void update_state_machine_mode_manual(int status_pub, struct vehicle_status_s *current_status, const int mavlink_fd)
{
	int old_mode = current_status->flight_mode;
	current_status->flight_mode = VEHICLE_FLIGHT_MODE_MANUAL;

	current_status->flag_control_manual_enabled = true;

	/* set behaviour based on airframe */
	if ((current_status->system_type == VEHICLE_TYPE_QUADROTOR) ||
	    (current_status->system_type == VEHICLE_TYPE_HEXAROTOR) ||
	    (current_status->system_type == VEHICLE_TYPE_OCTOROTOR)) {

		/* assuming a rotary wing, set to SAS */
		current_status->manual_control_mode = VEHICLE_MANUAL_CONTROL_MODE_SAS;
		current_status->flag_control_attitude_enabled = true;
		current_status->flag_control_rates_enabled = true;

	} else {

		/* assuming a fixed wing, set to direct pass-through */
		current_status->manual_control_mode = VEHICLE_MANUAL_CONTROL_MODE_DIRECT;
		current_status->flag_control_attitude_enabled = false;
		current_status->flag_control_rates_enabled = false;
	}

	if (old_mode != current_status->flight_mode) state_machine_publish(status_pub, current_status, mavlink_fd);

	if (current_status->state_machine == SYSTEM_STATE_GROUND_READY || current_status->state_machine == SYSTEM_STATE_STABILIZED || current_status->state_machine == SYSTEM_STATE_AUTO) {
		printf("[cmd] manual mode\n");
		do_state_update(status_pub, current_status, mavlink_fd, (commander_state_machine_t)SYSTEM_STATE_MANUAL);
	}
}
void update_state_machine_mode_auto(int status_pub, struct vehicle_status_s *current_status, const int mavlink_fd)
{
	int old_mode = current_status->flight_mode;
	current_status->flight_mode = VEHICLE_FLIGHT_MODE_AUTO;
	current_status->flag_control_manual_enabled = true;
	if (old_mode != current_status->flight_mode) state_machine_publish(status_pub, current_status, mavlink_fd);

	if (current_status->state_machine == SYSTEM_STATE_GROUND_READY || current_status->state_machine == SYSTEM_STATE_MANUAL || current_status->state_machine == SYSTEM_STATE_STABILIZED) {
		printf("[commander] auto mode\n");
		do_state_update(status_pub, current_status, mavlink_fd, (commander_state_machine_t)SYSTEM_STATE_AUTO);
	}
}
uint8_t update_state_machine_mode_request(int status_pub, struct vehicle_status_s *current_status, const int mavlink_fd, uint8_t mode)
{
	printf("[commander] Requested new mode: %d\n", (int)mode);
	uint8_t ret = 1;

	/* vehicle is disarmed, mode requests arming */
	if (!(current_status->flag_system_armed) && (mode & VEHICLE_MODE_FLAG_SAFETY_ARMED)) {
		/* only arm in standby state */
		// XXX REMOVE
		if (current_status->state_machine == SYSTEM_STATE_STANDBY || current_status->state_machine == SYSTEM_STATE_PREFLIGHT) {
			do_state_update(status_pub, current_status, mavlink_fd, (commander_state_machine_t)SYSTEM_STATE_GROUND_READY);
			ret = OK;
			printf("[commander] arming due to command request\n");
		}
	}

	/* vehicle is armed, mode requests disarming */
	if (current_status->flag_system_armed && !(mode & VEHICLE_MODE_FLAG_SAFETY_ARMED)) {
		/* only disarm in ground ready */
		if (current_status->state_machine == SYSTEM_STATE_GROUND_READY) {
			do_state_update(status_pub, current_status, mavlink_fd, (commander_state_machine_t)SYSTEM_STATE_STANDBY);
			ret = OK;
			printf("[commander] disarming due to command request\n");
		}
	}

	/* Switch on HIL if in standby and not already in HIL mode */
	if ((current_status->state_machine == SYSTEM_STATE_STANDBY) && (mode & VEHICLE_MODE_FLAG_HIL_ENABLED)
		&& !current_status->flag_hil_enabled) {
		/* Enable HIL on request */
		current_status->flag_hil_enabled = true;
		ret = OK;
		state_machine_publish(status_pub, current_status, mavlink_fd);
		publish_armed_status(current_status);
		printf("[commander] Enabling HIL, locking down all actuators for safety.\n\t(Arming the system will not activate them while in HIL mode)\n");
	}

	/* NEVER actually switch off HIL without reboot */
	if (current_status->flag_hil_enabled && !(mode & VEHICLE_MODE_FLAG_HIL_ENABLED)) {
		fprintf(stderr, "[commander] DENYING request to switch of HIL. Please power cycle (safety reasons)\n");
		ret = ERROR;
	}

	return ret;
}
void update_state_machine_mode_auto(int status_pub, struct vehicle_status_s *current_status, const int mavlink_fd)
{
	if (!current_status->flag_vector_flight_mode_ok) {
		mavlink_log_critical(mavlink_fd, "NO POS LOCK, REJ. AUTO MODE");
		return;
	}

	if (current_status->state_machine == SYSTEM_STATE_GROUND_READY || current_status->state_machine == SYSTEM_STATE_MANUAL || current_status->state_machine == SYSTEM_STATE_STABILIZED) {
		printf("[cmd] auto mode\n");
		int old_mode = current_status->flight_mode;
		current_status->flight_mode = VEHICLE_FLIGHT_MODE_AUTO;
		current_status->flag_control_manual_enabled = false;
		current_status->flag_control_attitude_enabled = true;
		current_status->flag_control_rates_enabled = true;
		do_state_update(status_pub, current_status, mavlink_fd, (commander_state_machine_t)SYSTEM_STATE_AUTO);

		if (old_mode != current_status->flight_mode) state_machine_publish(status_pub, current_status, mavlink_fd);
	}
}
void update_state_machine_mode_stabilized(int status_pub, struct vehicle_status_s *current_status, const int mavlink_fd)
{
	if (current_status->state_machine == SYSTEM_STATE_GROUND_READY || current_status->state_machine == SYSTEM_STATE_STABILIZED || current_status->state_machine == SYSTEM_STATE_MANUAL || current_status->state_machine == SYSTEM_STATE_AUTO) {
		int old_mode = current_status->flight_mode;
		int old_manual_control_mode = current_status->manual_control_mode;
		current_status->flight_mode = VEHICLE_FLIGHT_MODE_MANUAL;
		current_status->manual_control_mode = VEHICLE_MANUAL_CONTROL_MODE_SAS;
		current_status->flag_control_attitude_enabled = true;
		current_status->flag_control_rates_enabled = true;
		current_status->flag_control_manual_enabled = true;

		if (old_mode != current_status->flight_mode ||
		    old_manual_control_mode != current_status->manual_control_mode) {
			printf("[cmd] att stabilized mode\n");
			do_state_update(status_pub, current_status, mavlink_fd, (commander_state_machine_t)SYSTEM_STATE_MANUAL);
			state_machine_publish(status_pub, current_status, mavlink_fd);
		}

	}
}
/**
 * Transition from one state to another
 */
int do_state_update(int status_pub, struct vehicle_status_s *current_status, const int mavlink_fd, commander_state_machine_t new_state)
{
	int invalid_state = false;
	int ret = ERROR;

	commander_state_machine_t old_state = current_status->state_machine;

	switch (new_state) {
	case SYSTEM_STATE_MISSION_ABORT: {
			/* Indoor or outdoor */
			// if (flight_environment_parameter == PX4_FLIGHT_ENVIRONMENT_OUTDOOR) {
			ret = do_state_update(status_pub, current_status, mavlink_fd, (commander_state_machine_t)SYSTEM_STATE_EMCY_LANDING);

			// } else {
			// 	ret = do_state_update(status_pub, current_status, mavlink_fd, (commander_state_machine_t)SYSTEM_STATE_EMCY_CUTOFF);
			// }
		}
		break;

	case SYSTEM_STATE_EMCY_LANDING:
		/* Tell the controller to land */

		/* set system flags according to state */
		current_status->flag_system_armed = true;

		warnx("EMERGENCY LANDING!\n");
		mavlink_log_critical(mavlink_fd, "EMERGENCY LANDING!");
		break;

	case SYSTEM_STATE_EMCY_CUTOFF:
		/* Tell the controller to cutoff the motors (thrust = 0) */

		/* set system flags according to state */
		current_status->flag_system_armed = false;

		warnx("EMERGENCY MOTOR CUTOFF!\n");
		mavlink_log_critical(mavlink_fd, "EMERGENCY MOTOR CUTOFF!");
		break;

	case SYSTEM_STATE_GROUND_ERROR:

		/* set system flags according to state */

		/* prevent actuators from arming */
		current_status->flag_system_armed = false;

		warnx("GROUND ERROR, locking down propulsion system\n");
		mavlink_log_critical(mavlink_fd, "GROUND ERROR, locking down system");
		break;

	case SYSTEM_STATE_PREFLIGHT:
		if (current_status->state_machine == SYSTEM_STATE_STANDBY
		    || current_status->state_machine == SYSTEM_STATE_PREFLIGHT) {
			/* set system flags according to state */
			current_status->flag_system_armed = false;
			mavlink_log_critical(mavlink_fd, "Switched to PREFLIGHT state");

		} else {
			invalid_state = true;
			mavlink_log_critical(mavlink_fd, "REFUSED to switch to PREFLIGHT state");
		}

		break;

	case SYSTEM_STATE_REBOOT:
		if (current_status->state_machine == SYSTEM_STATE_STANDBY
			|| current_status->state_machine == SYSTEM_STATE_PREFLIGHT
			|| current_status->flag_hil_enabled) {
			invalid_state = false;
			/* set system flags according to state */
			current_status->flag_system_armed = false;
			mavlink_log_critical(mavlink_fd, "REBOOTING SYSTEM");
			usleep(500000);
			up_systemreset();
			/* SPECIAL CASE: NEVER RETURNS FROM THIS FUNCTION CALL */

		} else {
			invalid_state = true;
			mavlink_log_critical(mavlink_fd, "REFUSED to REBOOT");
		}

		break;

	case SYSTEM_STATE_STANDBY:
		/* set system flags according to state */

		/* standby enforces disarmed */
		current_status->flag_system_armed = false;

		mavlink_log_critical(mavlink_fd, "Switched to STANDBY state");
		break;

	case SYSTEM_STATE_GROUND_READY:

		/* set system flags according to state */

		/* ground ready has motors / actuators armed */
		current_status->flag_system_armed = true;

		mavlink_log_critical(mavlink_fd, "Switched to GROUND READY state");
		break;

	case SYSTEM_STATE_AUTO:

		/* set system flags according to state */

		/* auto is airborne and in auto mode, motors armed */
		current_status->flag_system_armed = true;

		mavlink_log_critical(mavlink_fd, "Switched to FLYING / AUTO mode");
		break;

	case SYSTEM_STATE_STABILIZED:

		/* set system flags according to state */
		current_status->flag_system_armed = true;

		mavlink_log_critical(mavlink_fd, "Switched to FLYING / STABILIZED mode");
		break;

	case SYSTEM_STATE_MANUAL:

		/* set system flags according to state */
		current_status->flag_system_armed = true;

		mavlink_log_critical(mavlink_fd, "Switched to FLYING / MANUAL mode");
		break;

	default:
		invalid_state = true;
		break;
	}

	if (invalid_state == false || old_state != new_state) {
		current_status->state_machine = new_state;
		state_machine_publish(status_pub, current_status, mavlink_fd);
		publish_armed_status(current_status);
		ret = OK;
	}

	if (invalid_state) {
		mavlink_log_critical(mavlink_fd, "REJECTING invalid state transition");
		ret = ERROR;
	}

	return ret;
}
uint8_t update_state_machine_mode_request(int status_pub, struct vehicle_status_s *current_status, const int mavlink_fd, uint8_t mode)
{
	uint8_t ret = 1;

	/* Switch on HIL if in standby and not already in HIL mode */
	if ((mode & VEHICLE_MODE_FLAG_HIL_ENABLED)
	    && !current_status->flag_hil_enabled) {
		if ((current_status->state_machine == SYSTEM_STATE_STANDBY)) {
			/* Enable HIL on request */
			current_status->flag_hil_enabled = true;
			ret = OK;
			state_machine_publish(status_pub, current_status, mavlink_fd);
			publish_armed_status(current_status);
			printf("[cmd] Enabling HIL, locking down all actuators for safety.\n\t(Arming the system will not activate them while in HIL mode)\n");

		} else if (current_status->state_machine != SYSTEM_STATE_STANDBY &&
			   current_status->flag_system_armed) {

			mavlink_log_critical(mavlink_fd, "REJECTING HIL, disarm first!")

		} else {

			mavlink_log_critical(mavlink_fd, "REJECTING HIL, not in standby.")
		}
	}

	/* switch manual / auto */
	if (mode & VEHICLE_MODE_FLAG_AUTO_ENABLED) {
		update_state_machine_mode_auto(status_pub, current_status, mavlink_fd);

	} else if (mode & VEHICLE_MODE_FLAG_STABILIZED_ENABLED) {
		update_state_machine_mode_stabilized(status_pub, current_status, mavlink_fd);

	} else if (mode & VEHICLE_MODE_FLAG_GUIDED_ENABLED) {
		update_state_machine_mode_guided(status_pub, current_status, mavlink_fd);

	} else if (mode & VEHICLE_MODE_FLAG_MANUAL_INPUT_ENABLED) {
		update_state_machine_mode_manual(status_pub, current_status, mavlink_fd);
	}

	/* vehicle is disarmed, mode requests arming */
	if (!(current_status->flag_system_armed) && (mode & VEHICLE_MODE_FLAG_SAFETY_ARMED)) {
		/* only arm in standby state */
		// XXX REMOVE
		if (current_status->state_machine == SYSTEM_STATE_STANDBY || current_status->state_machine == SYSTEM_STATE_PREFLIGHT) {
			do_state_update(status_pub, current_status, mavlink_fd, (commander_state_machine_t)SYSTEM_STATE_GROUND_READY);
			ret = OK;
			printf("[cmd] arming due to command request\n");
		}
	}

	/* vehicle is armed, mode requests disarming */
	if (current_status->flag_system_armed && !(mode & VEHICLE_MODE_FLAG_SAFETY_ARMED)) {
		/* only disarm in ground ready */
		if (current_status->state_machine == SYSTEM_STATE_GROUND_READY) {
			do_state_update(status_pub, current_status, mavlink_fd, (commander_state_machine_t)SYSTEM_STATE_STANDBY);
			ret = OK;
			printf("[cmd] disarming due to command request\n");
		}
	}

	/* NEVER actually switch off HIL without reboot */
	if (current_status->flag_hil_enabled && !(mode & VEHICLE_MODE_FLAG_HIL_ENABLED)) {
		warnx("DENYING request to switch off HIL. Please power cycle (safety reasons)\n");
		mavlink_log_critical(mavlink_fd, "Power-cycle to exit HIL");
		ret = ERROR;
	}

	return ret;
}
void do_accel_calibration(int status_pub, struct vehicle_status_s *status, int mavlink_fd) {
	/* announce change */
	mavlink_log_info(mavlink_fd, "accel calibration started");
	/* set to accel calibration mode */
	status->flag_preflight_accel_calibration = true;
	state_machine_publish(status_pub, status, mavlink_fd);

	/* measure and calculate offsets & scales */
	float accel_offs[3];
	float accel_scale[3];
	int res = do_accel_calibration_mesurements(mavlink_fd, accel_offs, accel_scale);

	if (res == OK) {
		/* measurements complete successfully, set parameters */
		if (param_set(param_find("SENS_ACC_XOFF"), &(accel_offs[0]))
			|| param_set(param_find("SENS_ACC_YOFF"), &(accel_offs[1]))
			|| param_set(param_find("SENS_ACC_ZOFF"), &(accel_offs[2]))
			|| param_set(param_find("SENS_ACC_XSCALE"), &(accel_scale[0]))
			|| param_set(param_find("SENS_ACC_YSCALE"), &(accel_scale[1]))
			|| param_set(param_find("SENS_ACC_ZSCALE"), &(accel_scale[2]))) {
			mavlink_log_critical(mavlink_fd, "ERROR: setting offs or scale failed");
		}

		int fd = open(ACCEL_DEVICE_PATH, 0);
		struct accel_scale ascale = {
			accel_offs[0],
			accel_scale[0],
			accel_offs[1],
			accel_scale[1],
			accel_offs[2],
			accel_scale[2],
		};

		if (OK != ioctl(fd, ACCELIOCSSCALE, (long unsigned int)&ascale))
			warn("WARNING: failed to set scale / offsets for accel");

		close(fd);

		/* auto-save to EEPROM */
		int save_ret = param_save_default();

		if (save_ret != 0) {
			warn("WARNING: auto-save of params to storage failed");
		}

		mavlink_log_info(mavlink_fd, "accel calibration done");
		tune_confirm();
		sleep(2);
		tune_confirm();
		sleep(2);
		/* third beep by cal end routine */
	} else {
		/* measurements error */
		mavlink_log_info(mavlink_fd, "accel calibration aborted");
		tune_error();
		sleep(2);
	}

	/* exit accel calibration mode */
	status->flag_preflight_accel_calibration = false;
	state_machine_publish(status_pub, status, mavlink_fd);
}
Beispiel #9
0
void do_mag_calibration(int status_pub, struct vehicle_status_s *current_status)
{
	/* set to mag calibration mode */
	current_status->preflight_mag_calibration = true;
	state_machine_publish(status_pub, current_status);

	int sub_sensor_combined = orb_subscribe(ORB_ID(sensor_combined));
	struct sensor_combined_s raw;

	/* 30 seconds */
	const uint64_t calibration_interval_us = 10 * 1000000;
	unsigned int calibration_counter = 0;

	const int peak_samples = 2000;
	/* Get rid of 10% */
	const int outlier_margin = (peak_samples) / 10;

	int16_t *mag_maxima[3];
	mag_maxima[0] = (int16_t*)malloc(peak_samples * sizeof(uint16_t));
	mag_maxima[1] = (int16_t*)malloc(peak_samples * sizeof(uint16_t));
	mag_maxima[2] = (int16_t*)malloc(peak_samples * sizeof(uint16_t));

	int16_t *mag_minima[3];
	mag_minima[0] = (int16_t*)malloc(peak_samples * sizeof(uint16_t));
	mag_minima[1] = (int16_t*)malloc(peak_samples * sizeof(uint16_t));
	mag_minima[2] = (int16_t*)malloc(peak_samples * sizeof(uint16_t));

	/* initialize data table */
	for (int i = 0; i < peak_samples; i++) {
		mag_maxima[0][i] = INT16_MIN;
		mag_maxima[1][i] = INT16_MIN;
		mag_maxima[2][i] = INT16_MIN;

		mag_minima[0][i] = INT16_MAX;
		mag_minima[1][i] = INT16_MAX;
		mag_minima[2][i] = INT16_MAX;
	}
	
	uint64_t calibration_start = hrt_absolute_time();
	while ((hrt_absolute_time() - calibration_start) < calibration_interval_us) {

		/* wait blocking for new data */
		struct pollfd fds[1] = { { .fd = sub_sensor_combined, .events = POLLIN } };

		if (poll(fds, 1, 1000)) {
			orb_copy(ORB_ID(sensor_combined), sub_sensor_combined, &raw);
			/* get min/max values */

			/* iterate through full list */
			for (int i = 0; i < peak_samples; i++) {
				/* x minimum */
				if (raw.magnetometer_raw[0] < mag_minima[0][i])
					mag_minima[0][i] = raw.magnetometer_raw[0];
				/* y minimum */
				if (raw.magnetometer_raw[1] < mag_minima[1][i])
					mag_minima[1][i] = raw.magnetometer_raw[1];
				/* z minimum */
				if (raw.magnetometer_raw[2] < mag_minima[2][i])
					mag_minima[2][i] = raw.magnetometer_raw[2];

				/* x maximum */
				if (raw.magnetometer_raw[0] > mag_maxima[0][i])
					mag_maxima[0][i] = raw.magnetometer_raw[0];
				/* y maximum */
				if (raw.magnetometer_raw[1] > mag_maxima[1][i])
					mag_maxima[1][i] = raw.magnetometer_raw[1];
				/* z maximum */
				if (raw.magnetometer_raw[2] > mag_maxima[2][i])
					mag_maxima[2][i] = raw.magnetometer_raw[2];
			}

			calibration_counter++;
		} else {
			/* any poll failure for 1s is a reason to abort */
			mavlink_log_info(mavlink_fd, "[commander] mag calibration aborted, please retry.");
			break;
		}
	}