta,tDELTA);
        if (pecrush) diffusion.brp[i] += bval_cross(Gro,dgro,Dgro,gcrushp,dcrush,Dcrush);
      }
      /* Readout/Slice Cross-terms */
      diffusion.brs[i] += bval2(crushsign*gcrushr,gcrushs,dcrush,Dcrush);
      diffusion.brs[i] += bval_cross(gdiff*droval,tdelta,tDELTA,gcrushs,dcrush,Dcrush);
      diffusion.brs[i] += bval_cross(gdiff*dslval,tdelta,tDELTA,crushsign*gcrushr,dcrush,Dcrush);
      diffusion.brs[i] += bval_cross(gdiff*droval,tdelta,tDELTA,ss2_grad.ssamp,dgss2,Dgss2);
      if (!sepRefocus) {
        diffusion.brs[i] += bval_cross(Gro,dgro,Dgro,gdiff*dslval,tdelta,tDELTA);
        diffusion.brs[i] += bval_cross(Gro,dgro,Dgro,gcrushs,dcrush,Dcrush);
        diffusion.brs[i] += bval_cross(Gro,dgro,Dgro,ss2_grad.ssamp,dgss2,Dgss2);
      }
      /* Slice/Phase Cross-terms */
      diffusion.bsp[i] += bval_cross(gdiff*dpeval,tdelta,tDELTA,gcrushs,dcrush,Dcrush);
      diffusion.bsp[i] += bval_cross(gdiff*dpeval,tdelta,tDELTA,ss2_grad.ssamp,dgss2,Dgss2);
      if (pecrush) { 
        diffusion.bsp[i] += bval2(gcrushs,gcrushp,dcrush,Dcrush);
        diffusion.bsp[i] += bval_cross(gdiff*dslval,tdelta,tDELTA,gcrushp,dcrush,Dcrush);
        diffusion.bsp[i] += bval_cross(gcrushp,dcrush,Dcrush,ss2_grad.ssamp,dgss2,Dgss2);
      }
    }  /* End for-all-directions */
    /* Write the values */
    write_bvalues(&diffusion,"bval","bvalue","max_bval");
  }

  /* Generate phase-ramped pulses ***********************/
  offsetlist(pss,ss_grad.ssamp,0,freq90,ns,seqcon[1]);
  offsetlist(pss,ss2_grad.ssamp,0,freq180,ns,seqcon[1]);
  shape90 = shapelist(p1_rf.pulseName,ss_grad.rfDuration,freq90,ns,ss_grad.rfFraction,seqcon[1]);
  shape180 = shapelist(p2_rf.pulseName,ss2_grad.rfDuration,freq180,ns,ss2_grad.rfFraction,seqcon[1]);

  /* Set pe_steps for profile or full image *************/   	
  pe_steps = prep_profile(profile[0],nv,&pe_grad,&null_grad);
  F_initval(pe_steps/2.0,vpe_offset);

  /* Shift DDR for pro **********************************/
  roff = -poffset(pro,ro_grad.roamp);

  /* Adjust experiment time for VnmrJ *******************/
  if (ssc<0) {
    if (seqcon[2] == 'c') g_setExpTime(trmean*(ntmean*pe_steps*arraydim - ssc*arraydim));
    else g_setExpTime(trmean*(ntmean*pe_steps*arraydim - ssc*pe_steps*arraydim));
  }
  else g_setExpTime(trmean*ntmean*pe_steps*arraydim + tr*ssc);

  /* Slice profile **************************************/
  if (slprofile[0] == 'y' && !sepRefocus) ror_grad.amp = 0;

  /* Set phase cycle table ******************************/
  if (sepRefocus) settable(t2,1,ph180); // Phase encode is just before readout
  else settable(t2,2,ph180);

  /* PULSE SEQUENCE *************************************/
  status(A);                          // Set status A
  rotate();                           // Set gradient rotation according to psi, phi and theta
  triggerSelect(trigger);             // Select trigger input 1/2/3
  obsoffset(resto);                   // Set spectrometer frequency
  delay(GRADIENT_RES);                // Delay for frequency setting
  initval(fabs(ssc),vssc);            // Compressed steady-state counter
  if (seqcon[2]=='s') assign(zero,vssc); // Zero for standard peloop
  assign(one,vacquire);               // real-time acquire flag
  setacqvar(vacquire);                // Turn on acquire when vacquire is zero 

  /* trigger */
  if (ticks > 0) F_initval((double)nsblock,vtrigblock);

  /* Begin phase-encode loop ****************************/       
  peloop(seqcon[2],pe_steps,vpe_steps,vpe_ctr);

    if (trtype) delay(ns*tr_delay);   // relaxation delay

    /* Compressed steady-states: 1st array & transient, all arrays if ssc is negative */
    if ((ix > 1) && (ssc > 0))
      assign(zero,vssc);
    sub(vpe_ctr,vssc,vpe_ctr);        // vpe_ctr counts up from -ssc
    assign(zero,vssc);
    if (seqcon[2] == 's')
      assign(zero,vacquire);          // Always acquire for non-compressed loop
    else {
      ifzero(vpe_ctr);
        assign(zero,vacquire);        // Start acquiring when vpe_ctr reaches zero
      endif(vpe_ctr);
    }

    /* Read external kspace table if set ******************/       
    if (table)
      getelem(t1,vpe_ctr,vpe_mult);
    else {
      ifzero(vacquire);
        sub(vpe_ctr,vpe_offset,vpe_mult);
      elsenz(vacquire);
        sub(zero,vpe_offset,vpe_mult);      // Hold PE mult at initial value for steady states
      endif(vacquire);
    }

    /* Phase cycle ****************************************/       
    getelem(t2,vpe_ctr,vph180);             // For phase encoding with slice rephase
    add(oph,vph180,vph180);                 // 180 deg pulse phase alternates +/- 90 from receiver
    mod2(ct,vph2);
    dbl(vph2,vph2);
    add(vph180,vph2,vph180);                // Alternate phase for 180 on odd transients

    /* Begin multislice loop ******************************/       
    msloop(seqcon[1],ns,vms_slices,vms_ctr);

      if (!trtype) delay(tr_delay);         // Relaxation delay

      if (ticks > 0) {
        modn(vms_ctr,vtrigblock,vtest);
        ifzero(vtest);                      // if the beginning of an trigger block
          xgate(ticks);
          grad_advance(gpropdelay);
          delay(GRADIENT_RES);
        elsenz(vtest);
          delay(GRADIENT_RES);
        endif(vtest);
      }

      sp1on(); delay(GRADIENT_RES); sp1off();     // Scope trigger

      /* Prepulse options ***********************************/
      if (ir[0] == 'y')   inversion_recovery();
      if (sat[0] == 'y')  satbands();
      if (fsat[0] == 'y') fatsat();
      if (mt[0] == 'y')   mtc();

      /* Slice select RF pulse ******************************/ 
      obspower(p1_rf.powerCoarse);
      obspwrf(p1_rf.powerFine);
      delay(GRADIENT_RES);
      obl_shapedgradient(ss_grad.name,ss_grad.duration,0,0,ss_grad.amp,NOWAIT);
      delay(ss_grad.rfDelayFront);
      shapedpulselist(shape90,ss_grad.rfDuration,oph,rof1,rof2,seqcon[1],vms_ctr);
      delay(ss_grad.rfDelayBack);

      /* Slice refocus gradient *****************************/
      if (sepRefocus) 
        obl_shapedgradient(ssr_grad.name,ssr_grad.duration,0,0,-ssr_grad.amp,WAIT);
      else
        /* Include phase encode and readout dephase gradient if refocus gradients not separated */
        pe_shapedgradient(pe_grad.name,pe_grad.duration,ror_grad.amp,0,-ssr_grad.amp*refsign,pe_grad.increment,vpe_mult,WAIT);

      if (diff[0] == 'y') {
        delay(diffusion.d1);
        diffusion_dephase(&diffusion,dro,dpe,dsl);
        delay(diffusion.d2);
      } 
      else 
        delay(te_delay1);

      /* Refocusing RF pulse ********************************/ 
      obspower(p2_rf.powerCoarse);
      obspwrf(p2_rf.powerFine);
      delay(GRADIENT_RES);
      obl_shapedgradient(crush_grad.name,crush_grad.duration,crushsign*gcrushr,gcrushp,gcrushs,WAIT);
      obl_shapedgradient(ss2_grad.name,ss2_grad.duration,0,0,ss2_grad.amp,NOWAIT);
      delay(ss2_grad.rfDelayFront);
      shapedpulselist(shape180,ss2_grad.rfDuration,vph180,rof2,rof2,seqcon[1],vms_ctr);
      delay(ss2_grad.rfDelayBack);
      obl_shapedgradient(crush_grad.name,crush_grad.duration,crushsign*gcrushr,gcrushp,gcrushs,WAIT);

      if (diff[0] == 'y') {
        delay(diffusion.d3);
        diffusion_rephase(&diffusion,dro,dpe,dsl);
        delay(diffusion.d4);
      } 
      else 
        delay(te_delay2);

      /* Readout dephase, phase encode & readout gradients **/
      roff = -poffset(pro,ro_grad.roamp);  // incase inverted navigator is acquired
      if (slprofile[0] == 'y') {
        /* Readout gradient only if refocus gradients not separated */
        if (sepRefocus)
          obl_shapedgradient(ror_grad.name,ror_grad.duration,0,0,-ror_grad.amp,WAIT);
        obl_shapedgradient(ro_grad.name,ro_grad.duration,0,0,ro_grad.amp,NOWAIT);
      } else {
        /* Readout gradient only if refocus gradients not separated */
        if (sepRefocus) 
          pe_shapedgradient(pe_grad.name,pe_grad.duration,-ror_grad.amp,0,0,-pe_grad.increment,vpe_mult,WAIT);
        obl_shapedgradient(ro_grad.name,ro_grad.duration,ro_grad.amp,0,0,NOWAIT);
      }

      /* Acquisition ****************************************/
      delay(ro_grad.atDelayFront-alfa);
      startacq(alfa);
      acquire(np,1.0/sw);
      delay(ro_grad.atDelayBack);
      endacq();

      /* Rewind Phase encoding ******************************/
      pe_shapedgradient(pe_grad.name,pe_grad.duration,0,0,0,pe_grad.increment,vpe_mult,WAIT);

      /* Navigator acquisition ******************************/
      if (navigator[0] == 'y') {
        delay(te_delay3);
        obl_shapedgradient(crush_grad.name,crush_grad.duration,-crushsign*gcrushr,0,-gcrushs,WAIT);
        obl_shapedgradient(ss2_grad.name,ss2_grad.duration,0,0,ss2_grad.amp,NOWAIT);
        delay(ss2_grad.rfDelayFront);
        shapedpulselist(shape180,ss2_grad.rfDuration,vph180,rof2,rof2,seqcon[1],vms_ctr);
        delay(ss2_grad.rfDelayBack);
        obl_shapedgradient(crush_grad.name,crush_grad.duration,-crushsign*gcrushr,0,-gcrushs,WAIT);
        delay(te_delay4);
        obl_shapedgradient(ro_grad.name,ro_grad.duration,navsign*ro_grad.amp,0,0,NOWAIT);
        delay(ro_grad.atDelayFront-alfa);
        startacq(alfa);
        acquire(np,1.0/sw);
        delay(ro_grad.atDelayBack);
        endacq();
      }

      if (spoilflag[0] == 'y') {
        obl_shapedgradient(spoil_grad.name,spoil_grad.duration,navsign*spoil_grad.amp,0,spoil_grad.amp,WAIT);
      }

    endmsloop(seqcon[1],vms_ctr);

  endpeloop(seqcon[2],vpe_ctr);

  /* Inter-image delay **********************************/
  sub(ntrt,ct,vtrimage);
  decr(vtrimage);
  ifzero(vtrimage);
    delay(trimage);
  endif(vtrimage);

  /* Duty cycle *****************************************/
  calc_grad_duty(tr);

}
Beispiel #27
0
pulsesequence()
{
   double freq,fstart,fend;
   double attn,attnd,attnd2,attnd3,attnd4,tattn;/* 5 channels supported */
   double tunesw,tuneswd,tuneswd2,tuneswd3,tuneswd4,tsw;
   double gain,gaind,gaind2,gaind3,gaind4,tgain;
   int chan;
   double offset_sec;
   int np2;
   int nfv,index;

   nfv = (int) getval("nf");
   np2 = np / 2;
   status(A);
   /* getRealSetDefault reduces logic - not in Inova */
   getRealSetDefault(CURRENT,"tunesw",&tunesw,10000000.0);
   getRealSetDefault(CURRENT,"tuneswd",&tuneswd,tunesw);
   getRealSetDefault(CURRENT,"tuneswd2",&tuneswd2,tunesw);
   getRealSetDefault(CURRENT,"tuneswd3",&tuneswd3,tunesw);
   getRealSetDefault(CURRENT,"tuneswd4",&tuneswd4,tunesw);

   getRealSetDefault(CURRENT,"tupwr",&attn,10.0);
   getRealSetDefault(CURRENT,"tupwrd",&attnd,10.0);
   getRealSetDefault(CURRENT,"tupwrd2",&attnd2,10.0);
   getRealSetDefault(CURRENT,"tupwrd3",&attnd3,10.0);
   getRealSetDefault(CURRENT,"tupwrd4",&attnd4,10.0);
   getRealSetDefault(CURRENT,"gain",&gain,10.0);
   getRealSetDefault(CURRENT,"gaind",&gaind,gain);
   getRealSetDefault(CURRENT,"gaind2",&gaind2,gain);
   getRealSetDefault(CURRENT,"gaind3",&gaind3,gain);
   getRealSetDefault(CURRENT,"gaind4",&gaind4,gain);
   offset_sec = (0.5 / sw);
   setacqmode(WACQ|NZ); 
   for (index = 0; index < nf; index++)
   {
     switch(index) {
      case 0:  chan = OBSch; freq = sfrq; tattn = attn; 
                    tgain = gain; tsw = tunesw; break;
      case 1:  chan = DECch; freq = dfrq; tattn = attnd; 
                    tgain = gaind; tsw = tuneswd; break;
      case 2:  chan = DEC2ch; freq = dfrq2; tattn = attnd2; 
                    tgain = gaind2; tsw = tuneswd2; break;
      case 3:  chan = DEC3ch; freq = dfrq3; tattn = attnd3; 
                    tgain = gaind3; tsw = tuneswd3; break;
      case 4:  chan = DEC4ch; freq = dfrq4; tattn = attnd4; 
                    tgain = gaind4; tsw = tuneswd4; break;
      default:  exit(-1);
     }
     fstart = freq - (tsw/2) * 1e-6;
     fend = freq + (tsw/2) * 1.0e-6;
     //printf("channel = %d  frequency = %f\n",chan,freq);
     //printf("channel = %d  frequency span = %f\n",chan, tsw);
     //printf("start=%f  stop = %f\n",fstart,fend);
     //printf("gain = %f power = %f\n",tgain,tattn);
     hsdelay(d1);
     set4Tune(chan,tgain); 
     assign(zero,oph);
     genPower(tattn,chan);
     delay(0.001);
     startacq(alfa);
     SweepNOffsetAcquire(fstart, fend, np2, chan, offset_sec); 
     endacq();
     delay(0.001);
   }
}
Beispiel #28
0
void pulsesequence() {

//
// Set the Maximum Dynamic Table Number
//

   settablenumber(10);
   setvvarnumber(30);

//Define Variables and Objects and Get Parameter Values

   CP hx = getcp("HX",0.0,0.0,0,1);
   strncpy(hx.fr,"dec",3);
   strncpy(hx.to,"obs",3);
   putCmd("frHX='dec'\n");
   putCmd("toHX='obs'\n");

   WMPA cpmg = getcpmg("cpmgX");
   strncpy(cpmg.ch,"obs",3);
   putCmd("chXcpmg='obs'\n");

   double aXecho = getval("aXecho");  // define the echoX group in the sequence
   double t1Xechoinit = getval("t1Xecho");
   double pwXecho = getval("pwXecho");
   double t2Xechoinit = getval("t2Xecho");
   double t1Xecho  = t1Xechoinit - pwXecho/2.0 - getval("pwX90")/2.0;
   if (t1Xecho < 0.0) t1Xecho = 0.0;
   double t2Xecho  = t2Xechoinit - pwXecho/2.0 - cpmg.r1 - cpmg.t2 - getval("ad");
   if (t2Xecho < 0.0) t2Xecho = 0.0;

   DSEQ dec = getdseq("H");
   strncpy(dec.t.ch,"dec",3);
   putCmd("chHtppm='dec'\n"); 
   strncpy(dec.s.ch,"dec",3);
   putCmd("chHspinal='dec'\n");

//--------------------------------------
// Copy Current Parameters to Processed
//-------------------------------------

   putCmd("groupcopy('current','processed','acquisition')");

// Dutycycle Protection

   DUTY d = init_dutycycle();
   d.dutyon = getval("pwH90") + getval("tHX") + pwXecho + (cpmg.cycles - 1)*cpmg.pw; 
   d.dutyoff = d1 + 4.0e-6;
   d.c1 = d.c1 + (!strcmp(dec.seq,"tppm"));
   d.c1 = d.c1 + ((!strcmp(dec.seq,"tppm")) && (dec.t.a > 0.0));
   d.t1 = t1Xecho + t2Xecho + getval("rd") + getval("ad") + 
          at - (cpmg.cycles - 1)*cpmg.pw;
   d.c2 = d.c2 + (!strcmp(dec.seq,"spinal"));
   d.c2 = d.c2 + ((!strcmp(dec.seq,"spinal")) && (dec.s.a > 0.0));
   d.t2 = t1Xecho + t2Xecho + getval("rd") + getval("ad") + 
          at - (cpmg.cycles - 1)*cpmg.pw;
   d = update_dutycycle(d);
   abort_dutycycle(d,10.0);


// Set Phase Tables

   settable(phH90,64,table1);
   settable(phXhx,64,table2);
   settable(phHhx,64,table3);
   settable(phXecho,64,table4);
   settable(phXcpmg,64,table5);
   settable(phRec,64,table6);
   setreceiver(phRec);

// Begin Sequence

   txphase(phXhx); decphase(phH90);
   obspwrf(getval("aXhx")); decpwrf(getval("aH90"));
   obsunblank(); decunblank(); _unblank34();
   delay(d1);
   sp1on(); delay(2.0e-6); sp1off(); delay(2.0e-6);

// H to X Cross Polarization

   decrgpulse(getval("pwH90"),phH90,0.0,0.0);
   decphase(phHhx);
   _cp_(hx,phHhx,phXhx);

// H Decoupling On

   decphase(zero);
   _dseqon(dec);

// X Hahn Echo

   txphase(phXecho);
   obspwrf(aXecho);
   delay(t1Xecho);
   rgpulse(pwXecho,phXecho,0.0,0.0);
   delay(t2Xecho);

// Apply CPMG Cycles

   obsblank(); _blank34();
   delay(cpmg.r1);
   startacq(getval("ad"));
   _cpmg(cpmg,phXcpmg);
   endacq();
   _dseqoff(dec);
   obsunblank(); decunblank(); _unblank34();
}
Beispiel #29
0
pulsesequence() {

// Define Variables and Objects and Get Parameter Values

   CP hy = getcp("HY",0.0,0.0,0,1);
   strncpy(hy.fr,"dec",3);
   strncpy(hy.to,"dec2",4);
   putCmd("frHY='dec'\n");
   putCmd("toHY='dec2'\n");

   GP inept = getinept("ineptYX");
   strncpy(inept.ch1,"dec2",4);
   strncpy(inept.ch2,"obs",3);
   putCmd("ch1YXinept='dec2'\n");
   putCmd("ch2YXinept='obs'\n");
   
   DSEQ dec = getdseq("H");
   strncpy(dec.t.ch,"dec",3);
   putCmd("chHtppm='dec'\n"); 
   strncpy(dec.s.ch,"dec",3);
   putCmd("chHspinal='dec'\n");

   DSEQ mix = getdseq("Hmix");
   strncpy(mix.t.ch,"dec",3);
   putCmd("chHmixtppm='dec'\n"); 
   strncpy(mix.s.ch,"dec",3);
   putCmd("chHmixspinal='dec'\n");

// Dutycycle Protection

   double simpw1 = inept.pw1;
   if (inept.pw2 > inept.pw1) simpw1 = inept.pw2;

   double simpw2 = inept.pw3;
   if (inept.pw4 > inept.pw3) simpw2 = inept.pw4;

   DUTY d = init_dutycycle();
   d.dutyon = getval("pwH90") + getval("tHY") + 2.0*simpw1 + 2.0*simpw2;
   d.dutyoff = d1 + 4.0e-6;
   d.c1 = d.c1 + (!strcmp(dec.seq,"tppm"));
   d.c1 = d.c1 + ((!strcmp(dec.seq,"tppm")) && (dec.t.a > 0.0));
   d.t1 = inept.t1 + inept.t2 + inept.t3 + inept.t4 + 
          getval("rd") + getval("ad") + at;
   d.c2 = d.c2 + (!strcmp(dec.seq,"spinal"));
   d.c2 = d.c2 + ((!strcmp(dec.seq,"spinal")) && (dec.s.a > 0.0));
   d.t2 = inept.t1 + inept.t2 + inept.t3 + inept.t4 + 
          getval("rd") + getval("ad") + at;
   d = update_dutycycle(d);
   abort_dutycycle(d,10.0);

// Set Phase Tables

   settable(phH90,16,table1);
   settable(phHhy,4,table2);
   settable(phYhy,4,table3);
   settable(ph1Yyxinept,4,table4);
   settable(ph1Xyxinept,4,table5);
   settable(ph2Yyxinept,4,table6);
   settable(ph2Xyxinept,16,table7);
   settable(ph3Yyxinept,8,table8);
   settable(ph3Xyxinept,4,table9);
   settable(phRec,8,table10);
   setreceiver(phRec);

// Begin Sequence

   txphase(ph1Xyxinept); decphase(phH90); dec2phase(phYhy);
   obspwrf(getval("aXyxinept")); decpwrf(getval("aH90")); dec2pwrf(getval("aYhy"));
   obsunblank(); decunblank(); _unblank34();
   delay(d1);
   sp1on(); delay(2.0e-6); sp1off(); delay(2.0e-6);

// H to Y Cross Polarization

   decrgpulse(getval("pwH90"),phH90,0.0,0.0);
   decphase(phHhy);
   _cp_(hy,phHhy,phYhy);
   decphase(zero);

// INEPT Transfer from Y to X

   _dseqon(mix);
   _ineptref(inept,ph1Yyxinept,ph1Xyxinept,ph2Yyxinept,ph2Xyxinept,ph3Yyxinept,ph3Xyxinept);
   _dseqoff(mix);

// Begin Acquisition

   _dseqon(dec);
   obsblank(); _blank34();
   delay(getval("rd"));
   startacq(getval("ad"));
   acquire(np, 1/sw);
   endacq();
   _dseqoff(dec);
   obsunblank(); decunblank(); _unblank34();
}
Beispiel #30
0
void pulsesequence() {

//======================================================
// Define Variables and Objects and Get Parameter Values
//======================================================

// --------------------------------
// Acquisition Decoupling
// -------------------------------

   char Xseq[MAXSTR];
   getstr("Xseq",Xseq);
   DSEQ dec = getdseq("X");
   strncpy(dec.t.ch,"dec",3);
   putCmd("chXtppm='dec'\n");
   strncpy(dec.s.ch,"dec",3);
   putCmd("chXspinal='dec'\n");

//-------------------------------------
// Homonuclear Decoupling During Echo
//-------------------------------------

   MPDEC homo1 = getmpdec("hdec1H",0,0.0,0.0,0,1);
   strncpy(homo1.mps.ch,"obs",3);
   putCmd("chHhdec1='obs'\n"); 

// --------------------
// H echo calculation
// --------------------

   double t1Hecho = getval("t1Hecho") - getval("pwHecho")/2.0 - 
                    ((!strcmp(homo1.dm,"y"))?getval("pwHshort1")*2.:0.0);
   if (t1Hecho < 0.0) t1Hecho = 0.0;
   double t2Hecho = getval("t2Hecho") - getval("pwHecho")/2.0 - 
                    ((!strcmp(homo1.dm,"y"))?getval("pwHshort1")*2.:0.0) - 
                    getval("rd")- getval("ad");
   if (t2Hecho < 0.0) t2Hecho = 0.0;
 

   double t1H_echo = 0.0; 
   double t2H_echo = 0.0;
   double t1H_left = 0.0; 
   double t2H_left = 0.0;
   if (!strcmp(homo1.dm,"y")) {
      t2H_echo = homo1.mps.t*((int)(t2Hecho/homo1.mps.t));
      t2H_left = t2Hecho - t2H_echo;
      t1H_echo = t2H_echo;
      t1H_left = t1Hecho - t1H_echo;
   }

//--------------------------------------
// Copy Current Parameters to Processed
//-------------------------------------

   putCmd("groupcopy('current','processed','acquisition')");

//----------------------
// Dutycycle Protection
//----------------------

   DUTY d = init_dutycycle();
   d.dutyon = getval("pwH90");
   d.dutyoff = d1 + 4.0e-6;
   if (!strcmp(homo1.dm,"y"))
     d.dutyon += t1H_echo + t2H_echo;
   else
     d.dutyoff += t1H_echo + t2H_echo;
   d.c1 = d.c1 + (!strcmp(Xseq,"tppm"));
   d.c1 = d.c1 + ((!strcmp(Xseq,"tppm")) && (dec.t.a > 0.0));
   d.t1 = getval("rd") + getval("ad") + at;
   d.c2 = d.c2 + (!strcmp(Xseq,"spinal"));
   d.c2 = d.c2 + ((!strcmp(Xseq,"spinal")) && (dec.s.a > 0.0));
   d.t2 = getval("rd") + getval("ad") + at;
   d = update_dutycycle(d);
   abort_dutycycle(d,10.0);

//------------------------
// Set Phase Tables
//-----------------------

   settable(phH90,4,table1);    
   settable(phHecho,8,table2);
   settable(phRec,4,table3);
   setreceiver(phRec);

//=======================    
// Begin Sequence
//=======================

   txphase(phH90); decphase(zero);
   obspwrf(getval("aH90")); 
   obsunblank(); decunblank(); _unblank34();
   delay(d1);  
   sp1on(); delay(2.0e-6); sp1off(); delay(2.0e-6);

//------------------------  
// H Direct Polarization 
//------------------------
  
   rgpulse(getval("pwH90"),phH90,0.0,0.0);
   obsunblank(); decunblank(); _unblank34();

// -----------------------------
// H Hahn Echo
// -----------------------------

   if (!strcmp(homo1.dm,"y")) {
      delay (t1H_left);
      if (getval("pwHshort1") > 0.0 ) {
         obspwrf(getval("aHhdec1"));
         rgpulse(getval("pwHshort1"),three,0.0,0.0);  
         obsunblank();
      }
      if (!strcmp(homo1.dm,"y")) _mpseqon(homo1.mps,zero);
      delay(t1H_echo);
      if (!strcmp(homo1.dm,"y")) _mpseqoff(homo1.mps);

      if (getval("pwHshort1") > 0.0 ) {
         obspwrf(getval("aHhdec1")); txphase(one);
         rgpulse(getval("pwHshort1"),one,0.0,0.0);  
         obsunblank();
      }
   }
   else delay(t1Hecho);
   txphase(phHecho);
   obspwrf(getval("aHecho"));
   rgpulse(getval("pwHecho"),phHecho,0.0,0.0);
   obsunblank();

   if (!strcmp(homo1.dm,"y")) {
      if (getval("pwHshort1") > 0.0 ) {
         obspwrf(getval("aHhdec1"));
         rgpulse(getval("pwHshort1"),three,0.0,0.0);  
         obsunblank();
      }
      if (!strcmp(homo1.dm,"y")) _mpseqon(homo1.mps,zero);
      delay(t2H_echo);
      if (!strcmp(homo1.dm,"y")) _mpseqoff(homo1.mps);

      if(getval("pwHshort1")>0 )  {
         obspwrf(getval("aHhdec1"));
         rgpulse(getval("pwHshort1"),one,0.0,0.0);  
         obsunblank();
      }
      delay(t2H_left);
   }
   else delay(t2Hecho);


//====================
// Begin Acquisition 
//====================

   _dseqon(dec);    
   obsblank(); decblank(); _blank34();
   delay(getval("rd"));  
   startacq(getval("ad"));
   acquire(np, 1/sw);
   endacq();
   _dseqoff(dec); 
   obsunblank(); decunblank(); _unblank34();
}