static mp_obj_t pyb_switch(uint n_args, mp_obj_t *args) { if (n_args == 0) { return switch_get() ? mp_const_true : mp_const_false; } switch_user_callback_obj = args[0]; return mp_const_none; }
static void ensure_uncurved(struct trainsrv_state *state, int sw) { struct switch_state switches = \ switch_historical_get_current(&state->switch_history); if (switch_get(&switches, sw) == CURVED) { tc_switch_switch(sw, STRAIGHT); tc_deactivate_switch(); update_switch(state, sw, STRAIGHT); } }
int Cube::sum_of_face(char face) { int n, v, sum = 0; int *handle = switch_get(face); switch(face) { case 'f': case 'b': n = 0; v = 2; break; case 'r': case 'l': n = 1; v = 2; break; case 't': case 'd': n = 2; v = 1; break; } for (int i = 0; i < 4; ++i) { if (cubie_to_orien(handle[i]) == n) { sum += 0; } else if (i % 2 == 0) { if(cubie_to_orien(handle[i]) == v) { sum += 1; } else { sum += 2; } } else if (i % 2 != 0) { if(cubie_to_orien(handle[i]) == v) { sum += 2; } else { sum += 1; } } } delete[] handle; return sum; }
void Cube::hundred(char face) { int* before; int after[8]; std::string str = "|"; before = switch_get(face); // corners after[0] = before[2]; after[1] = before[3]; after[2] = before[0]; after[3] = before[1]; // edges after[4] = before[6]; after[5] = before[7]; after[6] = before[4]; after[7] = before[5]; switch_set(face, after); last = str_to_last(face + str); delete[] before; }
void Cube::counter(char face) { int* before; int after[8]; std::string str = "+"; before = switch_get(face); // corners after[0] = rotate_cubie(before[1], face); after[1] = rotate_cubie(before[2], face); after[2] = rotate_cubie(before[3], face); after[3] = rotate_cubie(before[0], face); // edges after[4] = rotate_cubie(before[5], face); after[5] = rotate_cubie(before[6], face); after[6] = rotate_cubie(before[7], face); after[7] = rotate_cubie(before[4], face); switch_set(face, after); last = str_to_last(face + str); delete[] before; }
mp_obj_t pyb_switch_value(mp_obj_t self_in) { (void)self_in; return mp_obj_new_bool(switch_get()); }
/// \method \call() /// Return the switch state: `True` if pressed down, `False` otherwise. mp_obj_t pyb_switch_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { // get switch state mp_arg_check_num(n_args, n_kw, 0, 0, false); return switch_get() ? mp_const_true : mp_const_false; }
void menu(void) { strcpy_P(_mes_menu,_mes_menu_select_top_0); lcd_put_data(0,_mes_menu); strcpy_P(_mes_menu,_mes_menu_select_app_list_1[MENU_DEFAULT]); lcd_put_data(1,_mes_menu); sw_reset_disable(); switch_state switch_state_p0; switch_state_clear(&switch_state_p0); switch_state switch_state_p1; switch_state_clear(&switch_state_p1); for(;;) { if(_exit_flag!=0) { strcpy_P(_mes_menu,_mes_menu_select_top_0); lcd_put_data(0,_mes_menu); strcpy_P(_mes_menu,_mes_menu_select_app_list_1[MENU_DEFAULT]); lcd_put_data(1,_mes_menu); _exit_flag = 0; } switch_get(SWITCH_CONT_P0,&switch_state_p0); if((switch_state_p0.switch_a==1)&&(switch_state_p0.switch_prev_a==0)) { menu_exec(menu_mode); } else if((switch_state_p0.switch_b==1)&&(switch_state_p0.switch_prev_b==0)) { } if((switch_state_p0.switch_u==1)&&(switch_state_p0.switch_prev_u==0)) { if(menu_mode==MENU_DEMO) { menu_mode=MENU_TETRIS; strcpy_P(_mes_menu,_mes_menu_select_app_list_1[menu_mode]); lcd_put_data(1,_mes_menu); } else if(menu_mode==MENU_SOUND) { menu_mode=MENU_DEMO; strcpy_P(_mes_menu,_mes_menu_select_app_list_1[menu_mode]); lcd_put_data(1,_mes_menu); } else if(menu_mode==MENU_OTHERO) { menu_mode=MENU_SOUND; strcpy_P(_mes_menu,_mes_menu_select_app_list_1[menu_mode]); lcd_put_data(1,_mes_menu); } else if(menu_mode==MENU_TETRIS) { menu_mode=MENU_OTHERO; strcpy_P(_mes_menu,_mes_menu_select_app_list_1[menu_mode]); lcd_put_data(1,_mes_menu); } } else if((switch_state_p0.switch_d==1)&&(switch_state_p0.switch_prev_d==0)) { if(menu_mode==MENU_DEMO) { menu_mode=MENU_SOUND; strcpy_P(_mes_menu,_mes_menu_select_app_list_1[menu_mode]); lcd_put_data(1,_mes_menu); } else if(menu_mode==MENU_SOUND) { menu_mode=MENU_OTHERO; strcpy_P(_mes_menu,_mes_menu_select_app_list_1[menu_mode]); lcd_put_data(1,_mes_menu); } else if(menu_mode==MENU_OTHERO){ menu_mode=MENU_TETRIS; strcpy_P(_mes_menu,_mes_menu_select_app_list_1[menu_mode]); lcd_put_data(1,_mes_menu); } else if(menu_mode==MENU_TETRIS){ menu_mode=MENU_DEMO; strcpy_P(_mes_menu,_mes_menu_select_app_list_1[menu_mode]); lcd_put_data(1,_mes_menu); } } else if((switch_state_p0.switch_l==1)&&(switch_state_p0.switch_prev_l==0)) { } else if((switch_state_p0.switch_r==1)&&(switch_state_p0.switch_prev_r==0)) { } switch_get(SWITCH_CONT_P1,&switch_state_p1); if((switch_state_p1.switch_a==1)&&(switch_state_p1.switch_prev_a==0)) { menu_exec(menu_mode); } else if((switch_state_p1.switch_b==1)&&(switch_state_p1.switch_prev_b==0)) { } if((switch_state_p1.switch_u==1)&&(switch_state_p1.switch_prev_u==0)) { if(menu_mode==MENU_DEMO) { menu_mode=MENU_TETRIS; strcpy_P(_mes_menu,_mes_menu_select_app_list_1[menu_mode]); lcd_put_data(1,_mes_menu); } else if(menu_mode==MENU_SOUND) { menu_mode=MENU_DEMO; strcpy_P(_mes_menu,_mes_menu_select_app_list_1[menu_mode]); lcd_put_data(1,_mes_menu); } else if(menu_mode==MENU_OTHERO){ menu_mode=MENU_SOUND; strcpy_P(_mes_menu,_mes_menu_select_app_list_1[menu_mode]); lcd_put_data(1,_mes_menu); } else if(menu_mode==MENU_TETRIS){ menu_mode=MENU_OTHERO; strcpy_P(_mes_menu,_mes_menu_select_app_list_1[menu_mode]); lcd_put_data(1,_mes_menu); } } else if((switch_state_p1.switch_d==1)&&(switch_state_p1.switch_prev_d==0)) { if(menu_mode==MENU_DEMO) { menu_mode=MENU_SOUND; strcpy_P(_mes_menu,_mes_menu_select_app_list_1[menu_mode]); lcd_put_data(1,_mes_menu); } else if(menu_mode==MENU_SOUND) { menu_mode=MENU_OTHERO; strcpy_P(_mes_menu,_mes_menu_select_app_list_1[menu_mode]); lcd_put_data(1,_mes_menu); } else if(menu_mode==MENU_OTHERO) { menu_mode=MENU_TETRIS; strcpy_P(_mes_menu,_mes_menu_select_app_list_1[menu_mode]); lcd_put_data(1,_mes_menu); } else if(menu_mode==MENU_TETRIS) { menu_mode=MENU_DEMO; strcpy_P(_mes_menu,_mes_menu_select_app_list_1[menu_mode]); lcd_put_data(1,_mes_menu); } } else if((switch_state_p1.switch_l==1)&&(switch_state_p1.switch_prev_l==0)) { } else if((switch_state_p1.switch_r==1)&&(switch_state_p1.switch_prev_r==0)) { } } }
mp_obj_t pyb_switch_value(mp_obj_t self_in) { pyb_switch_obj_t *self = self_in; return switch_get(SWITCH_ID(self)) ? mp_const_true : mp_const_false; }
int main(void) { // TODO disable JTAG // update the SystemCoreClock variable SystemCoreClockUpdate(); // set interrupt priority config to use all 4 bits for pre-empting NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4); // enable the CCM RAM and the GPIO's RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN | RCC_AHB1ENR_GPIODEN; #if MICROPY_HW_HAS_SDCARD { // configure SDIO pins to be high to start with (apparently makes it more robust) // FIXME this is not making them high, it just makes them outputs... GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOC, &GPIO_InitStructure); // Configure PD.02 CMD line GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_Init(GPIOD, &GPIO_InitStructure); } #endif #if defined(NETDUINO_PLUS_2) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; #if MICROPY_HW_HAS_SDCARD // Turn on the power enable for the sdcard (PB1) GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET); #endif // Turn on the power for the 5V on the expansion header (PB2) GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_SET); } #endif // basic sub-system init sys_tick_init(); pendsv_init(); led_init(); #if MICROPY_HW_ENABLE_RTC rtc_init(); #endif // turn on LED to indicate bootup led_state(PYB_LED_G1, 1); // more sub-system init #if MICROPY_HW_HAS_SDCARD sdcard_init(); #endif storage_init(); // uncomment these 2 lines if you want REPL on USART_6 (or another usart) as well as on USB VCP //pyb_usart_global_debug = PYB_USART_YA; //usart_init(pyb_usart_global_debug, 115200); int first_soft_reset = true; soft_reset: // GC init gc_init(&_heap_start, &_heap_end); // Micro Python init qstr_init(); mp_init(); mp_obj_list_init(mp_sys_path, 0); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_0_colon__slash_)); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_0_colon__slash_lib)); mp_obj_list_init(mp_sys_argv, 0); exti_init(); #if MICROPY_HW_HAS_SWITCH switch_init(); #endif #if MICROPY_HW_HAS_LCD // LCD init (just creates class, init hardware by calling LCD()) lcd_init(); #endif #if MICROPY_HW_ENABLE_SERVO // servo servo_init(); #endif #if MICROPY_HW_ENABLE_TIMER // timer timer_init(); #endif #if MICROPY_HW_ENABLE_RNG // RNG RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE); RNG_Cmd(ENABLE); #endif pin_map_init(); // add some functions to the builtin Python namespace mp_store_name(MP_QSTR_help, mp_make_function_n(0, pyb_help)); mp_store_name(MP_QSTR_open, mp_make_function_n(2, pyb_io_open)); // load the pyb module mp_module_register(MP_QSTR_pyb, (mp_obj_t)&pyb_module); // check if user switch held (initiates reset of filesystem) bool reset_filesystem = false; #if MICROPY_HW_HAS_SWITCH if (switch_get()) { reset_filesystem = true; for (int i = 0; i < 50; i++) { if (!switch_get()) { reset_filesystem = false; break; } sys_tick_delay_ms(10); } } #endif // local filesystem init { // try to mount the flash FRESULT res = f_mount(&fatfs0, "0:", 1); if (!reset_filesystem && res == FR_OK) { // mount sucessful } else if (reset_filesystem || res == FR_NO_FILESYSTEM) { // no filesystem, so create a fresh one // TODO doesn't seem to work correctly when reset_filesystem is true... // LED on to indicate creation of LFS led_state(PYB_LED_R2, 1); uint32_t stc = sys_tick_counter; res = f_mkfs("0:", 0, 0); if (res == FR_OK) { // success creating fresh LFS } else { __fatal_error("could not create LFS"); } // create src directory res = f_mkdir("0:/src"); // ignore result from mkdir // create empty main.py FIL fp; f_open(&fp, "0:/src/main.py", FA_WRITE | FA_CREATE_ALWAYS); UINT n; f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n); // TODO check we could write n bytes f_close(&fp); // keep LED on for at least 200ms sys_tick_wait_at_least(stc, 200); led_state(PYB_LED_R2, 0); } else { __fatal_error("could not access LFS"); } } // make sure we have a /boot.py { FILINFO fno; FRESULT res = f_stat("0:/boot.py", &fno); if (res == FR_OK) { if (fno.fattrib & AM_DIR) { // exists as a directory // TODO handle this case // see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation } else { // exists as a file, good! } } else { // doesn't exist, create fresh file // LED on to indicate creation of boot.py led_state(PYB_LED_R2, 1); uint32_t stc = sys_tick_counter; FIL fp; f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS); UINT n; f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n); // TODO check we could write n bytes f_close(&fp); // keep LED on for at least 200ms sys_tick_wait_at_least(stc, 200); led_state(PYB_LED_R2, 0); } } // run /boot.py if (!pyexec_file("0:/boot.py")) { flash_error(4); } if (first_soft_reset) { #if MICROPY_HW_HAS_MMA7660 // MMA accel: init and reset address to zero accel_init(); #endif } // turn boot-up LED off led_state(PYB_LED_G1, 0); #if MICROPY_HW_HAS_SDCARD // if an SD card is present then mount it on 1:/ if (sdcard_is_present()) { FRESULT res = f_mount(&fatfs1, "1:", 1); if (res != FR_OK) { printf("[SD] could not mount SD card\n"); } else { if (first_soft_reset) { // use SD card as medium for the USB MSD usbd_storage_select_medium(USBD_STORAGE_MEDIUM_SDCARD); } } } #endif #ifdef USE_HOST_MODE // USB host pyb_usb_host_init(); #elif defined(USE_DEVICE_MODE) // USB device pyb_usb_dev_init(PYB_USB_DEV_VCP_MSC); #endif // run main script { vstr_t *vstr = vstr_new(); vstr_add_str(vstr, "0:/"); if (pyb_config_source_dir == MP_OBJ_NULL) { vstr_add_str(vstr, "src"); } else { vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_source_dir)); } vstr_add_char(vstr, '/'); if (pyb_config_main == MP_OBJ_NULL) { vstr_add_str(vstr, "main.py"); } else { vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_main)); } if (!pyexec_file(vstr_str(vstr))) { flash_error(3); } vstr_free(vstr); } #if MICROPY_HW_HAS_MMA7660 // HID example if (0) { uint8_t data[4]; data[0] = 0; data[1] = 1; data[2] = -2; data[3] = 0; for (;;) { #if MICROPY_HW_HAS_SWITCH if (switch_get()) { data[0] = 0x01; // 0x04 is middle, 0x02 is right } else { data[0] = 0x00; } #else data[0] = 0x00; #endif accel_start(0x4c /* ACCEL_ADDR */, 1); accel_send_byte(0); accel_restart(0x4c /* ACCEL_ADDR */, 0); for (int i = 0; i <= 1; i++) { int v = accel_read_ack() & 0x3f; if (v & 0x20) { v |= ~0x1f; } data[1 + i] = v; } accel_read_nack(); usb_hid_send_report(data); sys_tick_delay_ms(15); } } #endif #if MICROPY_HW_HAS_WLAN // wifi pyb_wlan_init(); pyb_wlan_start(); #endif pyexec_repl(); printf("PYB: sync filesystems\n"); storage_flush(); printf("PYB: soft reboot\n"); first_soft_reset = false; goto soft_reset; }
int main(void) { // TODO disable JTAG /* STM32F4xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Configure the Systick to generate an interrupt each 1 msec - Set NVIC Group Priority to 4 - Global MSP (MCU Support Package) initialization */ HAL_Init(); // set the system clock to be HSE SystemClock_Config(); // enable GPIO clocks __GPIOA_CLK_ENABLE(); __GPIOB_CLK_ENABLE(); __GPIOC_CLK_ENABLE(); __GPIOD_CLK_ENABLE(); // enable the CCM RAM __CCMDATARAMEN_CLK_ENABLE(); #if 0 #if defined(NETDUINO_PLUS_2) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; #if MICROPY_HW_HAS_SDCARD // Turn on the power enable for the sdcard (PB1) GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET); #endif // Turn on the power for the 5V on the expansion header (PB2) GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_SET); } #endif #endif // basic sub-system init pendsv_init(); timer_tim3_init(); led_init(); switch_init0(); int first_soft_reset = true; soft_reset: // check if user switch held to select the reset mode led_state(1, 0); led_state(2, 1); led_state(3, 0); led_state(4, 0); uint reset_mode = 1; #if MICROPY_HW_HAS_SWITCH if (switch_get()) { for (uint i = 0; i < 3000; i++) { if (!switch_get()) { break; } HAL_Delay(20); if (i % 30 == 29) { if (++reset_mode > 3) { reset_mode = 1; } led_state(2, reset_mode & 1); led_state(3, reset_mode & 2); led_state(4, reset_mode & 4); } } // flash the selected reset mode for (uint i = 0; i < 6; i++) { led_state(2, 0); led_state(3, 0); led_state(4, 0); HAL_Delay(50); led_state(2, reset_mode & 1); led_state(3, reset_mode & 2); led_state(4, reset_mode & 4); HAL_Delay(50); } HAL_Delay(400); } #endif #if MICROPY_HW_ENABLE_RTC if (first_soft_reset) { rtc_init(); } #endif // more sub-system init #if MICROPY_HW_HAS_SDCARD if (first_soft_reset) { sdcard_init(); } #endif if (first_soft_reset) { storage_init(); } // GC init gc_init(&_heap_start, &_heap_end); // Change #if 0 to #if 1 if you want REPL on USART_6 (or another usart) // as well as on USB VCP #if 0 pyb_usart_global_debug = pyb_Usart(MP_OBJ_NEW_SMALL_INT(PYB_USART_YA), MP_OBJ_NEW_SMALL_INT(115200)); #else pyb_usart_global_debug = NULL; #endif // Micro Python init qstr_init(); mp_init(); mp_obj_list_init(mp_sys_path, 0); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_0_colon__slash_)); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_0_colon__slash_lib)); mp_obj_list_init(mp_sys_argv, 0); readline_init(); exti_init(); #if MICROPY_HW_HAS_SWITCH // must come after exti_init switch_init(); #endif #if MICROPY_HW_HAS_LCD // LCD init (just creates class, init hardware by calling LCD()) lcd_init(); #endif pin_map_init(); // local filesystem init { // try to mount the flash FRESULT res = f_mount(&fatfs0, "0:", 1); if (reset_mode == 3 || res == FR_NO_FILESYSTEM) { // no filesystem, or asked to reset it, so create a fresh one // LED on to indicate creation of LFS led_state(PYB_LED_R2, 1); uint32_t start_tick = HAL_GetTick(); res = f_mkfs("0:", 0, 0); if (res == FR_OK) { // success creating fresh LFS } else { __fatal_error("could not create LFS"); } // create empty main.py FIL fp; f_open(&fp, "0:/main.py", FA_WRITE | FA_CREATE_ALWAYS); UINT n; f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n); // TODO check we could write n bytes f_close(&fp); // create .inf driver file f_open(&fp, "0:/pybcdc.inf", FA_WRITE | FA_CREATE_ALWAYS); f_write(&fp, fresh_pybcdc_inf, sizeof(fresh_pybcdc_inf) - 1 /* don't count null terminator */, &n); f_close(&fp); // keep LED on for at least 200ms sys_tick_wait_at_least(start_tick, 200); led_state(PYB_LED_R2, 0); } else if (res == FR_OK) { // mount sucessful } else { __fatal_error("could not access LFS"); } } // make sure we have a 0:/boot.py { FILINFO fno; #if _USE_LFN fno.lfname = NULL; fno.lfsize = 0; #endif FRESULT res = f_stat("0:/boot.py", &fno); if (res == FR_OK) { if (fno.fattrib & AM_DIR) { // exists as a directory // TODO handle this case // see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation } else { // exists as a file, good! } } else { // doesn't exist, create fresh file // LED on to indicate creation of boot.py led_state(PYB_LED_R2, 1); uint32_t start_tick = HAL_GetTick(); FIL fp; f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS); UINT n; f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n); // TODO check we could write n bytes f_close(&fp); // keep LED on for at least 200ms sys_tick_wait_at_least(start_tick, 200); led_state(PYB_LED_R2, 0); } } // root device defaults to internal flash filesystem uint root_device = 0; #if defined(USE_DEVICE_MODE) usb_storage_medium_t usb_medium = USB_STORAGE_MEDIUM_FLASH; #endif #if MICROPY_HW_HAS_SDCARD // if an SD card is present then mount it on 1:/ if (reset_mode == 1 && sdcard_is_present()) { FRESULT res = f_mount(&fatfs1, "1:", 1); if (res != FR_OK) { printf("[SD] could not mount SD card\n"); } else { // use SD card as root device root_device = 1; if (first_soft_reset) { // use SD card as medium for the USB MSD #if defined(USE_DEVICE_MODE) usb_medium = USB_STORAGE_MEDIUM_SDCARD; #endif } } } #else // Get rid of compiler warning if no SDCARD is configured. (void)first_soft_reset; #endif // run <root>:/boot.py, if it exists if (reset_mode == 1) { const char *boot_file; if (root_device == 0) { boot_file = "0:/boot.py"; } else { boot_file = "1:/boot.py"; } FRESULT res = f_stat(boot_file, NULL); if (res == FR_OK) { if (!pyexec_file(boot_file)) { flash_error(4); } } } // turn boot-up LEDs off led_state(2, 0); led_state(3, 0); led_state(4, 0); #if defined(USE_HOST_MODE) // USB host pyb_usb_host_init(); #elif defined(USE_DEVICE_MODE) // USB device if (reset_mode == 1) { usb_device_mode_t usb_mode = USB_DEVICE_MODE_CDC_MSC; if (pyb_config_usb_mode != MP_OBJ_NULL) { if (strcmp(mp_obj_str_get_str(pyb_config_usb_mode), "CDC+HID") == 0) { usb_mode = USB_DEVICE_MODE_CDC_HID; } } pyb_usb_dev_init(usb_mode, usb_medium); } else { pyb_usb_dev_init(USB_DEVICE_MODE_CDC_MSC, usb_medium); } #endif #if MICROPY_HW_ENABLE_RNG // RNG rng_init(); #endif #if MICROPY_HW_ENABLE_TIMER // timer //timer_init(); #endif // I2C i2c_init(); #if MICROPY_HW_HAS_MMA7660 // MMA accel: init and reset accel_init(); #endif #if MICROPY_HW_ENABLE_SERVO // servo servo_init(); #endif #if MICROPY_HW_ENABLE_DAC // DAC dac_init(); #endif // now that everything is initialised, run main script if (reset_mode == 1 && pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) { vstr_t *vstr = vstr_new(); vstr_printf(vstr, "%d:/", root_device); if (pyb_config_main == MP_OBJ_NULL) { vstr_add_str(vstr, "main.py"); } else { vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_main)); } FRESULT res = f_stat(vstr_str(vstr), NULL); if (res == FR_OK) { if (!pyexec_file(vstr_str(vstr))) { flash_error(3); } } vstr_free(vstr); } #if 0 #if MICROPY_HW_HAS_WLAN // wifi pyb_wlan_init(); pyb_wlan_start(); #endif #endif // enter REPL // REPL mode can change, or it can request a soft reset for (;;) { if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) { if (pyexec_raw_repl() != 0) { break; } } else { if (pyexec_friendly_repl() != 0) { break; } } } printf("PYB: sync filesystems\n"); storage_flush(); printf("PYB: soft reboot\n"); first_soft_reset = false; goto soft_reset; }
int main(void) { // TODO disable JTAG // Stack limit should be less than real stack size, so we have a chance // to recover from limit hit. (Limit is measured in bytes.) mp_stack_set_limit((char*)&_ram_end - (char*)&_heap_end - 1024); /* STM32F4xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Configure the Systick to generate an interrupt each 1 msec - Set NVIC Group Priority to 4 - Global MSP (MCU Support Package) initialization */ HAL_Init(); // set the system clock to be HSE SystemClock_Config(); // enable GPIO clocks __GPIOA_CLK_ENABLE(); __GPIOB_CLK_ENABLE(); __GPIOC_CLK_ENABLE(); __GPIOD_CLK_ENABLE(); // enable the CCM RAM __CCMDATARAMEN_CLK_ENABLE(); #if 0 #if defined(NETDUINO_PLUS_2) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; #if MICROPY_HW_HAS_SDCARD // Turn on the power enable for the sdcard (PB1) GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET); #endif // Turn on the power for the 5V on the expansion header (PB2) GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_SET); } #endif #endif // basic sub-system init pendsv_init(); timer_tim3_init(); led_init(); #if MICROPY_HW_HAS_SWITCH switch_init0(); #endif int first_soft_reset = true; soft_reset: // check if user switch held to select the reset mode led_state(1, 0); led_state(2, 1); led_state(3, 0); led_state(4, 0); uint reset_mode = 1; #if MICROPY_HW_HAS_SWITCH if (switch_get()) { for (uint i = 0; i < 3000; i++) { if (!switch_get()) { break; } HAL_Delay(20); if (i % 30 == 29) { if (++reset_mode > 3) { reset_mode = 1; } led_state(2, reset_mode & 1); led_state(3, reset_mode & 2); led_state(4, reset_mode & 4); } } // flash the selected reset mode for (uint i = 0; i < 6; i++) { led_state(2, 0); led_state(3, 0); led_state(4, 0); HAL_Delay(50); led_state(2, reset_mode & 1); led_state(3, reset_mode & 2); led_state(4, reset_mode & 4); HAL_Delay(50); } HAL_Delay(400); } #endif #if MICROPY_HW_ENABLE_RTC if (first_soft_reset) { rtc_init(); } #endif // more sub-system init #if MICROPY_HW_HAS_SDCARD if (first_soft_reset) { sdcard_init(); } #endif if (first_soft_reset) { storage_init(); } // GC init gc_init(&_heap_start, &_heap_end); // Micro Python init mp_init(); mp_obj_list_init(mp_sys_path, 0); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script) mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash)); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib)); mp_obj_list_init(mp_sys_argv, 0); // Change #if 0 to #if 1 if you want REPL on UART_6 (or another uart) // as well as on USB VCP #if 0 { mp_obj_t args[2] = { MP_OBJ_NEW_SMALL_INT(PYB_UART_6), MP_OBJ_NEW_SMALL_INT(115200), }; pyb_stdio_uart = pyb_uart_type.make_new((mp_obj_t)&pyb_uart_type, MP_ARRAY_SIZE(args), 0, args); } #else pyb_stdio_uart = NULL; #endif // Initialise low-level sub-systems. Here we need to very basic things like // zeroing out memory and resetting any of the sub-systems. Following this // we can run Python scripts (eg boot.py), but anything that is configurable // by boot.py must be set after boot.py is run. readline_init0(); pin_init0(); extint_init0(); timer_init0(); uart_init0(); #if MICROPY_HW_ENABLE_RNG rng_init0(); #endif i2c_init0(); spi_init0(); pyb_usb_init0(); // Initialise the local flash filesystem. // Create it if needed, and mount in on /flash. { // try to mount the flash FRESULT res = f_mount(&fatfs0, "/flash", 1); if (reset_mode == 3 || res == FR_NO_FILESYSTEM) { // no filesystem, or asked to reset it, so create a fresh one // LED on to indicate creation of LFS led_state(PYB_LED_R2, 1); uint32_t start_tick = HAL_GetTick(); res = f_mkfs("/flash", 0, 0); if (res == FR_OK) { // success creating fresh LFS } else { __fatal_error("could not create LFS"); } // set label f_setlabel("/flash/pybflash"); // create empty main.py FIL fp; f_open(&fp, "/flash/main.py", FA_WRITE | FA_CREATE_ALWAYS); UINT n; f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n); // TODO check we could write n bytes f_close(&fp); // create .inf driver file f_open(&fp, "/flash/pybcdc.inf", FA_WRITE | FA_CREATE_ALWAYS); f_write(&fp, fresh_pybcdc_inf, sizeof(fresh_pybcdc_inf) - 1 /* don't count null terminator */, &n); f_close(&fp); // create readme file f_open(&fp, "/flash/README.txt", FA_WRITE | FA_CREATE_ALWAYS); f_write(&fp, fresh_readme_txt, sizeof(fresh_readme_txt) - 1 /* don't count null terminator */, &n); f_close(&fp); // keep LED on for at least 200ms sys_tick_wait_at_least(start_tick, 200); led_state(PYB_LED_R2, 0); } else if (res == FR_OK) { // mount sucessful } else { __fatal_error("could not access LFS"); } } // The current directory is used as the boot up directory. // It is set to the internal flash filesystem by default. f_chdrive("/flash"); // Make sure we have a /flash/boot.py. Create it if needed. { FILINFO fno; #if _USE_LFN fno.lfname = NULL; fno.lfsize = 0; #endif FRESULT res = f_stat("/flash/boot.py", &fno); if (res == FR_OK) { if (fno.fattrib & AM_DIR) { // exists as a directory // TODO handle this case // see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation } else { // exists as a file, good! } } else { // doesn't exist, create fresh file // LED on to indicate creation of boot.py led_state(PYB_LED_R2, 1); uint32_t start_tick = HAL_GetTick(); FIL fp; f_open(&fp, "/flash/boot.py", FA_WRITE | FA_CREATE_ALWAYS); UINT n; f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n); // TODO check we could write n bytes f_close(&fp); // keep LED on for at least 200ms sys_tick_wait_at_least(start_tick, 200); led_state(PYB_LED_R2, 0); } } #if defined(USE_DEVICE_MODE) usb_storage_medium_t usb_medium = USB_STORAGE_MEDIUM_FLASH; #endif #if MICROPY_HW_HAS_SDCARD // if an SD card is present then mount it on /sd/ if (sdcard_is_present()) { FRESULT res = f_mount(&fatfs1, "/sd", 1); if (res != FR_OK) { printf("[SD] could not mount SD card\n"); } else { // use SD card as current directory f_chdrive("/sd"); // TODO these should go before the /flash entries in the path mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd)); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd_slash_lib)); if (first_soft_reset) { // use SD card as medium for the USB MSD #if defined(USE_DEVICE_MODE) usb_medium = USB_STORAGE_MEDIUM_SDCARD; #endif } } } #endif // reset config variables; they should be set by boot.py pyb_config_main = MP_OBJ_NULL; pyb_config_usb_mode = MP_OBJ_NULL; // run boot.py, if it exists // TODO perhaps have pyb.reboot([bootpy]) function to soft-reboot and execute custom boot.py if (reset_mode == 1) { const char *boot_py = "boot.py"; FRESULT res = f_stat(boot_py, NULL); if (res == FR_OK) { int ret = pyexec_file(boot_py); if (ret & PYEXEC_FORCED_EXIT) { goto soft_reset_exit; } if (!ret) { flash_error(4); } } } // turn boot-up LEDs off led_state(2, 0); led_state(3, 0); led_state(4, 0); // Now we initialise sub-systems that need configuration from boot.py, // or whose initialisation can be safely deferred until after running // boot.py. #if defined(USE_HOST_MODE) // USB host pyb_usb_host_init(); #elif defined(USE_DEVICE_MODE) // USB device usb_device_mode_t usb_mode = USB_DEVICE_MODE_CDC_MSC; // if we are not in reset_mode==1, this config variable will always be NULL if (pyb_config_usb_mode != MP_OBJ_NULL) { if (strcmp(mp_obj_str_get_str(pyb_config_usb_mode), "CDC+HID") == 0) { usb_mode = USB_DEVICE_MODE_CDC_HID; } } pyb_usb_dev_init(usb_mode, usb_medium); #endif #if MICROPY_HW_HAS_MMA7660 // MMA accel: init and reset accel_init(); #endif #if MICROPY_HW_ENABLE_SERVO // servo servo_init(); #endif #if MICROPY_HW_ENABLE_DAC // DAC dac_init(); #endif mod_network_init(); // At this point everything is fully configured and initialised. // Run the main script from the current directory. if (reset_mode == 1 && pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) { const char *main_py; if (pyb_config_main == MP_OBJ_NULL) { main_py = "main.py"; } else { main_py = mp_obj_str_get_str(pyb_config_main); } FRESULT res = f_stat(main_py, NULL); if (res == FR_OK) { int ret = pyexec_file(main_py); if (ret & PYEXEC_FORCED_EXIT) { goto soft_reset_exit; } if (!ret) { flash_error(3); } } } // Main script is finished, so now go into REPL mode. // The REPL mode can change, or it can request a soft reset. for (;;) { if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) { if (pyexec_raw_repl() != 0) { break; } } else { if (pyexec_friendly_repl() != 0) { break; } } } soft_reset_exit: // soft reset printf("PYB: sync filesystems\n"); storage_flush(); printf("PYB: soft reboot\n"); timer_deinit(); uart_deinit(); first_soft_reset = false; goto soft_reset; }
int main( void ){ led_init(); for(;;){ led_set( switch_get() ); } }