/** * @brief Low level fitting routine for a Gaussian trend filtering problem. * Function used by tf_admm to fit a Gaussian ADMM trendfilter, or as a * subproblem by tf_admm_glm when using logistic or poisson losses. Fits * the solution for a single value of lambda. Most users will want to call * tf_admm, rather than tf_admm_gauss directly. * * @param y a vector of responses * @param x a vector of response locations; must be in increasing order * @param w a vector of sample weights * @param n the length of y, x, and w * @param k degree of the trendfilter; i.e., k=1 linear * @param max_iter maximum number of ADMM interations; ignored for k=0 * @param lam the value of lambda * @param beta allocated space for output coefficents; must pre-fill as it is used in warm start * @param alpha allocated space for ADMM alpha covariates; must pre-fill as it is used in warm start * @param u allocated space for ADMM u covariates; must pre-fill as it is used in warm start * @param obj allocated space to store the objective; will fill at most max_iter elements * @param iter allocated space to store the number of iterations; will fill just one element * @param rho tuning parameter for the ADMM algorithm; set to 1 for default * @param obj_tol stopping criteria tolerance; set to 1e-10 for default * @param DktDk pointer to the inner product of DktDk * @param verbose 0/1 flag for printing progress * @return void * @see tf_admm */ void tf_admm_gauss (double * y, double * x, double * w, int n, int k, int max_iter, double lam, double * beta, double * alpha, double * u, double * obj, int * iter, double rho, double obj_tol, cs * DktDk, int verbose) { int i; int it; double *v; double *z; double *db; double loss; double pen; cs * kernmat; gqr * kernmat_qr; /* Special case for k=0: skip the ADMM algorithm */ if (k==0) { /* Use Nick's DP algorithm, weighted version */ tf_dp_weight(n,y,w,lam,beta); db = (double *) malloc(n*sizeof(double)); /* Compute objective */ loss = 0; pen = 0; for (i=0; i<n; i++) loss += w[i]*(y[i]-beta[i])*(y[i]-beta[i]); loss = loss/2; tf_dx(x,n,k+1,beta,db); /* IMPORTANT: use k+1 here! */ for (i=0; i<n-k-1; i++) pen += fabs(db[i]); obj[0] = loss+lam*pen; free(db); return; } /* Otherwise we run our ADMM routine */ /* Construct the kernel matrix and its QR decomposition */ kernmat = scalar_plus_diag(DktDk, rho, w); kernmat_qr = glmgen_qr(kernmat); /* Other variables that will be useful during our iterations */ v = (double*) malloc(n*sizeof(double)); z = (double*) malloc(n*sizeof(double)); if (verbose) printf("\nlambda=%0.3e\n",lam); if (verbose) printf("Iteration\tObjective\tLoss\tPenalty\n"); for(it=0; it < max_iter; it++) { /* Update beta: banded linear system (kernel matrix) */ for (i=0; i < n-k; i++) v[i] = alpha[i] + u[i]; tf_dtxtil(x,n,k,v,z); for (i=0; i<n; i++) beta[i] = w[i]*y[i] + rho*z[i]; /* Solve the least squares problem with sparse QR */ glmgen_qrsol(kernmat_qr, beta); /* Update alpha: 1d fused lasso * Build the response vector */ tf_dxtil(x,n,k,beta,v); for (i=0; i<n-k; i++) { z[i] = v[i]-u[i]; } /* Use Nick's DP algorithm */ tf_dp(n-k,z,lam/rho,alpha); /* Update u: dual update */ for (i=0; i<n-k; i++) { u[i] = u[i]+alpha[i]-v[i]; } /* Compute loss */ loss = 0; for (i=0; i<n; i++) loss += w[i]*(y[i]-beta[i])*(y[i]-beta[i]); loss = loss/2; /* Compute penalty */ tf_dx(x,n,k+1,beta,z); /* IMPORTANT: use k+1 here! */ pen = 0; for (i=0; i<n-k-1; i++) pen += fabs(z[i]); obj[it] = loss+lam*pen; if (verbose) printf("%i\t%0.3e\t%0.3e\t%0.3e\n",it+1,obj[it],loss,lam*pen); /* Stop if relative difference of objective values <= obj_tol */ if(it > 0) { if( fabs(obj[it] - obj[it-1]) < fabs(obj[it]) * obj_tol ) break; } } *iter = it; cs_spfree(kernmat); glmgen_gqr_free(kernmat_qr); free(v); free(z); }
/** * @brief Low level fitting routine for a Gaussian trend filtering problem. * Function used by tf_admm to fit a Gaussian ADMM trendfilter, or as a * subproblem by tf_admm_glm when using logistic or poisson losses. Fits * the solution for a single value of lambda. Most users will want to call * tf_admm, rather than tf_admm_gauss directly. * * @param x a vector of data locations; must be in increasing order * @param y a vector of responses * @param w a vector of sample weights * @param n the length of x, y, and w * @param k polynomial degree of the fitted trend; i.e., k=1 for linear * @param max_iter maximum number of ADMM interations; ignored for k=0 * @param lam the value of lambda * @param df allocated space for df value at the solution * @param beta allocated space for output coefficents; must pre-fill as it is used in warm start * @param alpha allocated space for ADMM alpha variable; must pre-fill as it is used in warm start * @param u allocated space for ADMM u variable; must pre-fill as it is used in warm start * @param obj allocated space to store the objective; will fill at most max_iter elements * @param iter allocated space to store the number of iterations; will fill just one element * @param rho tuning parameter for the ADMM algorithm; set to 1 for default * @param obj_tol stopping criteria tolerance; set to 1e-10 for default * @param DktDk pointer to the inner product of DktDk * @param verbose 0/1 flag for printing progress * @return void * @see tf_admm */ void tf_admm_gauss (double * x, double * y, double * w, int n, int k, int max_iter, double lam, int * df, double * beta, double * alpha, double * u, double * obj, int * iter, double rho, double obj_tol, cs * DktDk, int verbose) { int i; int d; int it, itbest; double *v; double *z; double *betabest; double *alphabest; double descent; double variation; cs * kernmat; gqr * kernmat_qr; /* Special case for k=0: skip the ADMM algorithm */ if (k==0) { /* Use Nick's DP algorithm, weighted version */ tf_dp_weight(n,y,w,lam,beta); /* Compute df value */ d = 1; for (i=0; i<n-1; i++) if (beta[i] != beta[i+1]) d += 1; *df = d; /* Compute objective */ v = (double *) malloc(n*sizeof(double)); obj[0] = tf_obj_gauss(x,y,w,n,k,lam,beta,v); free(v); return; } /* Otherwise we run our ADMM routine */ /* Construct the kernel matrix and its QR decomposition */ kernmat = scalar_plus_diag(DktDk, rho, w); kernmat_qr = glmgen_qr(kernmat); /* Other variables that will be useful during our iterations */ v = (double*) malloc(n*sizeof(double)); z = (double*) malloc(n*sizeof(double)); betabest = (double*) malloc(n*sizeof(double)); alphabest = (double*) malloc(n*sizeof(double)); if (verbose) printf("\nlambda=%0.3e\n",lam); if (verbose) printf("Iteration\tObjective\n"); itbest = 0; obj[0] = tf_obj_gauss(x,y,w,n,k,lam,beta,v); memcpy(betabest, beta, n * sizeof(double)); memcpy(alphabest, alpha, n * sizeof(double)); for (it=0; it < max_iter; it++) { /* Update beta: banded linear system (kernel matrix) */ for (i=0; i < n-k; i++) v[i] = alpha[i] + u[i]; tf_dtxtil(x,n,k,v,z); for (i=0; i<n; i++) beta[i] = w[i]*y[i] + rho*z[i]; /* Solve the least squares problem with sparse QR */ glmgen_qrsol(kernmat_qr, beta); /* Update alpha: 1d fused lasso * Build the response vector */ tf_dxtil(x,n,k,beta,v); for (i=0; i<n-k; i++) z[i] = v[i]-u[i]; /* Use Nick's DP algorithm */ tf_dp(n-k,z,lam/rho,alpha); /* Update u: dual update */ for (i=0; i<n-k; i++) u[i] = u[i]+alpha[i]-v[i]; /* Compute objective */ obj[it+1] = tf_obj_gauss(x,y,w,n,k,lam,beta,z); if (verbose) printf("%i\t%0.3e\n",it+1,obj[it]); /* Stop if relative difference of objective values < obj_tol */ descent = obj[itbest] - obj[it+1]; if ( descent > 0 ) { memcpy(betabest, beta, n * sizeof(double)); memcpy(alphabest, alpha, n * sizeof(double)); itbest = it+1; } if (it >= 10) { variation = 0; for (i=0; i < 10; i++ ) variation += fabs(obj[it+1-i] - obj[it-i]); //variation = fabs(obj[it+1] - obj[it]) + fabs(obj[it] - obj[it-1]) + fabs(obj[it-1] - obj[it-2]); if (variation < fabs(obj[itbest]) * 10 * obj_tol) break; } } memcpy(beta, betabest, n * sizeof(double)); memcpy(alpha, alphabest, n * sizeof(double)); *iter = it; if (verbose) printf("itbest = %d it = %d obj[0]= %f obj.best = %f\n", itbest, it, obj[0], obj[itbest]); /* Compute final df value, based on alpha */ d = k+1; for (i=0; i<n-k-1; i++) if (alpha[i] != alpha[i+1]) d += 1; *df = d; cs_spfree(kernmat); glmgen_gqr_free(kernmat_qr); free(v); free(z); free(betabest); free(alphabest); }
/** * @brief Main wrapper for fitting a trendfilter model. * Takes as input either a sequence of lambda tuning parameters, or the number * of desired lambda values. In the latter case the function will also calculate * a lambda sequence. The user must supply allocated memory to store the output, * with the function itself returning only @c void. For default values, and an * example of how to call the function, see the function tf_admm_default. * * @param y a vector of responses * @param x a vector of response locations; must be in increasing order * @param w a vector of sample weights * @param n the length of y, x, and w * @param k degree of the trendfilter; i.e., k=1 linear * @param family family code for the type of fit; family=0 for OLS * @param max_iter maximum number of ADMM interations; ignored for k=0 * @param lam_flag 0/1 flag for whether lambda sequence needs to be estimated * @param lambda either a sequence of lambda when lam_flag=0, or empty * allocated space if lam_flag=1 * @param nlambda number of lambda values; need for both lam_flag=0 and 1 * @param lambda_min_ratio minimum ratio between min and max lambda; ignored for lam_flag=0 * @param beta allocated space of size n*nlambda to store the output coefficents * @param obj allocated space of size max_iter*nlambda to store the objective * @param iter allocated space of size nlambda to store the number of iterations * @param status allocated space of size nlambda to store the status of each run * @param rho tuning parameter for the ADMM algorithm * @param obj_tol stopping criteria tolerance * @param alpha_ls for family != 0, line search tuning parameter * @param gamma_ls for family != 0, line search tuning parameter * @param max_iter_ls for family != 0, max number of iterations in line search * @param max_iter_newton for family != 0, max number of iterations in inner ADMM * @param verbose 0/1 flag for printing progress * @return void * @see tf_admm_default */ void tf_admm (double * y, double * x, double * w, int n, int k, int family, int max_iter, int lam_flag, double * lambda, int nlambda, double lambda_min_ratio, double * beta, double * obj, int * iter, int * status, double rho, double obj_tol, double alpha_ls, double gamma_ls, int max_iter_ls, int max_iter_newton, int verbose) { int i; int j; double max_lam; double min_lam; double * temp_n; double * beta_max; double * alpha; double * u; cs * D; cs * Dt; cs * Dk; cs * Dkt; cs * DktDk; gqr * Dt_qr; gqr * Dkt_qr; beta_max = (double *) malloc(n * sizeof(double)); temp_n = (double *) malloc(n * sizeof(double)); alpha = (double *) malloc(n * sizeof(double)); /* we use extra buffer (n vs n-k) */ u = (double *) malloc(n * sizeof(double)); /* we use extra buffer (n vs n-k) */ /* Assume w does not have zeros */ for(i = 0; i < n; i++) temp_n[i] = 1/sqrt(w[i]); D = tf_calc_dk(n, k+1, x); Dk = tf_calc_dktil(n, k, x); Dt = cs_transpose(D, 1); diag_times_sparse(Dt, temp_n); /* Dt = W^{-1/2} Dt */ Dkt = cs_transpose(Dk, 1); Dt_qr = glmgen_qr(Dt); Dkt_qr = glmgen_qr(Dkt); DktDk = cs_multiply(Dkt,Dk); /* Determine the maximum lambda in the path, and initiate the path if needed * using the input lambda_min_ratio and equally spaced log points. */ max_lam = tf_maxlam(n, y, Dt_qr, w); if (!lam_flag) { min_lam = max_lam * lambda_min_ratio; lambda[0] = max_lam; for (i = 1; i < nlambda; i++) lambda[i] = exp((log(max_lam) * (nlambda - i -1) + log(min_lam) * i) / (nlambda-1)); } rho = rho * pow( (x[n-1] - x[0])/n, (double)k); /* Initiate alpha and u for a warm start */ if (lambda[0] < max_lam * 1e-5) { for (i = 0; i < n - k; i++) { alpha[i] = 0; u[i] = 0; } } else { /* beta_max */ for (i = 0; i < n; i++) temp_n[i] = -sqrt(w[i]) * y[i]; glmgen_qrsol (Dt_qr, temp_n); for (i = 0; i < n; i++) beta_max[i] = 0; cs_gaxpy(Dt, temp_n, beta_max); /* Dt has a W^{-1/2}, so in the next step divide by sqrt(w) instead of w. */ for (i = 0; i < n; i++) beta_max[i] = y[i] - beta_max[i]/sqrt(w[i]); /* alpha_max */ tf_dxtil(x, n, k, beta_max, alpha); /* u_max */ switch (family) { case FAMILY_GAUSSIAN: for (i = 0; i < n; i++) u[i] = w[i] * (beta_max[i] - y[i]) / (rho * lambda[0]); break; case FAMILY_LOGISTIC: for (i = 0; i < n; i++) { u[i] = logi_b2(beta_max[i]) * w[i] * (beta_max[i] - y[i]) / (rho * lambda[0]); } break; case FAMILY_POISSON: for (i = 0; i < n; i++) { u[i] = pois_b2(beta_max[i]) * w[i] *(beta_max[i] - y[i]) / (rho * lambda[0]); } break; default: for (i = 0; i < nlambda; i++) status[i] = 2; return; } glmgen_qrsol (Dkt_qr, u); } /* Iterate lower level functions over all lambda values; * the alpha and u vectors get used each time of subsequent * warm starts */ for (i = 0; i < nlambda; i++) { /* warm start */ double * beta_init = (i == 0) ? beta_max : beta + (i-1)*n; for(j = 0; j < n; j++) beta[i*n + j] = beta_init[j]; switch (family) { case FAMILY_GAUSSIAN: tf_admm_gauss(y, x, w, n, k, max_iter, lambda[i], beta+i*n, alpha, u, obj+i*max_iter, iter+i, rho * lambda[i], obj_tol, DktDk, verbose); break; case FAMILY_LOGISTIC: tf_admm_glm(y, x, w, n, k, max_iter, lambda[i], beta+i*n, alpha, u, obj+i*max_iter, iter+i, rho * lambda[i], obj_tol, alpha_ls, gamma_ls, max_iter_ls, max_iter_newton, DktDk, &logi_b, &logi_b1, &logi_b2, verbose); break; case FAMILY_POISSON: tf_admm_glm(y, x, w, n, k, max_iter, lambda[i], beta+i*n, alpha, u, obj+i*max_iter, iter+i, rho * lambda[i], obj_tol, alpha_ls, gamma_ls, max_iter_ls, max_iter_newton, DktDk, &pois_b, &pois_b1, &pois_b2, verbose); break; } /* If there any NaNs in beta: reset beta, alpha, u */ if(has_nan(beta + i * n, n)) { for(j = 0; j < n; j++) beta[i*n + j] = 0; for(j = 0; j < n-k; j++) { alpha[j] = 0; u[j] = 0; } status[i] = 1; printf("Numerical error in lambda[%d]=%f",i,lambda[i]); } } cs_spfree(D); cs_spfree(Dt); cs_spfree(Dk); cs_spfree(Dkt); cs_spfree(DktDk); glmgen_gqr_free(Dt_qr); glmgen_gqr_free(Dkt_qr); free(temp_n); free(beta_max); free(alpha); free(u); }
/** * @brief Main wrapper for fitting a trendfilter model. * Takes as input either a sequence of lambda tuning parameters, or the number * of desired lambda values. In the latter case the function will also calculate * a lambda sequence. The user must supply allocated memory to store the output, * with the function itself returning only @c void. For default values, and an * example of how to call the function, see the function tf_admm_default. * * @param x a vector of data locations; must be in increasing order * @param y a vector of responses * @param w a vector of sample weights * @param n the length of x, y, and w * @param k polynomial degree of the fitted trend; i.e., k=1 for linear * @param family family code for the type of fit; family=0 for OLS * @param max_iter maximum number of ADMM interations; ignored for k=0 * @param beta0 initialization value of beta for first lambda; ignored if NULL * @param lam_flag 0/1 flag for whether lambda sequence needs to be estimated * @param lambda either a sequence of lambda when lam_flag=0, or empty * allocated space if lam_flag=1 * @param nlambda number of lambda values; need for both lam_flag=0 and 1 * @param lambda_min_ratio minimum ratio between min and max lambda; ignored for lam_flag=0 * @param df allocated space of nlambda to store the output df values * @param beta allocated space of size n*nlambda to store the output coefficents * @param obj allocated space of size max_iter*nlambda to store the objective * @param iter allocated space of size nlambda to store the number of iterations * @param status allocated space of size nlambda to store the status of each run * @param rho tuning parameter for the ADMM algorithm * @param obj_tol stopping criteria tolerance * @param obj_tol_newton for family != 0, stopping criteria tolerance for prox Newton * @param alpha_ls for family != 0, line search tuning parameter * @param gamma_ls for family != 0, line search tuning parameter * @param max_iter_ls for family != 0, max number of iterations in line search * @param max_iter_newton for family != 0, max number of iterations in inner ADMM * @param verbose 0/1 flag for printing progress * @return void * @see tf_admm_default */ void tf_admm ( double * x, double * y, double * w, int n, int k, int family, int max_iter, double * beta0, int lam_flag, double * lambda, int nlambda, double lambda_min_ratio, int tridiag, int * df, double * beta, double * obj, int * iter, int * status, double rho, double obj_tol, double obj_tol_newton, double alpha_ls, double gamma_ls, int max_iter_ls, int max_iter_newton, int verbose) { int i; int j; int numDualVars; double max_lam; double min_lam; double * temp_n; double * beta_max; double * alpha; double * u; double * A0; double * A1; double * v; cs * D; cs * Dt; cs * Dk; cs * Dkt; cs * DktDk; gqr * Dt_qr; gqr * Dkt_qr; beta_max = (double *) malloc(n * sizeof(double)); temp_n = (double *) malloc(n * sizeof(double)); v = (double *) malloc(n * sizeof(double)); numDualVars = tridiag ? k : 1; /* we use extra buffer below (n vs n-k) */ alpha = (double *) malloc(n * numDualVars * sizeof(double)); u = (double *) malloc(n * numDualVars * sizeof(double)); /* Assume w does not have zeros */ for (i = 0; i < n; i++) temp_n[i] = 1/sqrt(w[i]); D = tf_calc_dk(n, k+1, x); Dk = tf_calc_dktil(n, k, x); Dt = cs_transpose(D, 1); diag_times_sparse(Dt, temp_n); /* Dt = W^{-1/2} Dt */ Dkt = cs_transpose(Dk, 1); Dt_qr = glmgen_qr(Dt); Dkt_qr = glmgen_qr(Dkt); DktDk = cs_multiply(Dkt,Dk); /* Determine the maximum lambda in the path */ max_lam = tf_maxlam(n, y, Dt_qr, w); /* and if it is too small, return a trivial solution for Gaussian case */ if (family == FAMILY_GAUSSIAN) { if (max_lam < 1e-12) { for (i=0; i<nlambda; i++) { for (j=0; j<n; j++) beta[i*n+j] = y[j]; obj[i*(max_iter+1)] = 0; df[i] = n; } cs_spfree(D); cs_spfree(Dt); cs_spfree(Dk); cs_spfree(Dkt); cs_spfree(DktDk); glmgen_gqr_free(Dt_qr); glmgen_gqr_free(Dkt_qr); free(temp_n); free(beta_max); free(alpha); free(u); return; } } else { max_lam += 1; } /* Initiate the path if needed using the input lambda_min_ratio and * equally spaced points in log space. */ if (!lam_flag) seq_logspace(max_lam,lambda_min_ratio,nlambda,lambda); /* Augmented Lagrangian parameter */ rho = rho * pow((x[n-1] - x[0])/(double)(n-1), (double)k); /* Initiate alpha and u for a warm start */ if (lambda[0] < max_lam * 1e-5) for (i = 0; i < n - k; i++) alpha[i] = u[i] = 0; else { /* beta_max */ if (beta0 == NULL) calc_beta_max(y,w,n,Dt_qr,Dt,temp_n,beta_max); else memcpy(beta_max, beta0, n*sizeof(double)); /* Check if beta = weighted mean(y) is better than beta */ double yc = weighted_mean(y,w,n); for (i = 0; i < n; i++) temp_n[i] = yc; double obj1 = tf_obj(x,y,w,n,k,max_lam,family,beta_max,v); double obj2 = tf_obj(x,y,w,n,k,max_lam,family,temp_n,v); if(obj2 < obj1) memcpy(beta_max, temp_n, n*sizeof(double)); /* alpha_max */ if (tridiag && k>0) { tf_dx1(x, n, 1, beta_max, alpha + (n*k-n)); for (j=k-1; j >= 1; j--) tf_dx1(x, n, k-j+1, alpha + (n*j), alpha + (n*j-n)); } else if (k>0) tf_dxtil(x, n, k, beta_max, alpha); /* u_max */ if (tridiag) for (j=0; j<k; j++) memset(u + (n*j), 0, (n-k+j) * sizeof(double)); else { for (i = 0; i < n; i++) u[i] = w[i] * (beta_max[i] - y[i]) / (rho * lambda[0]); if(family == FAMILY_LOGISTIC) for (i = 0; i < n; i++) u[i] *= logi_b2(beta_max[i]); else if(family == FAMILY_POISSON) for (i = 0; i < n; i++) u[i] *= pois_b2(beta_max[i]); glmgen_qrsol (Dkt_qr, u); // for (i = 0; i < n-k; i++) u[i] = 0; } } if (tridiag && k>0) { /* Setup tridiagonal systems */ A0 = (double*) malloc(n*k*sizeof(double)); A1 = (double*) malloc(n*k*sizeof(double)); for (j=2; j <= k; j++) { form_tridiag(x, n, k-j+2, 1, 1, A0+(n*j-n), A1+(n*j-n)); } } /* Iterate lower level functions over all lambda values; * the alpha and u vectors get used each time of subsequent * warm starts */ for (i = 0; i < nlambda; i++) { /* warm start */ double *beta_init = (i == 0) ? beta_max : beta + (i-1)*n; for(j = 0; j < n; j++) beta[i*n + j] = beta_init[j]; if (tridiag) { form_tridiag(x, n, 1, rho * lambda[i], 0, A0, A1); for (j=0; j < n; j++) A0[j] = A0[j] + w[j]; } switch (family) { case FAMILY_GAUSSIAN: if (tridiag) tf_admm_gauss_tri(x, y, w, n, k, max_iter, lambda[i], df+i, beta+i*n, alpha, u, obj+i*(1+max_iter), iter+i, rho * lambda[i], obj_tol, A0, A1, verbose); else tf_admm_gauss(x, y, w, n, k, max_iter, lambda[i], df+i, beta+i*n, alpha, u, obj+i*(1+max_iter), iter+i, rho * lambda[i], obj_tol, DktDk, verbose); break; case FAMILY_LOGISTIC: tf_admm_glm(x, y, w, n, k, max_iter, lambda[i], tridiag, df+i, beta+i*n, alpha, u, obj+i*(1+max_iter_newton), iter+i, rho * lambda[i], obj_tol, obj_tol_newton, alpha_ls, gamma_ls, max_iter_ls, max_iter_newton, DktDk, A0, A1, &logi_b, &logi_b1, &logi_b2, verbose); break; case FAMILY_POISSON: tf_admm_glm(x, y, w, n, k, max_iter, lambda[i], tridiag, df+i, beta+i*n, alpha, u, obj+i*(1+max_iter_newton), iter+i, rho * lambda[i], obj_tol, obj_tol_newton, alpha_ls, gamma_ls, max_iter_ls, max_iter_newton, DktDk, A0, A1, &pois_b, &pois_b1, &pois_b2, verbose); break; default: printf("Unknown family, stopping calculation.\n"); status[i] = 2; } /* If there any NaNs in beta: reset beta, alpha, u */ if (has_nan(beta + i*n, n)) { double yc = weighted_mean(y,w,n); switch(family) { case FAMILY_POISSON: yc = (yc > 0) ? log(yc) : -DBL_MAX; break; case FAMILY_LOGISTIC: yc = (yc > 0) ? ( yc < 1 ? log(yc/(1-yc)) : DBL_MAX) : -DBL_MAX; break; default: break; } for (j = 0; j < n; j++) beta[i*n + j] = yc; for (j = 0; j < n-k; j++) alpha[j] = 0; for (j = 0; j < n; j++) u[j] = w[j] * (beta[i*n+j] - y[j]) / (rho * lambda[i]); glmgen_qrsol (Dkt_qr, u); if (tridiag) for (j = 0; j < n*k; j++) alpha[j] = u[j] = 0; status[i] = 1; } } cs_spfree(D); cs_spfree(Dt); cs_spfree(Dk); cs_spfree(Dkt); cs_spfree(DktDk); glmgen_gqr_free(Dt_qr); glmgen_gqr_free(Dkt_qr); free(beta_max); free(temp_n); free(alpha); free(u); free(v); if (tridiag && k>0) { free(A0); free(A1); } }