Beispiel #1
0
asmlinkage long sys_oabi_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
{
    struct sockaddr __user *addr;
    int msg_namelen;
    sa_family_t sa_family;
    if (msg &&
            get_user(msg_namelen, &msg->msg_namelen) == 0 &&
            msg_namelen == 112 &&
            get_user(addr, &msg->msg_name) == 0 &&
            get_user(sa_family, &addr->sa_family) == 0 &&
            sa_family == AF_UNIX)
    {
        /*
         * HACK ALERT: there is a limit to how much backward bending
         * we should do for what is actually a transitional
         * compatibility layer.  This already has known flaws with
         * a few ioctls that we don't intend to fix.  Therefore
         * consider this blatent hack as another one... and take care
         * to run for cover.  In most cases it will "just work fine".
         * If it doesn't, well, tough.
         */
        put_user(110, &msg->msg_namelen);
    }
    return sys_sendmsg(fd, msg, flags);
}
Beispiel #2
0
void handle_faf_sendmsg(struct rpc_desc *desc,
			void *msgIn, size_t size)
{
	struct faf_sendmsg_msg *msg = msgIn;
	ssize_t r;
	int err;
	struct msghdr msghdr;

	err = recv_msghdr(desc, &msghdr, msg->total_len, 0);
	if (err) {
		rpc_cancel(desc);
		return;
	}

	err = remote_sleep_prepare(desc);
	if (err)
		goto cancel;

	r = sys_sendmsg (msg->server_fd, &msghdr, msg->flags);

	remote_sleep_finish();

	err = rpc_pack_type(desc, r);
	if (err)
		goto cancel;

out_free:
	free_msghdr(&msghdr);

	return;

cancel:
	rpc_cancel(desc);
	goto out_free;
}
Beispiel #3
0
int send_fds(int sock, struct sockaddr_un *saddr, int len,
		int *fds, int nr_fds, bool with_flags)
{
	struct scm_fdset fdset;
	int *cmsg_data;
	int i, min_fd, ret;

	cmsg_data = scm_fdset_init(&fdset, saddr, len, with_flags);
	for (i = 0; i < nr_fds; i += min_fd) {
		min_fd = min(CR_SCM_MAX_FD, nr_fds - i);
		scm_fdset_init_chunk(&fdset, min_fd);
		builtin_memcpy(cmsg_data, &fds[i], sizeof(int) * min_fd);

		if (with_flags) {
			int j;

			for (j = 0; j < min_fd; j++) {
				int flags, fd = fds[i + j];
				struct fd_opts *p = fdset.opts + j;
				struct f_owner_ex owner_ex;
				u32 v[2];

				flags = sys_fcntl(fd, F_GETFD, 0);
				if (flags < 0)
					return -1;

				p->flags = (char)flags;

				if (sys_fcntl(fd, F_GETOWN_EX, (long)&owner_ex))
					return -1;

				/*
				 * Simple case -- nothing is changed.
				 */
				if (owner_ex.pid == 0) {
					p->fown.pid = 0;
					continue;
				}

				if (sys_fcntl(fd, F_GETOWNER_UIDS, (long)&v))
					return -1;

				p->fown.uid	 = v[0];
				p->fown.euid	 = v[1];
				p->fown.pid_type = owner_ex.type;
				p->fown.pid	 = owner_ex.pid;
			}
		}

		ret = sys_sendmsg(sock, &fdset.hdr, 0);
		if (ret <= 0)
			return ret ? : -1;
	}

	return 0;
}
asmlinkage long sys_oabi_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
{
	struct sockaddr __user *addr;
	int msg_namelen;
	sa_family_t sa_family;
	if (msg &&
	    get_user(msg_namelen, &msg->msg_namelen) == 0 &&
	    msg_namelen == 112 &&
	    get_user(addr, &msg->msg_name) == 0 &&
	    get_user(sa_family, &addr->sa_family) == 0 &&
	    sa_family == AF_UNIX)
	{
		
		put_user(110, &msg->msg_namelen);
	}
	return sys_sendmsg(fd, msg, flags);
}
Beispiel #5
0
asmlinkage long compat_sys_sendmsg(int fd, struct compat_msghdr __user *msg, unsigned int flags)
{
	return sys_sendmsg(fd, (struct msghdr __user *)msg, flags | MSG_CMSG_COMPAT);
}
Beispiel #6
0
DEFINE_SYSCALL(socketcall, int, call, uintptr_t *, args)
{
	if (call < 1 || call > SYS_SENDMMSG)
		return -L_EINVAL;
	if (!mm_check_read(args, nargs[call]))
		return -L_EFAULT;
	switch (call)
	{
	case SYS_SOCKET:
		return sys_socket(args[0], args[1], args[2]);

	case SYS_BIND:
		return sys_bind(args[0], (const struct sockaddr *)args[1], args[2]);

	case SYS_CONNECT:
		return sys_connect(args[0], (const struct sockaddr *)args[1], args[2]);

	case SYS_LISTEN:
		return sys_listen(args[0], args[1]);

	case SYS_ACCEPT:
		return sys_accept(args[0], (struct sockaddr *)args[1], (int *)args[2]);

	case SYS_GETSOCKNAME:
		return sys_getsockname(args[0], (struct sockaddr *)args[1], (int *)args[2]);

	case SYS_GETPEERNAME:
		return sys_getpeername(args[0], (struct sockaddr *)args[1], (int *)args[2]);

	case SYS_SEND:
		return sys_send(args[0], (const void *)args[1], args[2], args[3]);

	case SYS_RECV:
		return sys_recv(args[0], (void *)args[1], args[2], args[3]);

	case SYS_SENDTO:
		return sys_sendto(args[0], (const void *)args[1], args[2], args[3], (const struct sockaddr *)args[4], args[5]);
		
	case SYS_RECVFROM:
		return sys_recvfrom(args[0], (void *)args[1], args[2], args[3], (struct sockaddr *)args[4], (int *)args[5]);

	case SYS_SHUTDOWN:
		return sys_shutdown(args[0], args[1]);

	case SYS_SETSOCKOPT:
		return sys_setsockopt(args[0], args[1], args[2], (const void *)args[3], args[4]);

	case SYS_GETSOCKOPT:
		return sys_getsockopt(args[0], args[1], args[2], (void *)args[3], (int *)args[4]);

	case SYS_SENDMSG:
		return sys_sendmsg(args[0], (const struct msghdr *)args[1], args[2]);

	case SYS_RECVMSG:
		return sys_recvmsg(args[0], (struct msghdr *)args[1], args[2]);

	case SYS_ACCEPT4:
		return sys_accept4(args[0], (struct sockaddr *)args[1], (int *)args[2], args[3]);

	case SYS_SENDMMSG:
		return sys_sendmmsg(args[0], (struct mmsghdr *)args[1], args[2], args[3]);

	default:
	{
		log_error("Unimplemented socketcall: %d", call);
		return -L_EINVAL;
	}
	}
}
Beispiel #7
0
int
so_socksys(struct socksysreq *req)
{
	int err = -EINVAL;
	int cmd = req->args[0];

	if ((1 << cmd) & ((1 << SO_ACCEPT) | (1 << SO_BIND) | (1 << SO_CONNECT) |
			  (1 << SO_GETPEERNAME) | (1 << SO_GETSOCKNAME) | (1 << SO_GETSOCKOPT) |
			  (1 << SO_LISTEN) | (1 << SO_RECV) | (1 << SO_RECVFROM) | (1 << SO_SEND) |
			  (1 << SO_SENDTO) | (1 << SO_SETSOCKOPT) | (1 << SO_SHUTDOWN) |
			  (1 << SO_RECVMSG) | (1 << SO_SENDMSG))) {
		int fd = req->args[1];

		(void) fd;
		/* These are all socket related and accept a file (socket) descriptor as their
		   first argument.  In situations where we are incapable of providing back a real
		   socket, we must here first distinguish if the file descriptor corresponds to a
		   socket or a stream. */
#if 0
		if (it_is_a_socket) {
#endif
			/* In this case, we have a real socket from the operating system's
			   perspective and we can simply pass the arguments to the appropriate
			   system call. */
#if 0
			switch (cmd) {
			case SO_ACCEPT:
				/* FIXME: 32/64 conversion */
				err = sys_accept(fd, (struct sockaddr *) req->args[2],
						 req->args[3]);
				break;
			case SO_BIND:
				/* FIXME: 32/64 conversion */
				err = sys_bind(fd, (struct sockaddr *) req->args[2], req->args[3]);
				break;
			case SO_CONNECT:
				/* FIXME: 32/64 conversion */
				err = sys_connect(fd, (struct sockaddr *) req->args[2],
						  req->args[3]);
				break;
			case SO_GETPEERNAME:
				/* FIXME: 32/64 conversion */
				err = sys_getpeername(fd, (struct sockaddr *) req->args[2],
						      (int *) req->args[3]);
				break;
			case SO_GETSOCKNAME:
				/* FIXME: 32/64 conversion */
				err = sys_getsockname(fd, (struct sockaddr *) req->args[2],
						      (int *) req->args[3]);
				break;
			case SO_GETSOCKOPT:
				/* FIXME: 32/64 conversion */
				err = sys_getsockopt(fd, req->args[2], req->args[3],
						     (char *) req->args[4], (int *) req->args[5]);
				break;
			case SO_LISTEN:
				/* FIXME: 32/64 conversion */
				err = sys_listen(fd, req->args[2]);
				break;
			case SO_RECV:
				/* FIXME: 32/64 conversion */
				err = sys_recv(fd, (void *) req->args[2], req->args[3],
					       req->args[4]);
				break;
			case SO_RECVFROM:
				/* FIXME: 32/64 conversion */
				err = sys_recvfrom(fd, (void *) req->args[2], req->args[3],
						   req->args[4], (struct sockaddr *) req->args[5],
						   (int *) req->args[6]);
				break;
			case SO_SEND:
				/* FIXME: 32/64 conversion */
				err = sys_send(fd, (void *) req->args[2], req->args[3],
					       req->args[4]);
				break;
			case SO_SENDTO:
				/* FIXME: 32/64 conversion */
				err = sys_sendto(fd, (void *) req->args[2], req->args[3],
						 req->args[4], (struct sockaddr *) req->args[5],
						 req->args[6]);
				break;
			case SO_SETSOCKOPT:
				/* FIXME: 32/64 conversion */
				err = sys_setsockopt(fd, req->args[2], req->args[3],
						     (char *) req->args[4], req->args[5]);
				break;
			case SO_SHUTDOWN:
				/* FIXME: 32/64 conversion */
				err = sys_shutdown(fd, req->args[2]);
				break;
			case SO_RECVMSG:
				/* FIXME: 32/64 conversion */
				err = sys_recvmsg(fd, (struct msghdr *) req->args[2], req->args[3]);
				break;
			case SO_SENDMSG:
				/* FIXME: 32/64 conversion */
				err = sys_sendmsg(fd, (struct msghdr *) req->args[2], req->args[3]);
				break;
			}
#endif
#if 0
		} else {
			/* In this case, we do not have a real socket, but have a TPI stream from
			   the operating system's perspective, and we will directly call the
			   associated TPI routine. */
			switch (cmd) {
			case SO_ACCEPT:
				/* FIXME: 32/64 conversion */
				err = tpi_accept(fd, (struct sockaddr *) req->args[2],
						 req->args[3]);
				break;
			case SO_BIND:
				/* FIXME: 32/64 conversion */
				err = tpi_bind(fd, (struct sockaddr *) req->args[2], req->args[3]);
				break;
			case SO_CONNECT:
				/* FIXME: 32/64 conversion */
				err = tpi_connect(fd, (struct sockaddr *) req->args[2],
						  req->args[3]);
				break;
			case SO_GETPEERNAME:
				/* FIXME: 32/64 conversion */
				err = tpi_getpeername(fd, (struct sockaddr *) req->args[2],
						      (int *) req->args[3]);
				break;
			case SO_GETSOCKNAME:
				/* FIXME: 32/64 conversion */
				err = tpi_getsockname(fd, (struct sockaddr *) req->args[2],
						      (int *) req->args[3]);
				break;
			case SO_GETSOCKOPT:
				/* FIXME: 32/64 conversion */
				err = tpi_getsockopt(fd, req->args[2], req->args[3],
						     (char *) req->args[4], (int *) req->args[5]);
				break;
			case SO_LISTEN:
				/* FIXME: 32/64 conversion */
				err = tpi_listen(fd, req->args[2]);
				break;
			case SO_RECV:
				/* FIXME: 32/64 conversion */
				err = tpi_recv(fd, (void *) req->args[2], req->args[3],
					       req->args[4]);
				break;
			case SO_RECVFROM:
				/* FIXME: 32/64 conversion */
				err = tpi_recvfrom(fd, (void *) req->args[2], req->args[3],
						   req->args[4], (struct sockaddr *) req->args[5],
						   (int *) req->args[6]);
				break;
			case SO_SEND:
				/* FIXME: 32/64 conversion */
				err = tpi_send(fd, (void *) req->args[2], req->args[3],
					       req->args[4]);
				break;
			case SO_SENDTO:
				/* FIXME: 32/64 conversion */
				err = tpi_sendto(fd, (void *) req->args[2], req->args[3],
						 req->args[4], (struct sockaddr *) req->args[5],
						 req->args[6]);
				break;
			case SO_SETSOCKOPT:
				/* FIXME: 32/64 conversion */
				err = tpi_setsockopt(fd, req->args[2], req->args[3],
						     (char *) req->args[4], req->args[5]);
				break;
			case SO_SHUTDOWN:
				/* FIXME: 32/64 conversion */
				err = tpi_shutdown(fd, req->args[2]);
				break;
			case SO_RECVMSG:
				/* FIXME: 32/64 conversion */
				err = tpi_recvmsg(fd, (struct msghdr *) req->args[2], req->args[3]);
				break;
			case SO_SENDMSG:
				/* FIXME: 32/64 conversion */
				err = tpi_sendmsg(fd, (struct msghdr *) req->args[2], req->args[3]);
				break;
			}
		}
#endif
	}
	if ((1 << cmd) & ((1 << SO_SOCKET) | (1 << SO_SOCKPAIR) | (1 << SO_SELECT) |
			  (1 << SO_GETIPDOMAIN) | (1 << SO_SETIPDOMAIN) | (1 << SO_ADJTIME) |
			  (1 << SO_SETREUID) | (1 << SO_SETREGID) | (1 << SO_GETTIME) |
			  (1 << SO_SETTIME) | (1 << SO_GETITIMER) | (1 << SO_SETITIMER))) {
		/* These are BSD compatibiltiy functions and are how we create sockets in the first
		   place.  The BSD compatibility functions all have system calls in Linux, but we
		   provide them for backward compatibility (to what!?). */
#if 0
		switch (cmd) {
		case SO_SOCKET:
			/* FIXME: 32/64 conversion */
			/* XXX: don't think so..., after checking for a stream */
			err = sys_socket(req->args[1], req->args[2], req->args[3]);
			break;
		case SO_SOCKPAIR:
			/* FIXME: 32/64 conversion */
			/* XXX: don't think so..., after checking for a stream */
			err = sys_socketpair(req->args[1], req->args[2], req->args[3],
					     (int *) req->args[4]);
			err = -EOPNOTSUPP;
			break;
		case SO_SELECT:
			/* FIXME: 32/64 conversion */
			err = sys_select(req->args[1], (fd_set *) req->args[2],
					 (fd_set *) req->args[3], (fd_set *) req->args[4],
					 (struct timeval *) req->args[5]);
			break;
		case SO_GETIPDOMAIN:
			/* FIXME: 32/64 conversion */
			todo(("Process SO_GETIPDOMAIN for compatibility.\n"));
			/* does not exist in Linux, need to use sys_newuname and copy the
			   domainname portion */
			err = -ENOSYS;
			break;
		case SO_SETIPDOMAIN:
			/* FIXME: 32/64 conversion */
			err = sys_setdomainname((char *) req->args[1], req->args[2]);
			break;
		case SO_ADJTIME:
			/* FIXME: 32/64 conversion */
			err = sys_admtimex((struct timex *) req->args[1]);
			break;
		case SO_SETREUID:
			/* FIXME: 32/64 conversion */
			err = sys_setreuid(req->args[1], req->args[2]);
			break;
		case SO_SETREGID:
			/* FIXME: 32/64 conversion */
			err = sys_setregid(req->args[1], req->args[2]);
			break;
		case SO_GETTIME:
			/* FIXME: 32/64 conversion */
			err = sys_gettimeofday((struct timeval *) req->args[1],
					       (struct timezone *) req->args[2]);
			break;
		case SO_SETTIME:
			/* FIXME: 32/64 conversion */
			err = sys_settimeofday((struct timeval *) req->args[1],
					       (struct timezone *) req->args[2]);
			break;
		case SO_GETITIMER:
			/* FIXME: 32/64 conversion */
			err = sys_getitimer(req->args[1], (struct itimerval *) req->args[2]);
			break;
		case SO_SETITIMER:
			/* FIXME: 32/64 conversion */
			err = sys_getitimer(req->args[1], (struct itimerval *) req->args[2],
					    (struct itimerval *) req->args[3]);
			break;
		}
#endif
	}

	return (err);
}