Beispiel #1
0
/**
 * Initialize the DSM timer
 */
static void timer_dsm_init(void) {
	rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_TIM2EN);

	// Enable the timer NVIC
	nvic_enable_irq(TIMER_DSM_NVIC);
	nvic_set_priority(TIMER_DSM_NVIC, 1);

	// Setup the timer
	timer_disable_counter(TIMER_DSM);
	timer_reset(TIMER_DSM);
	timer_set_mode(TIMER_DSM, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
	timer_disable_preload(TIMER_DSM);
	timer_continuous_mode(TIMER_DSM);

	// Disable interrupts on Compare 1
	timer_disable_irq(TIMER_DSM, TIM_DIER_CC1IE);

	// Clear the Output Compare of OC1
	timer_disable_oc_clear(TIMER_DSM, TIM_OC1);
	timer_disable_oc_preload(TIMER_DSM, TIM_OC1);
	timer_set_oc_slow_mode(TIMER_DSM, TIM_OC1);
	timer_set_oc_mode(TIMER_DSM, TIM_OC1, TIM_OCM_FROZEN);

	// Set timer updates each 10 microseconds
#if DEBUG && !DSM_RECEIVER && !DSM_MITM
	timer_set_prescaler(TIMER_DSM, 720000 - 1);
#else
	timer_set_prescaler(TIMER_DSM, 720 - 1);
#endif
	timer_set_period(TIMER_DSM, 65535);

	// Start the timer
	timer_enable_counter(TIMER_DSM);
}
Beispiel #2
0
static void pwm_setup(void) {
	/* Configure GPIOs: OUT=PA7 */
	gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ,
	    GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO_TIM3_CH2 );

	timer_reset(TIM3);

	timer_set_mode(TIM3, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);

	timer_disable_oc_output(TIM3, TIM_OC2);
	timer_set_oc_mode(TIM3, TIM_OC2, TIM_OCM_PWM1);
	timer_disable_oc_clear(TIM3, TIM_OC2);
	timer_set_oc_value(TIM3, TIM_OC2, 0);
	timer_enable_oc_preload(TIM3, TIM_OC2);
	timer_set_oc_polarity_high(TIM3, TIM_OC2);
	timer_enable_oc_output(TIM3, TIM_OC2);

	timer_set_dma_on_update_event(TIM3);
	timer_enable_irq(TIM3, TIM_DIER_UDE); // in fact, enable DMA on update

	timer_enable_preload(TIM3);
	timer_continuous_mode(TIM3);
	timer_set_period(TIM3, WSP);

	timer_enable_counter(TIM3);
}
Beispiel #3
0
void enable_test_trigger(trigger_type trig, unsigned int rpm) {
  if (trig != FORD_TFI) {
    return;
  }

  timeval_t t = time_from_rpm_diff(rpm, 45);

  /* Set up TIM5 as 32bit clock */
  rcc_periph_clock_enable(RCC_TIM5);
  gpio_mode_setup(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO0);
  gpio_set_af(GPIOA, GPIO_AF2, GPIO0);
  timer_reset(TIM5);
  timer_disable_oc_output(TIM5, TIM_OC1);
  timer_set_mode(TIM5, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
  timer_set_period(TIM5, (unsigned int)t);
  timer_set_prescaler(TIM5, 0);
  timer_disable_preload(TIM5);
  timer_continuous_mode(TIM5);
  /* Setup output compare registers */
  timer_ic_set_input(TIM5,  TIM_IC1, TIM_IC_OUT);
  timer_disable_oc_clear(TIM5, TIM_OC1);
  timer_disable_oc_preload(TIM5, TIM_OC1);
  timer_set_oc_slow_mode(TIM5, TIM_OC1);
  timer_set_oc_mode(TIM5, TIM_OC1, TIM_OCM_TOGGLE);
  timer_set_oc_value(TIM5, TIM_OC1, t);
  timer_set_oc_polarity_high(TIM5, TIM_OC1);
  timer_enable_oc_output(TIM5, TIM_OC1);
  timer_enable_counter(TIM5);
}
Beispiel #4
0
/******************************************************************************
Initializes the timer, turn on the interrupt and put the interrupt time to zero
INPUT	void
OUTPUT	void

The timer is set to roll over at 0.5 second from an 8us clock, and the output
compare 1 is used to trigger an alarm. This is set progressively by the
CanFestival stack.
******************************************************************************/
void initTimer(void)
{
    /* Set alarm back to zero */
    timerAlarm = 0;
    /* Enable TIM3 clock. */
    rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_TIM3EN);
    /* Enable TIM3 interrupt. */
    nvic_enable_irq(NVIC_TIM3_IRQ);
    timer_reset(TIM3);
    timer_set_mode(TIM3, TIM_CR1_CKD_CK_INT,
                   TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
    /* Set prescaler to give 8us clock */
    timer_set_prescaler(TIM3, 576);
    /* Set the period as 0.5 second */
    timer_set_period(TIM3, TIMEVAL_MAX);
    /* Disable physical pin outputs. */
    timer_disable_oc_output(TIM3, TIM_OC1 | TIM_OC2 | TIM_OC3 | TIM_OC4);
    /* Configure global mode of output channel 1, disabling the output. */
    timer_disable_oc_clear(TIM3, TIM_OC1);
    timer_disable_oc_preload(TIM3, TIM_OC1);
    timer_set_oc_slow_mode(TIM3, TIM_OC1);
    timer_set_oc_mode(TIM3, TIM_OC1, TIM_OCM_FROZEN);
    /* Set the initial compare value for OC1. */
    timer_set_oc_value(TIM3, TIM_OC1, timerAlarm);
    /* Continous counting mode. */
    timer_continuous_mode(TIM3);
    /* ARR reload disable. */
    timer_disable_preload(TIM3);
    /* Counter enable. */
    timer_enable_counter(TIM3);
    /* Enable compare match interrupt. */
    timer_enable_irq(TIM3, TIM_DIER_CC1IE);
}
Beispiel #5
0
/**
 * Setup stepper motors' timer Tim
 * N == 0 for TIM3, == 1 for TIM4
 */
static void setup_timer(uint8_t N){
	uint32_t Tim;
	switch (N){
		case 0:
			Tim = TIM3;
			nvic_enable_irq(NVIC_TIM3_IRQ);
		break;
		case 1:
			Tim = TIM4;
			nvic_enable_irq(NVIC_TIM4_IRQ);
		break;
		default:
		return;
	}
	timer_reset(Tim);
	// timers have frequency of 2MHz, 2 pulse == 1 microstep
	// 36MHz of APB1
	timer_set_mode(Tim, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
	// 72MHz div 36 = 2MHz
	timer_set_prescaler(Tim, 35); // prescaler is (div - 1), 2pulse == 1 step
	timer_continuous_mode(Tim); // automatically reload
	timer_disable_preload(Tim); // force changing period
	timer_set_period(Tim, Motor_period[N] - 1);
	timer_enable_update_event(Tim);
	timer_enable_irq(Tim, TIM_DIER_UIE); // update IRQ enable
	timer_enable_counter(Tim);
	timers_activated[N] = 1;
#ifdef EBUG
	if(mode == BYTE_MODE){
		lastsendfun('3' + N);
		P(" timer\n", lastsendfun);
	}
#endif
}
Beispiel #6
0
void PulseWidth::begin(uint16 period, bool microsecond_precision)
{
    if(timer_peripheral == TIM2)
        rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_TIM2EN);
    else if(timer_peripheral == TIM3)
        rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_TIM3EN);
    else
        return;

    timer_reset(timer_peripheral);

    /* Set the timers global mode to:
     * - use no divider
     * - alignment edge
     * - count direction up
     */
    timer_set_mode(timer_peripheral,
                   TIM_CR1_CKD_CK_INT,
                   TIM_CR1_CMS_EDGE,
                   TIM_CR1_DIR_UP);

	if(microsecond_precision)
    	timer_set_prescaler(timer_peripheral, 64);
    else
    	timer_set_prescaler(timer_peripheral, 64'000);
    
    timer_set_repetition_counter(timer_peripheral, 0);
    timer_enable_preload(timer_peripheral);
    timer_continuous_mode(timer_peripheral);
    timer_set_period(timer_peripheral, period);
}
static void tim_setup(void)
{
	/* Enable TIM2 clock. */
	rcc_periph_clock_enable(RCC_TIM2);

	/* Enable TIM2 interrupt. */
	nvic_enable_irq(NVIC_TIM2_IRQ);

	/* Reset TIM2 peripheral. */
	timer_reset(TIM2);

	/* Timer global mode:
	 * - No divider
	 * - Alignment edge
	 * - Direction up
	 */
	timer_set_mode(TIM2, TIM_CR1_CKD_CK_INT,
		       TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);

	/* Reset prescaler value. */
	timer_set_prescaler(TIM2, 36000);

	/* Enable preload. */
	timer_disable_preload(TIM2);

	/* Continous mode. */
	timer_continuous_mode(TIM2);

	/* Period (36kHz). */
	timer_set_period(TIM2, 65535);

	/* Disable outputs. */
	timer_disable_oc_output(TIM2, TIM_OC1);
	timer_disable_oc_output(TIM2, TIM_OC2);
	timer_disable_oc_output(TIM2, TIM_OC3);
	timer_disable_oc_output(TIM2, TIM_OC4);

	/* -- OC1 configuration -- */

	/* Configure global mode of line 1. */
	timer_disable_oc_clear(TIM2, TIM_OC1);
	timer_disable_oc_preload(TIM2, TIM_OC1);
	timer_set_oc_slow_mode(TIM2, TIM_OC1);
	timer_set_oc_mode(TIM2, TIM_OC1, TIM_OCM_FROZEN);

	/* Set the capture compare value for OC1. */
	timer_set_oc_value(TIM2, TIM_OC1, 1000);

	/* ---- */

	/* ARR reload enable. */
	timer_disable_preload(TIM2);

	/* Counter enable. */
	timer_enable_counter(TIM2);

	/* Enable commutation interrupt. */
	timer_enable_irq(TIM2, TIM_DIER_CC1IE);
}
Beispiel #8
0
static void platform_init_pwm() {

  gpio_mode_setup(GPIOC, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO6);
  gpio_mode_setup(GPIOC, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO7);
  gpio_mode_setup(GPIOC, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO8);
  gpio_mode_setup(GPIOC, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO9);
  gpio_set_af(GPIOC, GPIO_AF2, GPIO6);
  gpio_set_af(GPIOC, GPIO_AF2, GPIO7);
  gpio_set_af(GPIOC, GPIO_AF2, GPIO8);
  gpio_set_af(GPIOC, GPIO_AF2, GPIO9);

  timer_reset(TIM3);
  timer_disable_oc_output(TIM3, TIM_OC1);
  timer_set_mode(TIM3, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
  /* 72ish Hz, close to 60 */
  timer_set_period(TIM3, 65535);
  timer_set_prescaler(TIM3, 16);
  timer_disable_preload(TIM3);
  timer_continuous_mode(TIM3);
  /* Setup output compare registers */
  timer_ic_set_input(TIM3,  TIM_IC1, TIM_IC_OUT);
  timer_disable_oc_clear(TIM3, TIM_OC1);
  timer_disable_oc_preload(TIM3, TIM_OC1);
  timer_set_oc_slow_mode(TIM3, TIM_OC1);
  timer_set_oc_mode(TIM3, TIM_OC1, TIM_OCM_PWM1);
  timer_set_oc_value(TIM3, TIM_OC1, 0);
  timer_set_oc_polarity_high(TIM3, TIM_OC1);
  timer_enable_oc_output(TIM3, TIM_OC1);

  timer_ic_set_input(TIM3,  TIM_IC2, TIM_IC_OUT);
  timer_disable_oc_clear(TIM3, TIM_OC2);
  timer_disable_oc_preload(TIM3, TIM_OC2);
  timer_set_oc_slow_mode(TIM3, TIM_OC2);
  timer_set_oc_mode(TIM3, TIM_OC2, TIM_OCM_PWM1);
  timer_set_oc_value(TIM3, TIM_OC2, 0);
  timer_set_oc_polarity_high(TIM3, TIM_OC2);
  timer_enable_oc_output(TIM3, TIM_OC2);

  timer_ic_set_input(TIM3,  TIM_IC3, TIM_IC_OUT);
  timer_disable_oc_clear(TIM3, TIM_OC3);
  timer_disable_oc_preload(TIM3, TIM_OC3);
  timer_set_oc_slow_mode(TIM3, TIM_OC3);
  timer_set_oc_mode(TIM3, TIM_OC3, TIM_OCM_PWM1);
  timer_set_oc_value(TIM3, TIM_OC3, 0);
  timer_set_oc_polarity_high(TIM3, TIM_OC3);
  timer_enable_oc_output(TIM3, TIM_OC3);

  timer_ic_set_input(TIM3,  TIM_IC4, TIM_IC_OUT);
  timer_disable_oc_clear(TIM3, TIM_OC4);
  timer_disable_oc_preload(TIM3, TIM_OC4);
  timer_set_oc_slow_mode(TIM3, TIM_OC4);
  timer_set_oc_mode(TIM3, TIM_OC4, TIM_OCM_PWM1);
  timer_set_oc_value(TIM3, TIM_OC4, 0);
  timer_set_oc_polarity_high(TIM3, TIM_OC4);
  timer_enable_oc_output(TIM3, TIM_OC4);
  timer_enable_counter(TIM3);

}
Beispiel #9
0
/* Function to init a timer */
void timer_setup(void)
{
	/* Enable TIM2 clock. */
	rcc_periph_clock_enable(RCC_TIM2);

	/* Enable TIM2 interrupt. */
	nvic_enable_irq(NVIC_TIM2_IRQ);

	/* Reset TIM2 peripheral. */
	timer_reset(TIM2);

	/* Timer global mode:
	 * - No divider
	 * - Alignment edge
	 * - Direction up
	 */
	timer_set_mode(TIM2, TIM_CR1_CKD_CK_INT,
					TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);

	/* Reset prescaler value.
	 * Running the clock at 5kHz.
	 */
	/*
	 * On STM32F4 the timers are not running directly from pure APB1 or
	 * APB2 clock busses.  The APB1 and APB2 clocks used for timers might
	 * be the double of the APB1 and APB2 clocks.  This depends on the
	 * setting in DCKCFGR register. By default the behaviour is the
	 * following: If the Prescaler APBx is greater than 1 the derived timer
	 * APBx clocks will be double of the original APBx frequencies. Only if
	 * the APBx prescaler is set to 1 the derived timer APBx will equal the
	 * original APBx frequencies.
	 *
	 * In our case here the APB1 is devided by 4 system frequency and APB2
	 * divided by 2. This means APB1 timer will be 2 x APB1 and APB2 will
	 * be 2 x APB2. So when we try to calculate the prescaler value we have
	 * to use rcc_apb1_freqency * 2!!!
	 *
	 * For additional information see reference manual for the stm32f4
	 * familiy of chips. Page 204 and 213
	 */
	timer_set_prescaler(TIM2, ((rcc_apb1_frequency * 2) / 10000));

	/* Disable preload. */
	timer_disable_preload(TIM2);

	/* Continous mode. */
	timer_continuous_mode(TIM2);

	/* Period (36kHz). */
	timer_set_period(TIM2, 100);

	/* Counter enable. */
	timer_enable_counter(TIM2);

	/* Enable update interrupt. */
	timer_enable_irq(TIM2, TIM_DIER_UIE);

}
Beispiel #10
0
/** Set Timer configuration
 */
static inline void set_servo_timer(uint32_t timer, uint32_t period, uint8_t channels_mask) {
  timer_reset(timer);

  /* Timer global mode:
   * - No divider.
   * - Alignement edge.
   * - Direction up.
   */
  timer_set_mode(timer, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);

  timer_set_prescaler(timer, (PCLK / ONE_MHZ_CLK) - 1); // 1uS

  timer_disable_preload(timer);

  timer_continuous_mode(timer);

  timer_set_period(timer, (ONE_MHZ_CLK / period) - 1);

  /* Disable outputs and configure channel if needed. */
  if (bit_is_set(channels_mask, 0)) {
    actuators_pwm_arch_channel_init(timer, TIM_OC1);
  }
  if (bit_is_set(channels_mask, 1)) {
    actuators_pwm_arch_channel_init(timer, TIM_OC2);
  }
  if (bit_is_set(channels_mask, 2)) {
    actuators_pwm_arch_channel_init(timer, TIM_OC3);
  }
  if (bit_is_set(channels_mask, 3)) {
    actuators_pwm_arch_channel_init(timer, TIM_OC4);
  }

  /*
   * Set initial output compare values.
   * Note: Maybe we should preload the compare registers with some sensible
   * values before we enable the timer?
   */
  //timer_set_oc_value(timer, TIM_OC1, 1000);
  //timer_set_oc_value(timer, TIM_OC2, 1000);
  //timer_set_oc_value(timer, TIM_OC3, 1000);
  //timer_set_oc_value(timer, TIM_OC4, 1000);

  /* -- Enable timer -- */
  /*
   * ARR reload enable.
   * Note: In our case it does not matter much if we do preload or not. As it
   * is unlikely we will want to change the frequency of the timer during
   * runtime anyways.
   */
  timer_enable_preload(timer);

  /* Counter enable. */
  timer_enable_counter(timer);
}
Beispiel #11
0
// init common timer
// use SOFTI2C_TIMER_1 timer
void delay_timer_init() {
	rcc_periph_clock_enable(get_rcc_by_port(SOFTI2C_TIMER_1));
	timer_set_prescaler(SOFTI2C_TIMER_1, 72);
	timer_direction_up(SOFTI2C_TIMER_1);
	timer_continuous_mode(SOFTI2C_TIMER_1);
	timer_set_counter(SOFTI2C_TIMER_1, 0);
	/* Start timer. */
	TIM_CR1(SOFTI2C_TIMER_1) |= TIM_CR1_CEN;
	timer_enable_counter(SOFTI2C_TIMER_1);

}
Beispiel #12
0
void PPMin_TIM_Init()
{
    /* Enable TIM1 clock. */
    rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_TIM1EN);
  
    /* No Enable TIM1 interrupt. */
    // nvic_enable_irq(NVIC_TIM1_IRQ);
    // nvic_set_priority(NVIC_TIM1_IRQ, 16); //High priority

    /* Reset TIM1 peripheral. */
    timer_disable_counter(TIM1);
    timer_reset(TIM1);

    /* Timer global mode:
     * - No divider
     * - Alignment edge
     * - Direction up
     */
    timer_set_mode(TIM1, TIM_CR1_CKD_CK_INT,
               TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);

       /* Reset prescaler value.  timer updates each uSecond */
    timer_set_prescaler(TIM1, PPMIn_prescaler);     // uSecond (72MHz / (35+1) = 2MHz = 0.5uSecond
    timer_set_period(TIM1, PPMIn_period);           // 3300uSecond= 2MHz*6600times,  TIM1_prescaler=0.5uSecond

    /* Disable preload. */
    timer_disable_preload(TIM1);

    /* Continous mode. */
    timer_continuous_mode(TIM1);

    /* Disable outputs. */
    timer_disable_oc_output(TIM1, TIM_OC1);
    timer_disable_oc_output(TIM1, TIM_OC2);
    timer_disable_oc_output(TIM1, TIM_OC3);
    timer_disable_oc_output(TIM1, TIM_OC4);

    /* -- OC1 configuration -- */
    /* Configure global mode of line 1. */
    /* Enable CCP1 */
    timer_disable_oc_clear(TIM1, TIM_OC1);
    timer_disable_oc_preload(TIM1, TIM_OC1);
    timer_set_oc_slow_mode(TIM1, TIM_OC1);
    timer_set_oc_mode(TIM1, TIM_OC1, TIM_OCM_FROZEN);

    /* Enable commutation interrupt. */
    //  timer_enable_irq(TIM1, TIM_DIER_CC1IE);
    /* Disable CCP1 interrupt. */
    timer_disable_irq(TIM1, TIM_DIER_CC1IE);

    /* Counter enable. */
    timer_disable_counter(TIM1);
}
Beispiel #13
0
void sound_set_frequency(uint32_t freq) {
    uint32_t prescaler, period;

    if (freq <= 200) {
        // switch off pwm
        timer_disable_oc_output(TIM1, TIM_OC1);
        // return;
    }

    // reset TIMx peripheral
    timer_reset(TIM1);

    // roughly factor into 16-bit
    period    = (rcc_timer_frequency / 1) / freq;
    prescaler = (period / 65536) + 1;
    period    = (period / prescaler);

    // Set the timers global mode to:
    // - use no divider
    // - alignment edge
    // - count direction up
    timer_set_mode(TIM1,
                   TIM_CR1_CKD_CK_INT,
                   TIM_CR1_CMS_EDGE,
                   TIM_CR1_DIR_UP);

    timer_set_prescaler(TIM1, prescaler - 1);
    timer_set_repetition_counter(TIM1, 0);

    timer_enable_preload(TIM1);
    timer_continuous_mode(TIM1);
    timer_set_period(TIM1, period - 1);

    // start with disabled pwm output
    timer_disable_oc_output(TIM1, TIM_OC1);

    // NOTE: on advanced timers as TIM1 we have
    //       to break the main output, otherwise
    //       no pwm output signal will be present on pin
    timer_enable_break_main_output(TIM1);

    // configure output mode
    timer_set_oc_mode(TIM1, TIM_OC1, TIM_OCM_PWM1);
    // set period for 50/50 duty cycle
    timer_set_oc_value(TIM1, TIM_OC1, period / 2);
    // enable pwm output
    timer_enable_oc_output(TIM1, TIM_OC1);

    // start timer
    timer_enable_counter(TIM1);
}
Beispiel #14
0
/* ----------------------- Initialize Timer -----------------------------*/
BOOL
xMBPortTimersInit( USHORT usTim1Timerout50us )
{
	/* Enable TIM2 clock. */
	rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_TIM2EN);
 	nvic_enable_irq(NVIC_TIM2_IRQ);
	timer_reset(TIM2);
/* Timer global mode: - Divider 4, Alignment edge, Direction up */
	timer_set_mode(TIM2, TIM_CR1_CKD_CK_INT,
		       TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
	timer_continuous_mode(TIM2);
	timer_set_prescaler(TIM2, 3600); /* 72MHz to 50 microseconds period */
	timer_set_period(TIM2, usTim1Timerout50us);
    return TRUE;
}
Beispiel #15
0
void plc_wait_tmr_init(void)
{
    //Wait timer config, basic timers TIM6 and TIM7 may be used
    rcc_periph_clock_enable( PLC_WAIT_TMR_PERIPH );

    timer_reset            ( PLC_WAIT_TMR );
    timer_set_prescaler    ( PLC_WAIT_TMR, ((2*rcc_apb1_frequency)/1000000ul - 1)); //1MHz
    timer_disable_preload  ( PLC_WAIT_TMR );
    timer_continuous_mode  ( PLC_WAIT_TMR );
    timer_set_period       ( PLC_WAIT_TMR, 1000 ); //1KHz

    timer_enable_counter   ( PLC_WAIT_TMR );
    timer_enable_irq       ( PLC_WAIT_TMR, TIM_DIER_UIE);

    nvic_enable_irq( PLC_WAIT_TMR_VECTOR );
}
Beispiel #16
0
/*
                                --- FTFM (with edits) ---
Bullet points are the steps needed.

Pulse width modulation mode allows you to generate a signal with a frequency determined
by the value of the TIMx_ARR register (the period) and a duty cycle determined by the value of the
TIMx_CCRx register (the output compare value).
  -- Set TIMx_ARR to desired frequency
  -- Set TIMx_CCRx to desired duty cycle

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing 110 (PWM mode 1) or ‘111 (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register.
  -- Write PWM Mode 1 or PWM Mode 2 to OCxM bits in TIMx_CCMRx register

You must enable the corresponding preload register by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register by
setting the ARPE bit in the TIMx_CR1 register.
  -- Set corresponding OCxPE bit in TIMx_CCMRx register
  -- Set ARPE bit in TIMx_CR1

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, you have to initialize all the registers by setting the UG
bit in the TIMx_EGR register.
  -- set UG bit in TIMx_EGR register

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It
can be programmed as active high or active low. OCx output is enabled by the CCxE bit in
the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details.
  -- set desired polarity in TIMx_CCER
  -- set CCxE bit in TIMx_CCER  (enable output)
*/
static void
pwm_init(uint32_t timer,
         uint8_t channel,
         uint32_t period) {
  // Convert channel number to internal rep
  enum tim_oc_id chan;
  switch (channel) {
    case 1:   chan = TIM_OC1; break;
    case 2:   chan = TIM_OC2; break;
    case 3:   chan = TIM_OC3; break;
    case 4:   chan = TIM_OC4; break;
    default: assert(false); chan = -1; break;
  }

  // Timer Base Configuration
  // timer_reset(timer);
  timer_set_mode(timer, TIM_CR1_CKD_CK_INT, // clock division
                        TIM_CR1_CMS_EDGE,   // Center-aligned mode selection
                        TIM_CR1_DIR_UP);    // TIMx_CR1 DIR: Direction
  timer_continuous_mode(timer);             // Disables TIM_CR1_OPM (One pulse mode)
  timer_set_period(timer, period);                    // Sets TIMx_ARR
  timer_set_prescaler(timer, 1);               // Adjusts speed of timer
  timer_set_clock_division(timer, 0);            // Adjusts speed of timer
  timer_set_master_mode(timer, TIM_CR2_MMS_UPDATE);   // Master Mode Selection
  timer_enable_preload(timer);                        // Set ARPE bit in TIMx_CR1

  // Channel-specific settings
  timer_set_oc_value(timer, chan, 0);             // sets TIMx_CCRx
  timer_set_oc_mode(timer, chan, TIM_OCM_PWM1);   // Sets PWM Mode 1
  timer_enable_oc_preload(timer, chan);           // Sets OCxPE in TIMx_CCMRx
  timer_set_oc_polarity_high(timer, chan);        // set desired polarity in TIMx_CCER
  timer_enable_oc_output(timer, chan);             // set CCxE bit in TIMx_CCER  (enable output)

  // Initialize all counters in the register
  switch (timer) {
    case TIM1:  TIM1_EGR |= TIM_EGR_UG; break;
    case TIM2:  TIM2_EGR |= TIM_EGR_UG; break;
    case TIM3:  TIM3_EGR |= TIM_EGR_UG; break;
    case TIM4:  TIM4_EGR |= TIM_EGR_UG; break;
    case TIM5:  TIM5_EGR |= TIM_EGR_UG; break;
    case TIM6:  TIM6_EGR |= TIM_EGR_UG; break;
    case TIM7:  TIM7_EGR |= TIM_EGR_UG; break;
    case TIM8:  TIM8_EGR |= TIM_EGR_UG; break;
    default: assert(false); break;
    }
}
Beispiel #17
0
static void platform_init_eventtimer() {
  /* Set up TIM2 as 32bit clock */
  timer_reset(TIM2);
  timer_set_mode(TIM2, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
  timer_set_period(TIM2, 0xFFFFFFFF);
  timer_set_prescaler(TIM2, 0);
  timer_disable_preload(TIM2);
  timer_continuous_mode(TIM2);
  /* Setup output compare registers */
  timer_disable_oc_output(TIM2, TIM_OC1);
  timer_disable_oc_output(TIM2, TIM_OC2);
  timer_disable_oc_output(TIM2, TIM_OC3);
  timer_disable_oc_output(TIM2, TIM_OC4);
  timer_disable_oc_clear(TIM2, TIM_OC1);
  timer_disable_oc_preload(TIM2, TIM_OC1);
  timer_set_oc_slow_mode(TIM2, TIM_OC1);
  timer_set_oc_mode(TIM2, TIM_OC1, TIM_OCM_FROZEN);
  /* Setup input captures for CH2-4 Triggers */
  gpio_mode_setup(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO3);
  gpio_set_af(GPIOB, GPIO_AF1, GPIO3);
  timer_ic_set_input(TIM2, TIM_IC2, TIM_IC_IN_TI2);
  timer_ic_set_filter(TIM2, TIM_IC2, TIM_IC_CK_INT_N_2);
  timer_ic_set_polarity(TIM2, TIM_IC2, TIM_IC_FALLING);
  timer_ic_enable(TIM2, TIM_IC2);

  gpio_mode_setup(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO10);
  gpio_set_af(GPIOB, GPIO_AF1, GPIO10);
  timer_ic_set_input(TIM2, TIM_IC3, TIM_IC_IN_TI3);
  timer_ic_set_filter(TIM2, TIM_IC3, TIM_IC_CK_INT_N_2);
  timer_ic_set_polarity(TIM2, TIM_IC3, TIM_IC_FALLING);
  timer_ic_enable(TIM2, TIM_IC3);

  gpio_mode_setup(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO11);
  gpio_set_af(GPIOB, GPIO_AF1, GPIO11);
  timer_ic_set_input(TIM2, TIM_IC4, TIM_IC_IN_TI4);
  timer_ic_set_filter(TIM2, TIM_IC4, TIM_IC_CK_INT_N_2);
  timer_ic_set_polarity(TIM2, TIM_IC4, TIM_IC_FALLING);
  timer_ic_enable(TIM2, TIM_IC4);

  timer_enable_counter(TIM2);
  timer_enable_irq(TIM2, TIM_DIER_CC2IE);
  timer_enable_irq(TIM2, TIM_DIER_CC3IE);
  timer_enable_irq(TIM2, TIM_DIER_CC4IE);
  nvic_enable_irq(NVIC_TIM2_IRQ);
  nvic_set_priority(NVIC_TIM2_IRQ, 0);
}
void timer_setup(void)
{
	rcc_periph_clock_enable(RCC_TIM2);
	nvic_enable_irq(NVIC_TIM2_IRQ);
	nvic_set_priority(NVIC_TIM2_IRQ, 1);
	timer_reset(TIM2);
/* Timer global mode: - No Divider, Alignment edge, Direction up */
	timer_set_mode(TIM2, TIM_CR1_CKD_CK_INT,
		       TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
	timer_continuous_mode(TIM2);
/* Set timer prescaler. 72MHz/1440 => 50000 counts per second. */
	timer_set_prescaler(TIM2, 1440);
/* End timer value. When this is reached an interrupt is generated. */
	timer_set_period(TIM2, BLINK_INTERVAL);
/* Update interrupt enable. */
	timer_enable_irq(TIM2, TIM_DIER_UIE);
/* Start timer. */
	timer_enable_counter(TIM2);
}
void freq_capture_setup(void) {
	/* Configure PE11 (AF1: TIM1_CH2) (SYNC_IN). */
	rcc_peripheral_enable_clock(&RCC_AHB1ENR, RCC_AHB1ENR_IOPEEN);
	gpio_mode_setup(GPIOE, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO11);
	gpio_set_af(GPIOE, GPIO_AF1, GPIO11);

	/* Timer1: Input compare */
	/* Enable timer clock. */
	rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_TIM1EN);
	/* Reset timer. */
	timer_reset(TIM1);
	/* Configure timer1. */
	timer_set_mode(TIM1,
			TIM_CR1_CKD_CK_INT,		// Internal clock
			TIM_CR1_CMS_EDGE,			// Edge synchronization
			TIM_CR1_DIR_UP);			// Count upward
	timer_set_prescaler(TIM1, TIMER1_PRESCALER);
	timer_set_period(TIM1, TIMER1_PERIOD); //Sets TIM1_ARR
	timer_continuous_mode(TIM1);
	/* Configure PE13: Toggle pin on falling edge via interrupt */
	//rcc_peripheral_enable_clock(&RCC_AHB1ENR, RCC_AHB1ENR_IOPEEN);
	//gpio_mode_setup(GPIOE, GPIO_MODE_OUTPUT, GPIO_PUPD_PULLDOWN, GPIO13);
	/* Configure input capture. */
	timer_ic_disable(TIM1, TIM_IC2);
	timer_ic_set_polarity(TIM1, TIM_IC2, TIM_IC_RISING);
	timer_ic_set_prescaler(TIM1, TIM_IC2, TIM_IC_PSC_OFF);
	timer_ic_set_input(TIM1, TIM_IC2, TIM_IC_IN_TI2);
	// See RM, p. 561: digital filter
	//timer_ic_set_filter(TIM1, TIM_IC2, TIM_IC_DTF_DIV_32_N_8);
	timer_ic_set_filter(TIM1, TIM_IC2, TIM_IC_OFF);
	timer_ic_enable(TIM1, TIM_IC2);
	/* Enable counter. */
	timer_enable_counter(TIM1);
	timer_clear_flag (TIM1, TIM_SR_CC2IF);
	/* Enable IRQs */
	nvic_enable_irq(NVIC_TIM1_UP_TIM10_IRQ);
	timer_enable_irq(TIM1, TIM_DIER_UIE);
	nvic_enable_irq(NVIC_TIM1_CC_IRQ);
	timer_enable_irq(TIM1, TIM_DIER_CC2IE);
}
Beispiel #20
0
static void platform_init_freqsensor(unsigned char pin) {
  uint32_t tim;
  switch(pin) {
    case 1:
      /* TIM1 CH1 */
      tim = TIM1;
      gpio_mode_setup(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO8);
      gpio_set_af(GPIOA, GPIO_AF1, GPIO8);
      break;
  };
  timer_reset(tim);
  timer_set_mode(tim, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
  timer_set_period(tim, 0xFFFFFFFF);
  timer_disable_preload(tim);
  timer_continuous_mode(tim);
  /* Setup output compare registers */
  timer_disable_oc_output(tim, TIM_OC1);
  timer_disable_oc_output(tim, TIM_OC2);
  timer_disable_oc_output(tim, TIM_OC3);
  timer_disable_oc_output(tim, TIM_OC4);

  /* Set up compare */
  timer_ic_set_input(tim, TIM_IC1, TIM_IC_IN_TI1);
  timer_ic_set_filter(tim, TIM_IC1, TIM_IC_CK_INT_N_8);
  timer_ic_set_polarity(tim, TIM_IC1, TIM_IC_RISING);
  timer_set_prescaler(tim, 2*SENSOR_FREQ_DIVIDER); /* Prescale set to map up to 20kHz */
  timer_slave_set_mode(tim, TIM_SMCR_SMS_RM);
  timer_slave_set_trigger(tim, TIM_SMCR_TS_IT1FP1);
  timer_ic_enable(tim, TIM_IC1);

  timer_enable_counter(tim);
  timer_enable_irq(tim, TIM_DIER_CC1IE);

  switch(pin) {
    case 1:
      nvic_enable_irq(NVIC_TIM1_CC_IRQ);
      nvic_set_priority(NVIC_TIM1_CC_IRQ, 64);
      break;
  }
}
/*--------------------------------------------------------------------*/
void timer_setup(void)
{
/* Enable TIM2 clock. */
	rcc_periph_clock_enable(RCC_TIM2);
	timer_reset(TIM2);
/* Timer global mode: - No divider, Alignment edge, Direction up */
	timer_set_mode(TIM2, TIM_CR1_CKD_CK_INT,
		       TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
	timer_continuous_mode(TIM2);
	timer_set_period(TIM2, 1000);
	timer_disable_oc_output(TIM2, TIM_OC2 | TIM_OC3 | TIM_OC4);
	timer_enable_oc_output(TIM2, TIM_OC1);
	timer_disable_oc_clear(TIM2, TIM_OC1);
	timer_disable_oc_preload(TIM2, TIM_OC1);
	timer_set_oc_slow_mode(TIM2, TIM_OC1);
	timer_set_oc_mode(TIM2, TIM_OC1, TIM_OCM_TOGGLE);
	timer_set_oc_value(TIM2, TIM_OC1, 500);
	timer_disable_preload(TIM2);
/* Set the timer trigger output (for the DAC) to the channel 1 output compare */
	timer_set_master_mode(TIM2, TIM_CR2_MMS_COMPARE_OC1REF);
	timer_enable_counter(TIM2);
}
static void timer_setup(void)
{
/* Enable TIM3 clock. */
rcc_periph_clock_enable(RCC_TIM3);
timer_reset(TIM3);
/* Timer global mode: - No divider, Alignment edge, Direction up */
timer_set_mode(TIM3, TIM_CR1_CKD_CK_INT,TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
timer_continuous_mode(TIM3);
timer_set_period(TIM3, PERIOD);
timer_disable_preload(TIM3);

/* prescaler F_SYS/48 = TIM3 clock is 1 MHz */
timer_set_prescaler(TIM3,48);
//timer_disable_oc_output(TIM3, TIM_OC2 | TIM_OC3 | TIM_OC4);
timer_enable_oc_output(TIM3, TIM_OC1);
timer_disable_oc_output(TIM3,TIM_OC2);

timer_enable_oc_output(TIM3, TIM_OC3);
//timer_enable_oc_output(TIM3, TIM_OC4);
// motor ch1
timer_set_oc_mode(TIM3, TIM_OC1, TIM_OCM_PWM1);
// motor ch2
timer_set_oc_mode(TIM3, TIM_OC2, TIM_OCM_PWM1);
// motor ch3
timer_set_oc_mode(TIM3, TIM_OC3, TIM_OCM_PWM1);
// motor ch3
timer_set_oc_mode(TIM3, TIM_OC4, TIM_OCM_PWM1);


/* disable preload */
timer_disable_oc_preload(TIM3, TIM_OC1);
timer_disable_oc_preload(TIM3, TIM_OC2);
timer_disable_oc_preload(TIM3, TIM_OC3);
timer_disable_oc_preload(TIM3, TIM_OC4);

/* polarity */
timer_set_oc_polarity_high(TIM3,TIM_OC1);
timer_set_oc_polarity_high(TIM3,TIM_OC2);
timer_set_oc_polarity_high(TIM3,TIM_OC3);
timer_set_oc_polarity_high(TIM3,TIM_OC4);
//timer_enable_oc_clear(TIM3, TIM_OC1);
//timer_set_oc_slow_mode(TIM3, TIM_OC1);
timer_set_oc_value(TIM3, TIM_OC1, PULSE);
timer_set_oc_value(TIM3, TIM_OC2, PULSE*3);
timer_set_oc_value(TIM3, TIM_OC3, PULSE*2);
timer_set_oc_value(TIM3, TIM_OC4, PULSE*4);
//timer_generate_event(TIM3,TIM_EGR_CC1G);
//timer_enable_update_event(TIM3);
nvic_enable_irq(NVIC_TIM3_IRQ);
timer_enable_irq(TIM3,TIM_DIER_CC1IE);
timer_enable_irq(TIM3,TIM_DIER_CC2IE);
timer_enable_irq(TIM3,TIM_DIER_CC3IE);
timer_enable_irq(TIM3,TIM_DIER_CC4IE);
//timer_enable_irq(TIM3,TIM_DIER_CC2IE);
timer_enable_irq(TIM3,TIM_DIER_UIE);
/* Set the timer trigger output (for the DAC) to the channel 1 output
compare */
//timer_set_master_mode(TIM3, TIM_CR2_MMS_COMPARE_OC1REF);
timer_enable_counter(TIM3);

}
Beispiel #23
0
static void tim_setup(void) {
    /* Enable TIM1 clock. */
    rcc_periph_clock_enable(RCC_TIM1);
    /* Configure TIM1_CH1 and TIM1_CH2 as inputs */
    gpio_set_mode(GPIO_BANK_TIM1_CH1, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO_TIM1_CH1);
    gpio_set_mode(GPIO_BANK_TIM1_CH2, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO_TIM1_CH2);
    /* Enable TIM1 interrupt. */
    nvic_enable_irq(NVIC_TIM1_CC_IRQ);
    /* Reset TIM1 peripheral. */
    /* timer_reset(TIM1); */

    timer_set_mode(TIM1, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
    /* set prescaler value -> 1us */
    timer_set_prescaler(TIM1, 72 - 1);
    timer_set_period(TIM1, 0xFFFF);
    timer_set_repetition_counter(TIM1, 0);
    /* Enable preload */
    /* timer_disable_preload(TIM1); */
    /* Continous mode */
    timer_continuous_mode(TIM1);

    /* configure Channel 1 */
    timer_ic_set_input(TIM1, TIM_IC1, TIM_IC_IN_TI1);
    timer_ic_set_filter(TIM1, TIM_IC1, TIM_IC_OFF);
    timer_ic_set_polarity(TIM1, TIM_IC1, TIM_IC_RISING);
    timer_ic_set_prescaler(TIM1, TIM_IC1, TIM_IC_PSC_OFF);
    timer_ic_enable(TIM1, TIM_IC1);
    timer_clear_flag(TIM1, TIM_SR_CC1IF);
    timer_enable_irq(TIM1, TIM_DIER_CC1IE);

    /* configure Channel 2 */
    timer_ic_set_input(TIM1, TIM_IC2, TIM_IC_IN_TI2);
    timer_ic_set_filter(TIM1, TIM_IC2, TIM_IC_OFF);
    timer_ic_set_polarity(TIM1, TIM_IC2, TIM_IC_RISING);
    timer_ic_set_prescaler(TIM1, TIM_IC2, TIM_IC_PSC_OFF);
    timer_ic_enable(TIM1, TIM_IC2);
    timer_clear_flag(TIM1, TIM_SR_CC2IF);
    timer_enable_irq(TIM1, TIM_DIER_CC2IE);

    timer_enable_counter(TIM1);

#if 0
    /* Disable outputs. */
    timer_disable_oc_output(TIM1, TIM_OC1);
    timer_disable_oc_output(TIM1, TIM_OC2);
    timer_disable_oc_output(TIM1, TIM_OC3);
    timer_disable_oc_output(TIM1, TIM_OC4);
    /* -- OC1 configuration -- */
    /* Configure global mode of line 1. */
    timer_disable_oc_clear(TIM1, TIM_OC1);
    timer_disable_oc_preload(TIM1, TIM_OC1);
    timer_set_oc_slow_mode(TIM1, TIM_OC1);
    timer_set_oc_mode(TIM1, TIM_OC1, TIM_OCM_FROZEN);
    /* Set the capture compare value for OC1. */
    timer_set_oc_value(TIM1, TIM_OC1, 1000);
    /* ---- */
    /* ARR reload enable. */
    timer_disable_preload(TIM1);
    /* Counter enable. */
    timer_enable_counter(TIM1);
    /* Enable commutation interrupt. */
    timer_enable_irq(TIM1, TIM_DIER_CC1IE);
#endif
}
Beispiel #24
0
void PID_tim_init(void)
{
	/* Enable TIM1 clock. and Port E clock (for outputs) */
	rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_TIM1EN);
	rcc_peripheral_enable_clock(&RCC_AHB1ENR, RCC_AHB1ENR_IOPEEN);

	//Set TIM1 channel (and complementary) output to alternate function push-pull'.
	//f4 TIM1=> GIO9: CH1, GPIO11: CH2, GPIO13: CH3
	//f4 TIM1=> GIO8: CH1N, GPIO10: CH2N, GPIO12: CH3N
	gpio_mode_setup(GPIOE, GPIO_MODE_AF,GPIO_PUPD_NONE,GPIO9 | GPIO11 | GPIO13);
	gpio_set_af(GPIOE, GPIO_AF1, GPIO9 | GPIO11 | GPIO13);
	gpio_mode_setup(GPIOE, GPIO_MODE_AF,GPIO_PUPD_NONE,GPIO8 | GPIO10 | GPIO12);
	gpio_set_af(GPIOE, GPIO_AF1, GPIO8 | GPIO10 | GPIO12);

	/* Enable TIM1 commutation interrupt. */
	//nvic_enable_irq(NVIC_TIM1_TRG_COM_TIM11_IRQ);	//f4

	/* Reset TIM1 peripheral. */
	timer_reset(TIM1);

	/* Timer global mode:
	 * - No divider
	 * - Alignment edge
	 * - Direction up
	 */
	timer_set_mode(TIM1, TIM_CR1_CKD_CK_INT, //For dead time and filter sampling, not important for now.
		       TIM_CR1_CMS_CENTER_3,	//TIM_CR1_CMS_EDGE
						//TIM_CR1_CMS_CENTER_1
						//TIM_CR1_CMS_CENTER_2
						//TIM_CR1_CMS_CENTER_3 la frequencia del pwm se divide a la mitad. (frecuencia senoidal)
			 TIM_CR1_DIR_UP);

	timer_set_prescaler(TIM1, PRESCALE); //1 = disabled (max speed)
	timer_set_repetition_counter(TIM1, 0); //disabled
	timer_enable_preload(TIM1);
	timer_continuous_mode(TIM1);

	/* Period (32kHz). */
	timer_set_period(TIM1, PWM_PERIOD_ARR); //ARR (value compared against main counter to reload counter aka: period of counter)

	/* Configure break and deadtime. */
	//timer_set_deadtime(TIM1, deadtime_percentage*pwm_period_ARR);
	timer_set_enabled_off_state_in_idle_mode(TIM1);
	timer_set_enabled_off_state_in_run_mode(TIM1);
	timer_disable_break(TIM1);
	timer_set_break_polarity_high(TIM1);
	timer_disable_break_automatic_output(TIM1);
	timer_set_break_lock(TIM1, TIM_BDTR_LOCK_OFF);

	/* Disable outputs. */
	timer_disable_oc_output(TIM1, TIM_OC1);
	timer_disable_oc_output(TIM1, TIM_OC1N);
	timer_disable_oc_output(TIM1, TIM_OC2);
	timer_disable_oc_output(TIM1, TIM_OC2N);
	timer_disable_oc_output(TIM1, TIM_OC3);
	timer_disable_oc_output(TIM1, TIM_OC3N);

	/* -- OC1 and OC1N configuration -- */
	/* Configure global mode of line 1. */
	timer_enable_oc_preload(TIM1, TIM_OC1);
	timer_set_oc_mode(TIM1, TIM_OC1, TIM_OCM_PWM1);
	/* Configure OC1. */
	timer_set_oc_polarity_high(TIM1, TIM_OC1);
	timer_set_oc_idle_state_unset(TIM1, TIM_OC1); //When idle (braked) put 0 on output
	/* Configure OC1N. */
	timer_set_oc_polarity_high(TIM1, TIM_OC1N);
	timer_set_oc_idle_state_unset(TIM1, TIM_OC1N);
	/* Set the capture compare value for OC1. */
	timer_set_oc_value(TIM1, TIM_OC1, INIT_DUTY*PWM_PERIOD_ARR);//initial_duty_cycle*pwm_period_ARR);

	/* -- OC2 and OC2N configuration -- */
	/* Configure global mode of line 2. */
	timer_enable_oc_preload(TIM1, TIM_OC2);
	timer_set_oc_mode(TIM1, TIM_OC2, TIM_OCM_PWM1);
	/* Configure OC2. */
	timer_set_oc_polarity_high(TIM1, TIM_OC2);
	timer_set_oc_idle_state_unset(TIM1, TIM_OC2);
	/* Configure OC2N. */
	timer_set_oc_polarity_high(TIM1, TIM_OC2N);
	timer_set_oc_idle_state_unset(TIM1, TIM_OC2N);
	/* Set the capture compare value for OC2. */
	timer_set_oc_value(TIM1, TIM_OC2, INIT_DUTY*PWM_PERIOD_ARR);//initial_duty_cycle*pwm_period_ARR);

	/* -- OC3 and OC3N configuration -- */
	/* Configure global mode of line 3. */
	timer_enable_oc_preload(TIM1, TIM_OC3);
	timer_set_oc_mode(TIM1, TIM_OC3, TIM_OCM_PWM1);
	/* Configure OC3. */
	timer_set_oc_polarity_high(TIM1, TIM_OC3);
	timer_set_oc_idle_state_unset(TIM1, TIM_OC3);
	/* Configure OC3N. */
	timer_set_oc_polarity_high(TIM1, TIM_OC3N);
	timer_set_oc_idle_state_unset(TIM1, TIM_OC3N);
	/* Set the capture compare value for OC3. */
	timer_set_oc_value(TIM1, TIM_OC3, INIT_DUTY*PWM_PERIOD_ARR);//initial_duty_cycle*pwm_period_ARR);//100);

	/* Reenable outputs. */
	timer_enable_oc_output(TIM1, TIM_OC1);
	timer_enable_oc_output(TIM1, TIM_OC1N);
	timer_enable_oc_output(TIM1, TIM_OC2);
	timer_enable_oc_output(TIM1, TIM_OC2N);
	timer_enable_oc_output(TIM1, TIM_OC3);
	timer_enable_oc_output(TIM1, TIM_OC3N);

	/* ---- */

	/* ARR reload enable. */
	timer_enable_preload(TIM1);

	/*
	 * Enable preload of complementary channel configurations and
	 * update on COM event.
	 */
	//timer_enable_preload_complementry_enable_bits(TIM1);
	timer_disable_preload_complementry_enable_bits(TIM1);

	/* Enable outputs in the break subsystem. */
	timer_enable_break_main_output(TIM1);

	/* Generate update event to reload all registers before starting*/
	timer_generate_event(TIM1, TIM_EGR_UG);

	/* Counter enable. */
	timer_enable_counter(TIM1);

	/* Enable commutation interrupt. */
	//timer_enable_irq(TIM1, TIM_DIER_COMIE);

	/*********/
	/*Capture compare interrupt*/

	//enable capture compare interrupt
	timer_enable_update_event(TIM1);

	/* Enable commutation interrupt. */
	//timer_enable_irq(TIM1, TIM_DIER_CC1IE);	//Capture/compare 1 interrupt enable
	/* Enable commutation interrupt. */
	//timer_enable_irq(TIM1, TIM_DIER_CC1IE);
	timer_enable_irq(TIM1, TIM_DIER_UIE);
	nvic_enable_irq(NVIC_TIM1_UP_TIM10_IRQ);
}
/** Set Timer configuration
 * @param[in] timer Timer register address base
 * @param[in] period period in us
 * @param[in] channels_mask output compare channels to enable
 */
void set_servo_timer(uint32_t timer, uint32_t period, uint8_t channels_mask) {
  // WARNING, this reset is only implemented for TIM1-8 in libopencm3!!
  timer_reset(timer);

  /* Timer global mode:
   * - No divider.
   * - Alignement edge.
   * - Direction up.
   */
  if ((timer == TIM9) || (timer == TIM12))
    //There are no EDGE and DIR settings in TIM9 and TIM12
    timer_set_mode(timer, TIM_CR1_CKD_CK_INT, 0, 0);
  else
    timer_set_mode(timer, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);


  // By default the PWM_BASE_FREQ is set to 1MHz thus the timer tick period is 1uS
  uint32_t timer_clk = timer_get_frequency(timer);
  timer_set_prescaler(timer, (timer_clk / PWM_BASE_FREQ) -1);

  timer_disable_preload(timer);

  timer_continuous_mode(timer);

  timer_set_period(timer, (PWM_BASE_FREQ / period) - 1);

  /* Disable outputs and configure channel if needed. */
  if (bit_is_set(channels_mask, 0)) {
    actuators_pwm_arch_channel_init(timer, TIM_OC1);
  }
  if (bit_is_set(channels_mask, 1)) {
    actuators_pwm_arch_channel_init(timer, TIM_OC2);
  }
  if (bit_is_set(channels_mask, 2)) {
    actuators_pwm_arch_channel_init(timer, TIM_OC3);
  }
  if (bit_is_set(channels_mask, 3)) {
    actuators_pwm_arch_channel_init(timer, TIM_OC4);
  }

  /*
   * Set initial output compare values.
   * Note: Maybe we should preload the compare registers with some sensible
   * values before we enable the timer?
   */
  //timer_set_oc_value(timer, TIM_OC1, 1000);
  //timer_set_oc_value(timer, TIM_OC2, 1000);
  //timer_set_oc_value(timer, TIM_OC3, 1000);
  //timer_set_oc_value(timer, TIM_OC4, 1000);

  /* -- Enable timer -- */
  /*
   * ARR reload enable.
   * Note: In our case it does not matter much if we do preload or not. As it
   * is unlikely we will want to change the frequency of the timer during
   * runtime anyways.
   */
  timer_enable_preload(timer);

  /* Counter enable. */
  timer_enable_counter(timer);

}
/*--------------------------------------------------------------------*/
void hardware_setup(void)
{
/* Setup the clock to 72MHz from the 8MHz external crystal */

	rcc_clock_setup_in_hse_8mhz_out_72mhz();

/* Enable GPIOA, GPIOB and GPIOC clocks.
   APB2 (High Speed Advanced Peripheral Bus) peripheral clock enable register (RCC_APB2ENR)
   Set RCC_APB2ENR_IOPBEN for port B, RCC_APB2ENR_IOPAEN for port A and RCC_APB2ENR_IOPAEN
   for Alternate Function clock */
	rcc_periph_clock_enable(RCC_GPIOA);
	rcc_periph_clock_enable(RCC_GPIOB);
	rcc_periph_clock_enable(RCC_GPIOC);
	rcc_periph_clock_enable(RCC_AFIO);

/* Digital Test output PC0 */
	gpio_set_mode(GPIOC, GPIO_MODE_OUTPUT_50_MHZ,
		      GPIO_CNF_OUTPUT_PUSHPULL, GPIO0);

/* ----------------- Timer 2 Interrupt and DAC control*/

/* Enable TIM2 clock. */
	rcc_periph_clock_enable(RCC_TIM2);
/* Enable TIM2 interrupt. */
	nvic_enable_irq(NVIC_TIM2_IRQ);
	timer_reset(TIM2);
/* Timer global mode:
 * - No divider
 * - Alignment edge
 * - Direction up
 */
	timer_set_mode(TIM2, TIM_CR1_CKD_CK_INT,
		       TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
/* Continous mode. */
	timer_continuous_mode(TIM2);
	timer_set_period(TIM2, 1000);
/* Disable outputs. */
	timer_disable_oc_output(TIM2, TIM_OC1 | TIM_OC2 | TIM_OC3 | TIM_OC4);
/* Configure global mode of output channel 1, disabling the output. */
	timer_disable_oc_clear(TIM2, TIM_OC1);
	timer_disable_oc_preload(TIM2, TIM_OC1);
	timer_set_oc_slow_mode(TIM2, TIM_OC1);
	timer_set_oc_mode(TIM2, TIM_OC1, TIM_OCM_FROZEN);
/* Set the capture compare value for OC1. */
	timer_set_oc_value(TIM2, TIM_OC1, 1000);
/* ARR reload disable. */
	timer_disable_preload(TIM2);
/* Counter enable. */
	timer_enable_counter(TIM2);
/* Enable commutation interrupt. */
	timer_enable_irq(TIM2, TIM_DIER_CC1IE);

/* Set port PA4 for DAC1 to 'alternate function'. Output driver mode is ignored. */
	gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ,
		      GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO4);

/* Enable the DAC clock on APB1 */
	rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_DACEN);

/* Setup the DAC, software trigger source. Assume the DAC has
woken up by the time the first interrupt occurs */
	dac_trigger_enable(CHANNEL_D);
	dac_set_trigger_source(DAC_CR_TSEL1_SW | DAC_CR_TSEL2_SW);
	dac_enable(CHANNEL_D);
	dac_load_data_buffer_dual(0, 0, RIGHT8);

}
Beispiel #27
0
/**
 * Commutation timer hardware initialization.
 */
void comm_tim_init(void)
{

	comm_tim_data.freq = 65535;

	(void)gpc_setup_reg(GPROT_COMM_TIM_FREQ_REG_ADDR, &(comm_tim_data.freq));

	/* TIM2 clock enable */
	rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_TIM2EN);

	/* Enable the TIM2 gloabal interrupt. */
	nvic_enable_irq(NVIC_TIM2_IRQ);

	/* Reset TIM2 peripheral. */
	timer_reset(TIM2);

	/* TIM2 time base configuration */
	timer_set_mode(TIM2, TIM_CR1_CKD_CK_INT,
		       TIM_CR1_CMS_EDGE,
		       TIM_CR1_DIR_UP);

	/* Set prescaler value */
	timer_set_prescaler(TIM2, 4);

	/* Disable preload. */
	timer_disable_preload(TIM2);

	/* Set continous mode. */
	timer_continuous_mode(TIM2);

	/* Set period to maximum */
	timer_set_period(TIM2, 65535);

	/* Disable outputs. */
	timer_disable_oc_output(TIM2, TIM_OC1);
	timer_disable_oc_output(TIM2, TIM_OC2);
	timer_disable_oc_output(TIM2, TIM_OC3);
	timer_disable_oc_output(TIM2, TIM_OC4);

	/* TIM2 Output Compare Timing Mode configuration: Channel1 */
	timer_disable_oc_clear(TIM2, TIM_OC1);
	timer_disable_oc_preload(TIM2, TIM_OC1);
	timer_set_oc_slow_mode(TIM2, TIM_OC1);
	timer_set_oc_mode(TIM2, TIM_OC1, TIM_OCM_FROZEN);
	//timer_set_oc_polarity_high(TIM2, TIM_OC1);

	/* Set initial capture compare value for OC1 */
	timer_set_oc_value(TIM2, TIM_OC1, comm_tim_data.freq);

	/* ARR reload enable */
	timer_disable_preload(TIM2);

	/* Counter enable */
	timer_enable_counter(TIM2);

	/* TIM2 Capture Compare 1 IT enable */
	timer_enable_irq(TIM2, TIM_DIER_CC1IE);
	/* TIM2 Update IT enable */
	timer_enable_irq(TIM2, TIM_DIER_UIE);

	comm_tim_reset();
}
Beispiel #28
0
void motor_TIMER_config(void)
{

	timer_period = rcc_ppre1_frequency / 5000;

	timer_reset(TIM3);
	/* set timer mode  no divider ; alignment on edge ; direction up */
	timer_set_mode(TIM3, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
	timer_continuous_mode(TIM3);
	/* Period (5kHz). TIM3 clk source is APB1*/
	timer_set_period(TIM3, timer_period);
	/* Reset prescaler value. */
	timer_set_prescaler(TIM3, 0);

	motor_front_left  = 0;
	motor_rear_left   = 0;
	motor_front_rigth = 0;
	motor_rear_rigth  = 0;

	/************ channels configuration ************/

	timer_disable_oc_output(TIM3, MOTOR_PWM_REAR_LEFT);
	timer_disable_oc_output(TIM3, MOTOR_PWM_FRONT_LEFT);
	timer_disable_oc_output(TIM3, MOTOR_PWM_REAR_RIGHT);
	timer_disable_oc_output(TIM3, MOTOR_PWM_FRONT_RIGHT);

	//configure OCx line
	timer_set_oc_slow_mode(TIM3, MOTOR_PWM_REAR_LEFT);
	timer_set_oc_slow_mode(TIM3, MOTOR_PWM_FRONT_LEFT);
	timer_set_oc_slow_mode(TIM3, MOTOR_PWM_REAR_RIGHT);
	timer_set_oc_slow_mode(TIM3, MOTOR_PWM_FRONT_RIGHT);

	timer_set_oc_mode(TIM3, MOTOR_PWM_REAR_LEFT, TIM_OCM_PWM1);
	timer_set_oc_mode(TIM3, MOTOR_PWM_FRONT_LEFT, TIM_OCM_PWM1);
	timer_set_oc_mode(TIM3, MOTOR_PWM_REAR_RIGHT, TIM_OCM_PWM1);
	timer_set_oc_mode(TIM3, MOTOR_PWM_FRONT_RIGHT, TIM_OCM_PWM1);

	//configure OCx output
	timer_set_oc_polarity_high(TIM3, MOTOR_PWM_REAR_LEFT);
	timer_set_oc_polarity_high(TIM3, MOTOR_PWM_FRONT_LEFT);
	timer_set_oc_polarity_high(TIM3, MOTOR_PWM_REAR_RIGHT);
	timer_set_oc_polarity_high(TIM3, MOTOR_PWM_FRONT_RIGHT);

	timer_set_oc_idle_state_set(TIM3, MOTOR_PWM_REAR_LEFT);
	timer_set_oc_idle_state_set(TIM3, MOTOR_PWM_FRONT_LEFT);
	timer_set_oc_idle_state_set(TIM3, MOTOR_PWM_REAR_RIGHT);
	timer_set_oc_idle_state_set(TIM3, MOTOR_PWM_FRONT_RIGHT);

	/* Set the capture compare value */
	timer_set_oc_value(TIM3, MOTOR_PWM_FRONT_LEFT,  motor_front_left);
	timer_set_oc_value(TIM3, MOTOR_PWM_REAR_LEFT,   motor_rear_left);
	timer_set_oc_value(TIM3, MOTOR_PWM_FRONT_RIGHT, motor_front_rigth);
	timer_set_oc_value(TIM3, MOTOR_PWM_REAR_RIGHT,  motor_rear_rigth);


	timer_enable_oc_output(TIM3, MOTOR_PWM_REAR_LEFT);
	timer_enable_oc_output(TIM3, MOTOR_PWM_FRONT_LEFT);
	timer_enable_oc_output(TIM3, MOTOR_PWM_REAR_RIGHT);
	timer_enable_oc_output(TIM3, MOTOR_PWM_FRONT_RIGHT);

	timer_enable_counter(TIM3);

}
Beispiel #29
0
void actuators_pwm_arch_init(void) {

  /*-----------------------------------
   * Configure timer peripheral clocks
   *-----------------------------------*/
  /* TIM3, TIM4 and TIM5 clock enable */
  rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_TIM3EN);
#if REMAP_SERVOS_5AND6
  rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_TIM5EN);
#else
  rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_TIM4EN);
#endif
#if USE_SERVOS_7AND8
  rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_TIM4EN);
#endif

  /*----------------
   * Configure GPIO
   *----------------*/
  /* GPIO A,B and C clock enable */
  rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_IOPAEN |
			  RCC_APB2ENR_IOPBEN |
			  RCC_APB2ENR_IOPCEN |
			  RCC_APB2ENR_AFIOEN);

  /* TIM3 GPIO for PWM1..4 */
  AFIO_MAPR |= AFIO_MAPR_TIM3_REMAP_FULL_REMAP;
  gpio_set_mode(GPIO_BANK_TIM3_FR,
	  GPIO_MODE_OUTPUT_50_MHZ,
	  GPIO_CNF_OUTPUT_ALTFN_PUSHPULL,
	  GPIO_TIM3_FR_CH1 |
	  GPIO_TIM3_FR_CH2 |
	  GPIO_TIM3_FR_CH3 |
	  GPIO_TIM3_FR_CH4);

  /* TIM4 GPIO for PWM7..8 */
#if USE_SERVOS_7AND8
  gpio_set_mode(GPIO_BANK_TIM4,
	  GPIO_MODE_OUTPUT_50_MHZ,
	  GPIO_CNF_OUTPUT_ALTFN_PUSHPULL,
	  GPIO_TIM4_CH1 |
	  GPIO_TIM4_CH2);
#endif

  /* TIM4/5 GPIO for PWM6..7 */
#if REMAP_SERVOS_5AND6
  gpio_set_mode(GPIO_BANK_TIM5,
	  GPIO_MODE_OUTPUT_50_MHZ,
	  GPIO_CNF_OUTPUT_ALTFN_PUSHPULL,
	  GPIO_TIM5_CH1 |
	  GPIO_TIM5_CH2);
#else
  gpio_set_mode(GPIO_BANK_TIM4,
	  GPIO_MODE_OUTPUT_50_MHZ,
	  GPIO_CNF_OUTPUT_ALTFN_PUSHPULL,
	  GPIO_TIM4_CH3 |
	  GPIO_TIM4_CH4);
#endif

  /*---------------
   * Timer 3 setup
   *---------------*/
  timer_reset(TIM3);

  /* Timer global mode:
   * - No divider.
   * - Alignement edge.
   * - Direction up.
   */
  timer_set_mode(TIM3, TIM_CR1_CKD_CK_INT,
	  TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);

  timer_set_prescaler(TIM3, (PCLK / ONE_MHZ_CLK) - 1); // 1uS

  timer_disable_preload(TIM3);

  timer_continuous_mode(TIM3);

  timer_set_period(TIM3, (ONE_MHZ_CLK / SERVO_HZ) - 1);

  /* Disable outputs. */
  timer_disable_oc_output(TIM3, TIM_OC1);
  timer_disable_oc_output(TIM3, TIM_OC2);
  timer_disable_oc_output(TIM3, TIM_OC3);
  timer_disable_oc_output(TIM3, TIM_OC4);

  /* -- Channel configuration -- */
  actuators_pwm_arch_channel_init(TIM3, TIM_OC1);
  actuators_pwm_arch_channel_init(TIM3, TIM_OC2);
  actuators_pwm_arch_channel_init(TIM3, TIM_OC3);
  actuators_pwm_arch_channel_init(TIM3, TIM_OC4);

  /*
   * Set initial output compare values.
   * Note: Maybe we should preload the compare registers with some sensible
   * values before we enable the timer?
   */
  //timer_set_oc_value(TIM3, TIM_OC1, 1000);
  //timer_set_oc_value(TIM3, TIM_OC2, 1000);
  //timer_set_oc_value(TIM3, TIM_OC3, 1000);
  //timer_set_oc_value(TIM3, TIM_OC4, 1000);

  /* -- Enable timer -- */
  /*
   * ARR reload enable.
   * Note: In our case it does not matter much if we do preload or not. As it
   * is unlikely we will want to change the frequency of the timer during
   * runtime anyways.
   */
  timer_enable_preload(TIM3);

  /* Counter enable. */
  timer_enable_counter(TIM3);

#if (!REMAP_SERVOS_5AND6 || USE_SERVOS_7AND8)
#if !REMAP_SERVOS_5AND6
#pragma message "Not remapping servos 5 and 6 using PB8 and PB9 -> TIM4"
#endif
#if USE_SERVOS_7AND8
#pragma message "Enabeling sevros 7 and 8 on PB6, PB7 -> TIM4"
#endif
  /*---------------
   * Timer 4 setup
   *---------------*/
  timer_reset(TIM4);

  /* Timer global mode:
   * - No divider.
   * - Alignement edge.
   * - Direction up.
   */
  timer_set_mode(TIM4, TIM_CR1_CKD_CK_INT,
	  TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);

  timer_set_prescaler(TIM4, (PCLK / ONE_MHZ_CLK) - 1); // 1uS

  timer_disable_preload(TIM4);

  timer_continuous_mode(TIM4);

#ifdef SERVO_HZ_SECONDARY
  timer_set_period(TIM4, (ONE_MHZ_CLK / SERVO_HZ_SECONDARY) - 1);
#else
  timer_set_period(TIM4, (ONE_MHZ_CLK / SERVO_HZ) - 1);
#endif

  /* Disable outputs. */
#if USE_SERVOS_7AND8
  timer_disable_oc_output(TIM4, TIM_OC1);
  timer_disable_oc_output(TIM4, TIM_OC2);
#endif
#if !REMAP_SERVOS_5AND6
  timer_disable_oc_output(TIM4, TIM_OC3);
  timer_disable_oc_output(TIM4, TIM_OC4);
#endif

  /* -- Channel configuration -- */
#if USE_SERVOS_7AND8
  actuators_pwm_arch_channel_init(TIM4, TIM_OC1);
  actuators_pwm_arch_channel_init(TIM4, TIM_OC2);
#endif
#if !REMAP_SERVOS_5AND6
  actuators_pwm_arch_channel_init(TIM4, TIM_OC3);
  actuators_pwm_arch_channel_init(TIM4, TIM_OC4);
#endif

  /*
   * Set initial output compare values.
   * Note: Maybe we should preload the compare registers with some sensible
   * values before we enable the timer?
   */
#if USE_SERVOS_7AND8
  //timer_set_oc_value(TIM4, TIM_OC1, 1000);
  //timer_set_oc_value(TIM4, TIM_OC2, 1000);
#endif
#if ! REMAP_SERVOS_5AND6
  //timer_set_oc_value(TIM4, TIM_OC3, 1000);
  //timer_set_oc_value(TIM4, TIM_OC4, 1000);
#endif

  /* -- Enable timer -- */
  /*
   * ARR reload enable.
   * Note: In our case it does not matter much if we do preload or not. As it
   * is unlikely we will want to change the frequency of the timer during
   * runtime anyways.
   */
  timer_enable_preload(TIM4);

  /* Counter enable. */
  timer_enable_counter(TIM4);

#endif

#if REMAP_SERVOS_5AND6
#pragma message "Remapping servo outputs 5 and 6 to PA0,PA1 -> TIM5"
  /*---------------
   * Timer 5 setup
   *---------------*/
  timer_reset(TIM5);

  /* Timer global mode:
   * - No divider.
   * - Alignement edge.
   * - Direction up.
   */
  timer_set_mode(TIM5, TIM_CR1_CKD_CK_INT,
	  TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);

  timer_set_prescaler(TIM5, (PCLK / ONE_MHZ_CLK) - 1); // 1uS

  timer_disable_preload(TIM5);

  timer_continuous_mode(TIM5);

#ifdef SERVO_HZ_SECONDARY
  timer_set_period(TIM5, (ONE_MHZ_CLK / SERVO_HZ_SECONDARY) - 1);
#else
  timer_set_period(TIM5, (ONE_MHZ_CLK / SERVO_HZ) - 1);
#endif

  /* Disable outputs. */
  timer_disable_oc_output(TIM5, TIM_OC1);
  timer_disable_oc_output(TIM5, TIM_OC2);

  /* -- Channel configuration -- */
  actuators_pwm_arch_channel_init(TIM5, TIM_OC1);
  actuators_pwm_arch_channel_init(TIM5, TIM_OC2);

  /*
   * Set the capture compare value for OC1.
   * Note: Maybe we should preload the compare registers with some sensible
   * values before we enable the timer?
   */
  //timer_set_oc_value(TIM5, TIM_OC1, 1000);
  //timer_set_oc_value(TIM5, TIM_OC2, 1000);

  /* -- Enable timer -- */
  /*
   * ARR reload enable.
   * Note: In our case it does not matter much if we do preload or not. As it
   * is unlikely we will want to change the frequency of the timer during
   * runtime anyways.
   */
  timer_enable_preload(TIM5);

  /* Counter enable. */
  timer_enable_counter(TIM5);

#endif

}