/*===========================================================================* * do_exec * *===========================================================================*/ int do_exec() { kipc_msg_t m; int r; m.m_type = PM_EXEC; m.PM_PROC = mp->mp_endpoint; m.PM_PATH = m_in.exec_name; m.PM_PATH_LEN = m_in.exec_len; m.PM_FRAME = m_in.stack_ptr; m.PM_FRAME_LEN = m_in.stack_bytes; tell_fs(mp, &m); /* Do not reply */ return SUSPEND; }
/*===========================================================================* * do_stime * *===========================================================================*/ PUBLIC int do_stime() { /* Perform the stime(tp) system call. Retrieve the system's uptime (ticks * since boot) and store the time in seconds at system boot in the global * variable 'boottime'. */ clock_t uptime; int s; if (mp->mp_effuid != SUPER_USER) { return(EPERM); } if ( (s=getuptime(&uptime)) != OK) panic(__FILE__,"do_stime couldn't get uptime", s); boottime = (long) m_in.stime - (uptime/HZ); /* Also inform FS about the new system time. */ tell_fs(STIME, boottime, 0, 0); return(OK); }
/*===========================================================================* * do_exec * *===========================================================================*/ PUBLIC int do_exec() { /* Perform the execve(name, argv, envp) call. The user library builds a * complete stack image, including pointers, args, environ, etc. The stack * is copied to a buffer inside MM, and then to the new core image. */ register struct mproc *rmp; struct mproc *sh_mp; int m, r, fd, ft, sn; static char mbuf[ARG_MAX]; /* buffer for stack and zeroes */ static char name_buf[PATH_MAX]; /* the name of the file to exec */ char *new_sp, *basename; vir_bytes src, dst, text_bytes, data_bytes, bss_bytes, stk_bytes, vsp; phys_bytes tot_bytes; /* total space for program, including gap */ long sym_bytes; vir_clicks sc; struct stat s_buf; vir_bytes pc; /* Do some validity checks. */ rmp = mp; stk_bytes = (vir_bytes) stack_bytes; if (stk_bytes > ARG_MAX) return(ENOMEM); /* stack too big */ if (exec_len <= 0 || exec_len > PATH_MAX) return(EINVAL); /* Get the exec file name and see if the file is executable. */ src = (vir_bytes) exec_name; dst = (vir_bytes) name_buf; r = sys_copy(who, D, (phys_bytes) src, MM_PROC_NR, D, (phys_bytes) dst, (phys_bytes) exec_len); if (r != OK) return(r); /* file name not in user data segment */ tell_fs(CHDIR, who, FALSE, 0); /* switch to the user's FS environ. */ fd = allowed(name_buf, &s_buf, X_BIT); /* is file executable? */ if (fd < 0) return(fd); /* file was not executable */ /* Read the file header and extract the segment sizes. */ sc = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT; m = read_header(fd, &ft, &text_bytes, &data_bytes, &bss_bytes, &tot_bytes, &sym_bytes, sc, &pc); if (m < 0) { close(fd); /* something wrong with header */ return(ENOEXEC); } /* Fetch the stack from the user before destroying the old core image. */ src = (vir_bytes) stack_ptr; dst = (vir_bytes) mbuf; r = sys_copy(who, D, (phys_bytes) src, MM_PROC_NR, D, (phys_bytes) dst, (phys_bytes)stk_bytes); if (r != OK) { close(fd); /* can't fetch stack (e.g. bad virtual addr) */ return(EACCES); } /* Can the process' text be shared with that of one already running? */ sh_mp = find_share(rmp, s_buf.st_ino, s_buf.st_dev, s_buf.st_ctime); /* Allocate new memory and release old memory. Fix map and tell kernel. */ r = new_mem(sh_mp, text_bytes, data_bytes, bss_bytes, stk_bytes, tot_bytes); if (r != OK) { close(fd); /* insufficient core or program too big */ return(r); } /* Save file identification to allow it to be shared. */ rmp->mp_ino = s_buf.st_ino; rmp->mp_dev = s_buf.st_dev; rmp->mp_ctime = s_buf.st_ctime; /* Patch up stack and copy it from MM to new core image. */ vsp = (vir_bytes) rmp->mp_seg[S].mem_vir << CLICK_SHIFT; vsp += (vir_bytes) rmp->mp_seg[S].mem_len << CLICK_SHIFT; vsp -= stk_bytes; patch_ptr(mbuf, vsp); src = (vir_bytes) mbuf; r = sys_copy(MM_PROC_NR, D, (phys_bytes) src, who, D, (phys_bytes) vsp, (phys_bytes)stk_bytes); if (r != OK) panic("do_exec stack copy err", NO_NUM); /* Read in text and data segments. */ if (sh_mp != NULL) { lseek(fd, (off_t) text_bytes, SEEK_CUR); /* shared: skip text */ } else { load_seg(fd, T, text_bytes); } load_seg(fd, D, data_bytes); #if (SHADOWING == 1) if (lseek(fd, (off_t)sym_bytes, SEEK_CUR) == (off_t) -1) ; /* error */ if (relocate(fd, (unsigned char *)mbuf) < 0) ; /* error */ pc += (vir_bytes) rp->mp_seg[T].mem_vir << CLICK_SHIFT; #endif close(fd); /* don't need exec file any more */ /* Take care of setuid/setgid bits. */ if ((rmp->mp_flags & TRACED) == 0) { /* suppress if tracing */ if (s_buf.st_mode & I_SET_UID_BIT) { rmp->mp_effuid = s_buf.st_uid; tell_fs(SETUID,who, (int)rmp->mp_realuid, (int)rmp->mp_effuid); } if (s_buf.st_mode & I_SET_GID_BIT) { rmp->mp_effgid = s_buf.st_gid; tell_fs(SETGID,who, (int)rmp->mp_realgid, (int)rmp->mp_effgid); } } /* Save offset to initial argc (for ps) */ rmp->mp_procargs = vsp; /* Fix 'mproc' fields, tell kernel that exec is done, reset caught sigs. */ for (sn = 1; sn <= _NSIG; sn++) { if (sigismember(&rmp->mp_catch, sn)) { sigdelset(&rmp->mp_catch, sn); rmp->mp_sigact[sn].sa_handler = SIG_DFL; sigemptyset(&rmp->mp_sigact[sn].sa_mask); } } rmp->mp_flags &= ~SEPARATE; /* turn off SEPARATE bit */ rmp->mp_flags |= ft; /* turn it on for separate I & D files */ new_sp = (char *) vsp; tell_fs(EXEC, who, 0, 0); /* allow FS to handle FD_CLOEXEC files */ /* System will save command line for debugging, ps(1) output, etc. */ basename = strrchr(name_buf, '/'); if (basename == NULL) basename = name_buf; else basename++; sys_exec(who, new_sp, rmp->mp_flags & TRACED, basename, pc); return(OK); }
/*===========================================================================* * do_fork * *===========================================================================*/ PUBLIC int do_fork() { /* The process pointed to by 'mp' has forked. Create a child process. */ register struct mproc *rmp; /* pointer to parent */ register struct mproc *rmc; /* pointer to child */ pid_t new_pid; static int next_child; int i, n = 0, r, s; endpoint_t child_ep; message m; /* If tables might fill up during FORK, don't even start since recovery half * way through is such a nuisance. */ rmp = mp; if ((procs_in_use == NR_PROCS) || (procs_in_use >= NR_PROCS-LAST_FEW && rmp->mp_effuid != 0)) { printf("PM: warning, process table is full!\n"); return(EAGAIN); } /* Find a slot in 'mproc' for the child process. A slot must exist. */ do { next_child = (next_child+1) % NR_PROCS; n++; } while((mproc[next_child].mp_flags & IN_USE) && n <= NR_PROCS); if(n > NR_PROCS) panic(__FILE__,"do_fork can't find child slot", NO_NUM); if(next_child < 0 || next_child >= NR_PROCS || (mproc[next_child].mp_flags & IN_USE)) panic(__FILE__,"do_fork finds wrong child slot", next_child); /* Memory part of the forking. */ if((s=vm_fork(rmp->mp_endpoint, next_child, &child_ep)) != OK) { printf("PM: vm_fork failed: %d\n", s); return s; } /* PM may not fail fork after call to vm_fork(), as VM calls sys_fork(). */ rmc = &mproc[next_child]; /* Set up the child and its memory map; copy its 'mproc' slot from parent. */ procs_in_use++; *rmc = *rmp; /* copy parent's process slot to child's */ rmc->mp_parent = who_p; /* record child's parent */ if (!(rmc->mp_trace_flags & TO_TRACEFORK)) { rmc->mp_tracer = NO_TRACER; /* no tracer attached */ rmc->mp_trace_flags = 0; sigemptyset(&rmc->mp_sigtrace); } /* inherit only these flags */ rmc->mp_flags &= (IN_USE|PRIV_PROC|DELAY_CALL); rmc->mp_child_utime = 0; /* reset administration */ rmc->mp_child_stime = 0; /* reset administration */ rmc->mp_exitstatus = 0; rmc->mp_sigstatus = 0; rmc->mp_endpoint = child_ep; /* passed back by VM */ for (i = 0; i < NR_ITIMERS; i++) rmc->mp_interval[i] = 0; /* reset timer intervals */ /* Find a free pid for the child and put it in the table. */ new_pid = get_free_pid(); rmc->mp_pid = new_pid; /* assign pid to child */ m.m_type = PM_FORK; m.PM_PROC = rmc->mp_endpoint; m.PM_PPROC = rmp->mp_endpoint; m.PM_CPID = rmc->mp_pid; tell_fs(rmc, &m); /* Tell the tracer, if any, about the new child */ if (rmc->mp_tracer != NO_TRACER) sig_proc(rmc, SIGSTOP, TRUE /*trace*/); /* Do not reply until FS is ready to process the fork * request */ return SUSPEND; }
/*===========================================================================* * do_getset * *===========================================================================*/ PUBLIC int do_getset() { /* Handle GETUID, GETGID, GETPID, GETPGRP, SETUID, SETGID, SETSID. The four * GETs and SETSID return their primary results in 'r'. GETUID, GETGID, and * GETPID also return secondary results (the effective IDs, or the parent * process ID) in 'reply_res2', which is returned to the user. */ register struct mproc *rmp = mp; register int r; switch(call_nr) { case GETUID: r = rmp->mp_realuid; rmp->mp_reply.reply_res2 = rmp->mp_effuid; break; case GETGID: r = rmp->mp_realgid; rmp->mp_reply.reply_res2 = rmp->mp_effgid; break; case GETPID: r = mproc[who].mp_pid; rmp->mp_reply.reply_res2 = mproc[rmp->mp_parent].mp_pid; break; case SETUID: if (rmp->mp_realuid != (uid_t) m_in.usr_id && rmp->mp_effuid != SUPER_USER) return(EPERM); rmp->mp_realuid = (uid_t) m_in.usr_id; rmp->mp_effuid = (uid_t) m_in.usr_id; tell_fs(SETUID, who, rmp->mp_realuid, rmp->mp_effuid); r = OK; break; case SETGID: if (rmp->mp_realgid != (gid_t) m_in.grp_id && rmp->mp_effuid != SUPER_USER) return(EPERM); rmp->mp_realgid = (gid_t) m_in.grp_id; rmp->mp_effgid = (gid_t) m_in.grp_id; tell_fs(SETGID, who, rmp->mp_realgid, rmp->mp_effgid); r = OK; break; case SETSID: if (rmp->mp_procgrp == rmp->mp_pid) return(EPERM); rmp->mp_procgrp = rmp->mp_pid; tell_fs(SETSID, who, 0, 0); /* fall through */ case GETPGRP: r = rmp->mp_procgrp; break; default: r = EINVAL; break; } return(r); }
/*===========================================================================* * do_fork * *===========================================================================*/ PUBLIC int do_fork() { /* The process pointed to by 'mp' has forked. Create a child process. */ register struct mproc *rmp; /* pointer to parent */ register struct mproc *rmc; /* pointer to child */ int i, child_nr, t; char *sptr, *dptr; long prog_bytes; phys_clicks prog_clicks, child_base; long parent_abs, child_abs; extern phys_clicks alloc_mem(); /* If tables might fill up during FORK, don't even start since recovery half * way through is such a nuisance. */ rmp = mp; if (procs_in_use == NR_PROCS) return(EAGAIN); if (procs_in_use >= NR_PROCS - LAST_FEW && rmp->mp_effuid != 0)return(EAGAIN); /* Determine how much memory to allocate. */ prog_clicks = (phys_clicks) rmp->mp_seg[T].mem_len + rmp->mp_seg[D].mem_len + rmp->mp_seg[S].mem_len; #ifdef i8088 prog_clicks += rmp->mp_seg[S].mem_vir - rmp->mp_seg[D].mem_len; /* gap too */ #endif prog_bytes = (long) prog_clicks << CLICK_SHIFT; if ( (child_base = alloc_mem(prog_clicks)) == NO_MEM) return(EAGAIN); /* Create a copy of the parent's core image for the child. */ child_abs = (long) child_base << CLICK_SHIFT; parent_abs = (long) rmp->mp_seg[T].mem_phys << CLICK_SHIFT; i = mem_copy(ABS, 0, parent_abs, ABS, 0, child_abs, prog_bytes); if ( i < 0) panic("do_fork can't copy", i); /* Find a slot in 'mproc' for the child process. A slot must exist. */ for (rmc = &mproc[0]; rmc < &mproc[NR_PROCS]; rmc++) if ( (rmc->mp_flags & IN_USE) == 0) break; /* Set up the child and its memory map; copy its 'mproc' slot from parent. */ child_nr = rmc - mproc; /* slot number of the child */ procs_in_use++; sptr = (char *) rmp; /* pointer to parent's 'mproc' slot */ dptr = (char *) rmc; /* pointer to child's 'mproc' slot */ i = sizeof(struct mproc); /* number of bytes in a proc slot. */ while (i--) *dptr++ = *sptr++;/* copy from parent slot to child's */ rmc->mp_parent = who; /* record child's parent */ rmc->mp_seg[T].mem_phys = child_base; rmc->mp_seg[D].mem_phys = child_base + rmc->mp_seg[T].mem_len; rmc->mp_seg[S].mem_phys = rmc->mp_seg[D].mem_phys + (rmp->mp_seg[S].mem_phys - rmp->mp_seg[D].mem_phys); rmc->mp_exitstatus = 0; rmc->mp_sigstatus = 0; /* Find a free pid for the child and put it in the table. */ do { t = 0; /* 't' = 0 means pid still free */ next_pid = (next_pid < 30000 ? next_pid + 1 : INIT_PROC_NR + 1); for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) if (rmp->mp_pid == next_pid) { t = 1; break; } rmc->mp_pid = next_pid; /* assign pid to child */ } while (t); /* Tell kernel and file system about the (now successful) FORK. */ sys_fork(who, child_nr, rmc->mp_pid); tell_fs(FORK, who, child_nr, 0); /* Report child's memory map to kernel. */ sys_newmap(child_nr, rmc->mp_seg); /* Reply to child to wake it up. */ reply(child_nr, 0, 0, NIL_PTR); return(next_pid); /* child's pid */ }
/*===========================================================================* * do_fork * *===========================================================================*/ PUBLIC int do_fork() { /* The process pointed to by 'mp' has forked. Create a child process. */ register struct mproc *rmp; /* pointer to parent */ register struct mproc *rmc; /* pointer to child */ int i, child_nr, t; phys_clicks prog_clicks, child_base; phys_bytes prog_bytes, parent_abs, child_abs; /* Intel only */ /* If tables might fill up during FORK, don't even start since recovery half * way through is such a nuisance. */ rmp = mp; if (procs_in_use == NR_PROCS) return(EAGAIN); if (procs_in_use >= NR_PROCS-LAST_FEW && rmp->mp_effuid != 0)return(EAGAIN); /* Determine how much memory to allocate. Only the data and stack need to * be copied, because the text segment is either shared or of zero length. */ prog_clicks = (phys_clicks) rmp->mp_seg[S].mem_len; prog_clicks += (rmp->mp_seg[S].mem_vir - rmp->mp_seg[D].mem_vir); prog_bytes = (phys_bytes) prog_clicks << CLICK_SHIFT; if ( (child_base = alloc_mem(prog_clicks)) == NO_MEM) return(ENOMEM); /* Create a copy of the parent's core image for the child. */ child_abs = (phys_bytes) child_base << CLICK_SHIFT; parent_abs = (phys_bytes) rmp->mp_seg[D].mem_phys << CLICK_SHIFT; i = sys_copy(ABS, 0, parent_abs, ABS, 0, child_abs, prog_bytes); if (i < 0) panic("do_fork can't copy", i); /* Find a slot in 'mproc' for the child process. A slot must exist. */ for (rmc = &mproc[0]; rmc < &mproc[NR_PROCS]; rmc++) if ( (rmc->mp_flags & IN_USE) == 0) break; /* Set up the child and its memory map; copy its 'mproc' slot from parent. */ child_nr = (int)(rmc - mproc); /* slot number of the child */ procs_in_use++; *rmc = *rmp; /* copy parent's process slot to child's */ rmc->mp_parent = who; /* record child's parent */ rmc->mp_flags &= (IN_USE|SEPARATE); /* inherit only these flags */ /* A separate I&D child keeps the parents text segment. The data and stack * segments must refer to the new copy. */ if (!(rmc->mp_flags & SEPARATE)) rmc->mp_seg[T].mem_phys = child_base; rmc->mp_seg[D].mem_phys = child_base; rmc->mp_seg[S].mem_phys = rmc->mp_seg[D].mem_phys + (rmp->mp_seg[S].mem_vir - rmp->mp_seg[D].mem_vir); rmc->mp_exitstatus = 0; rmc->mp_sigstatus = 0; /* Find a free pid for the child and put it in the table. */ do { t = 0; /* 't' = 0 means pid still free */ next_pid = (next_pid < 30000 ? next_pid + 1 : INIT_PID + 1); for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) if (rmp->mp_pid == next_pid || rmp->mp_procgrp == next_pid) { t = 1; break; } rmc->mp_pid = next_pid; /* assign pid to child */ } while (t); /* Tell kernel and file system about the (now successful) FORK. */ sys_fork(who, child_nr, rmc->mp_pid); tell_fs(FORK, who, child_nr, rmc->mp_pid); /* Report child's memory map to kernel. */ sys_newmap(child_nr, rmc->mp_seg); /* Reply to child to wake it up. */ setreply(child_nr, 0); return(next_pid); /* child's pid */ }
/*===========================================================================* * do_exec * *===========================================================================*/ PUBLIC int do_exec() { /* Perform the execve(name, argv, envp) call. The user library builds a * complete stack image, including pointers, args, environ, etc. The stack * is copied to a buffer inside PM, and then to the new core image. */ /* * 执行 execve(name, argv, envp) 调用. 用户库函数构造了一个完整的栈映像, * 包括指针, 命令行参数, 环境变量等等. 栈先复制到 PM 内的一个缓冲区中, * 再复制给新的堆栈映像. */ register struct mproc *rmp; struct mproc *sh_mp; int m, r, fd, ft, sn; static char mbuf[ARG_MAX]; /* buffer for stack and zeroes */ static char name_buf[PATH_MAX]; /* the name of the file to exec */ char *new_sp, *name, *basename; vir_bytes src, dst, text_bytes, data_bytes, bss_bytes, stk_bytes, vsp; phys_bytes tot_bytes; /* total space for program, including gap */ long sym_bytes; vir_clicks sc; struct stat s_buf[2], *s_p; vir_bytes pc; /* Do some validity checks. */ rmp = mp; // rmp = mp = 当前进程的 struct mproc 结构 stk_bytes = (vir_bytes) m_in.stack_bytes; if (stk_bytes > ARG_MAX) return(ENOMEM); /* stack too big */ if (m_in.exec_len <= 0 || m_in.exec_len > PATH_MAX) return(EINVAL); /* Get the exec file name and see if the file is executable. */ src = (vir_bytes) m_in.exec_name; dst = (vir_bytes) name_buf; // 将可执行文件的路径名从主调进程复制到 PM 的 name_buf[] 中. r = sys_datacopy(who, (vir_bytes) src, PM_PROC_NR, (vir_bytes) dst, (phys_bytes) m_in.exec_len); if (r != OK) return(r); /* file name not in user data segment */ /* Fetch the stack from the user before destroying the old core image. */ // 将主调进程的栈复制到 mbuf[], 在毁掉旧的核心映像之前 src = (vir_bytes) m_in.stack_ptr; dst = (vir_bytes) mbuf; r = sys_datacopy(who, (vir_bytes) src, PM_PROC_NR, (vir_bytes) dst, (phys_bytes)stk_bytes); /* can't fetch stack (e.g. bad virtual addr) */ if (r != OK) return(EACCES); r = 0; /* r = 0 (first attempt), or 1 (interpreted script) */ name = name_buf; /* name of file to exec. */ do { s_p = &s_buf[r]; // 切换到主调进程的当前工作目录 tell_fs(CHDIR, who, FALSE, 0); /* switch to the user's FS environ */ // 检查文件是否可执行, 如果可执行, 返回文件描述符 fd = allowed(name, s_p, X_BIT); /* is file executable? */ if (fd < 0) return(fd); /* file was not executable */ /* Read the file header and extract the segment sizes. */ sc = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT; // 读取文件头部数据, 并赋值给相应参数 m = read_header(fd, &ft, &text_bytes, &data_bytes, &bss_bytes, &tot_bytes, &sym_bytes, sc, &pc); if (m != ESCRIPT || ++r > 1) break; } while ((name = patch_stack(fd, mbuf, &stk_bytes, name_buf)) != NULL); if (m < 0) { close(fd); /* something wrong with header */ return(stk_bytes > ARG_MAX ? ENOMEM : ENOEXEC); } /* Can the process' text be shared with that of one already running? */ sh_mp = find_share(rmp, s_p->st_ino, s_p->st_dev, s_p->st_ctime); /* Allocate new memory and release old memory. Fix map and tell kernel. */ r = new_mem(sh_mp, text_bytes, data_bytes, bss_bytes, stk_bytes, tot_bytes); if (r != OK) { close(fd); /* insufficient core or program too big */ return(r); } /* Save file identification to allow it to be shared. */ rmp->mp_ino = s_p->st_ino; rmp->mp_dev = s_p->st_dev; rmp->mp_ctime = s_p->st_ctime; /* Patch up stack and copy it from PM to new core image. */ vsp = (vir_bytes) rmp->mp_seg[S].mem_vir << CLICK_SHIFT; vsp += (vir_bytes) rmp->mp_seg[S].mem_len << CLICK_SHIFT; vsp -= stk_bytes; patch_ptr(mbuf, vsp); src = (vir_bytes) mbuf; r = sys_datacopy(PM_PROC_NR, (vir_bytes) src, who, (vir_bytes) vsp, (phys_bytes)stk_bytes); if (r != OK) panic(__FILE__,"do_exec stack copy err on", who); /* Read in text and data segments. */ if (sh_mp != NULL) { lseek(fd, (off_t) text_bytes, SEEK_CUR); /* shared: skip text */ } else { rw_seg(0, fd, who, T, text_bytes); } rw_seg(0, fd, who, D, data_bytes); close(fd); /* don't need exec file any more */ /* Take care of setuid/setgid bits. */ if ((rmp->mp_flags & TRACED) == 0) { /* suppress if tracing */ if (s_buf[0].st_mode & I_SET_UID_BIT) { rmp->mp_effuid = s_buf[0].st_uid; tell_fs(SETUID,who, (int)rmp->mp_realuid, (int)rmp->mp_effuid); } if (s_buf[0].st_mode & I_SET_GID_BIT) { rmp->mp_effgid = s_buf[0].st_gid; tell_fs(SETGID,who, (int)rmp->mp_realgid, (int)rmp->mp_effgid); } } /* Save offset to initial argc (for ps) */ rmp->mp_procargs = vsp; /* Fix 'mproc' fields, tell kernel that exec is done, reset caught sigs. */ for (sn = 1; sn <= _NSIG; sn++) { if (sigismember(&rmp->mp_catch, sn)) { sigdelset(&rmp->mp_catch, sn); rmp->mp_sigact[sn].sa_handler = SIG_DFL; sigemptyset(&rmp->mp_sigact[sn].sa_mask); } } rmp->mp_flags &= ~SEPARATE; /* turn off SEPARATE bit */ rmp->mp_flags |= ft; /* turn it on for separate I & D files */ new_sp = (char *) vsp; tell_fs(EXEC, who, 0, 0); /* allow FS to handle FD_CLOEXEC files */ /* System will save command line for debugging, ps(1) output, etc. */ basename = strrchr(name, '/'); if (basename == NULL) basename = name; else basename++; strncpy(rmp->mp_name, basename, PROC_NAME_LEN-1); rmp->mp_name[PROC_NAME_LEN] = '\0'; sys_exec(who, new_sp, basename, pc); /* Cause a signal if this process is traced. */ if (rmp->mp_flags & TRACED) check_sig(rmp->mp_pid, SIGTRAP); return(SUSPEND); /* no reply, new program just runs */ }
/** * Perform the exec() system call. * * @return Zero if successful, otherwise -1. *****************************************************************************/ PUBLIC int do_exec() { /* get parameters from the message */ int name_len = mm_msg.NAME_LEN; /* length of filename */ int src = mm_msg.source; /* caller proc nr. */ assert(name_len < MAX_PATH); char pathname[MAX_PATH]; phys_copy((void*)va2la(TASK_MM, pathname), (void*)va2la(src, mm_msg.PATHNAME), name_len); pathname[name_len] = 0; /* terminate the string */ /* change the directory of task fs to the caller's work directory */ tell_fs(CHDIR, src, 0, 0); /* get the file size */ struct stat s; int ret = stat(pathname, &s); if (ret != 0) { printl("{MM} MM::do_exec()::stat() returns error. %s", pathname); return -1; } /* read the file */ int fd = open(pathname, O_RDWR); if (fd == -1) return -1; assert(s.st_size < MMBUF_SIZE); read(fd, mmbuf, s.st_size); close(fd); /* setup the arg stack */ int orig_stack_len = mm_msg.BUF_LEN; char stackcopy[PROC_ORIGIN_STACK]; phys_copy((void*)va2la(TASK_MM, stackcopy), (void*)va2la(src, mm_msg.BUF), orig_stack_len); /* clean up the image of the current process */ free_mem(src); /* the information about elf32 */ u32 start_text = 0, end_text = 0, start_data = 0, end_data = 0; /* overwrite the current proc image with the new one */ Elf32_Ehdr* elf_hdr = (Elf32_Ehdr*)(mmbuf); int i; for (i = 0; i < elf_hdr->e_phnum; i++) { Elf32_Phdr* prog_hdr = (Elf32_Phdr*)(mmbuf + elf_hdr->e_phoff + (i * elf_hdr->e_phentsize)); if (prog_hdr->p_type == PT_LOAD) { assert(prog_hdr->p_vaddr + prog_hdr->p_memsz < PROC_IMAGE_SIZE_DEFAULT); phys_copy((void*)va2la(src, (void*)prog_hdr->p_vaddr), (void*)va2la(TASK_MM, mmbuf + prog_hdr->p_offset), prog_hdr->p_filesz); if ((PF_R | PF_W) == prog_hdr->p_flags) { //the data segment // printl("elf32 .data start %d, size %d\n", prog_hdr->p_vaddr // , prog_hdr->p_memsz); start_data = prog_hdr->p_vaddr; end_data = start_data + prog_hdr->p_memsz; } else if ((PF_R | PF_X) == prog_hdr->p_flags) { //the text segment // printl("elf32 .text start %d, size %d\n", prog_hdr->p_vaddr // , prog_hdr->p_memsz); start_text = prog_hdr->p_vaddr; end_text = start_text + prog_hdr->p_memsz; } } } /* setup the arg stack */ // int orig_stack_len = mm_msg.BUF_LEN; // char stackcopy[PROC_ORIGIN_STACK]; // phys_copy((void*)va2la(TASK_MM, stackcopy), // (void*)va2la(src, mm_msg.BUF), // orig_stack_len); initial_brk(src, start_text, end_text, start_data, end_data); int * orig_stack = (int*)(VM_SIZE - PROC_ORIGIN_STACK); int delta = (int)orig_stack - (int)mm_msg.BUF; int argc = 0; if (orig_stack_len) { /* has args */ char **q = (char**)stackcopy; for (; *q != 0; q++,argc++) *q += delta; } phys_copy((void*)va2la(src, orig_stack), (void*)va2la(TASK_MM, stackcopy), orig_stack_len); proc_table[src].regs.ecx = argc; /* argc */ proc_table[src].regs.eax = (u32)orig_stack; /* argv */ /* setup eip & esp */ proc_table[src].regs.eip = elf_hdr->e_entry; /* @see _start.asm */ proc_table[src].regs.esp = VM_SIZE - PROC_ORIGIN_STACK; strcpy(proc_table[src].name, pathname); return 0; }