Beispiel #1
0
static int usr_info_cmp(const struct usrinfo *usr1, const struct usrinfo *usr2)
{
	/* Called from qsort to compare two users in a usrinfo_t array for
	 * sorting by login time. Return >0 if usr1 login time was later than
	 * usr2 login time, <0 if it was earlier */
	return timeval_compare(&usr1->login_time, &usr2->login_time);
}
Beispiel #2
0
void
do_resend()
{
    struct resend *resend;

    resend = to_resend;
    while(resend) {
        if(!resend_expired(resend) && resend->delay > 0 && resend->max > 0) {
            struct timeval timeout;
            timeval_add_msec(&timeout, &resend->time, resend->delay);
            if(timeval_compare(&now, &timeout) >= 0) {
                switch(resend->kind) {
                case RESEND_REQUEST:
                    send_multihop_request(resend->ifp,
                                          resend->prefix, resend->plen,
                                          resend->src_prefix, resend->src_plen,
                                          resend->seqno, resend->id, 127);
                    break;
                case RESEND_UPDATE:
                    send_update(resend->ifp, 1,
                                resend->prefix, resend->plen,
                                resend->src_prefix, resend->src_plen);
                    break;
                default: abort();
                }
                resend->delay = MIN(0xFFFF, resend->delay * 2);
                resend->max--;
            }
        }
        resend = resend->next;
    }
    recompute_resend_time();
}
Beispiel #3
0
Usec timeval_diff(const struct timeval *a, const struct timeval *b) {
    assert(a);
    assert(b);

    if (timeval_compare(a, b) < 0)
        return - timeval_diff(b, a);

    return ((Usec) a->tv_sec - b->tv_sec)*1000000 + a->tv_usec - b->tv_usec;
}
Beispiel #4
0
/* {0, 0} represents infinity */
void
timeval_min(struct timeval *d, const struct timeval *s)
{
    if(s->tv_sec == 0)
        return;

    if(d->tv_sec == 0 || timeval_compare(d, s) > 0) {
        *d = *s;
    }
}
Beispiel #5
0
_PUBLIC_ struct timeval timeval_until(const struct timeval *tv1,
				      const struct timeval *tv2)
{
	struct timeval t;
	if (timeval_compare(tv1, tv2) >= 0) {
		return timeval_zero();
	}
	t.tv_sec = tv2->tv_sec - tv1->tv_sec;
	if (tv1->tv_usec > tv2->tv_usec) {
		t.tv_sec--;
		t.tv_usec = 1000000 - (tv1->tv_usec - tv2->tv_usec);
	} else {
		t.tv_usec = tv2->tv_usec - tv1->tv_usec;
	}
	return t;
}
Beispiel #6
0
void lua_timer_execute(const struct timeval* start) {
  lua_State* lua = lua_api_get();
  lua_Number newdelay;
  TIMER_FOREACH(iter, timer) {
    if (timeval_compare(start, &timer->time) > 0) {
      lua_rawgeti(lua, LUA_REGISTRYINDEX, timer->func);
      if (lua_pcall(lua, 0, 1, 0) != 0) {
        const gchar* what = lua_tostring(lua, -1);
        ERROR("Error in timer callback: %s", what);
      } else if (lua_isnumber(lua, -1)
                 && (newdelay = lua_tonumber(lua, -1)) > 0) {
        timer->time = *start;
        timeval_add_delay(&timer->time, newdelay);
      } else {
        timer->dead = TRUE;
      }
      lua_pop(lua, 1);
    }
  }
}
Beispiel #7
0
/* We just got an Update for the default route. */
int
update_selected_route(struct interface *interface, struct in6_addr *nexthop,
                      short interval, int metric)
{
    struct timeval now;
    int n = find_neighbour(interface, nexthop, 0);

    if(n < 0)
        return 0;

    metric += MAX(link_cost, neighbours[n].rxcost);

    gettime(&now);

    if(selected_nexthop_metric >= INFINITY ||
       interface != selected_interface ||
       memcmp(nexthop, &selected_nexthop, sizeof(selected_nexthop)) != 0) {
        int rc;
        if(metric >= INFINITY ||
           (metric >= selected_nexthop_metric + 32 &&
            timeval_compare(&now, &selected_nexthop_timeout) < 0)) {
            /* Our currently selected route is just as good or better. */
            return 0;
        }

        rc = install_default_route(interface->ifindex, nexthop);
        if(rc < 0) {
            perror("install_default_route");
            return -1;
        }
        selected_interface = interface;
        memcpy(&selected_nexthop, nexthop, sizeof(selected_nexthop));
    }

    selected_nexthop_metric = metric;
    /* Expire this route when we lose 3 updates in a row. */
    timeval_add_msec(&selected_nexthop_timeout, &now,
                     3 * interval * 10 + rand() % (interval * 5));

    return 1;
}
Beispiel #8
0
NTSTATUS wreplsrv_periodic_schedule(struct wreplsrv_service *service, uint32_t next_interval)
{
	TALLOC_CTX *tmp_mem;
	struct tevent_timer *new_te;
	struct timeval next_time;

	/* prevent looping */
	if (next_interval == 0) next_interval = 1;

	next_time = timeval_current_ofs(next_interval, 5000);

	if (service->periodic.te) {
		/*
		 * if the timestamp of the new event is higher,
		 * as current next we don't need to reschedule
		 */
		if (timeval_compare(&next_time, &service->periodic.next_event) > 0) {
			return NT_STATUS_OK;
		}
	}

	/* reset the next scheduled timestamp */
	service->periodic.next_event = next_time;

	new_te = event_add_timed(service->task->event_ctx, service,
			         service->periodic.next_event,
			         wreplsrv_periodic_handler_te, service);
	NT_STATUS_HAVE_NO_MEMORY(new_te);

	tmp_mem = talloc_new(service);
	DEBUG(6,("wreplsrv_periodic_schedule(%u) %sscheduled for: %s\n",
		next_interval,
		(service->periodic.te?"re":""),
		nt_time_string(tmp_mem, timeval_to_nttime(&next_time))));
	talloc_free(tmp_mem);

	talloc_free(service->periodic.te);
	service->periodic.te = new_te;

	return NT_STATUS_OK;
}
Beispiel #9
0
struct timed_event *add_timed_event(TALLOC_CTX *mem_ctx,
                                    struct timeval when,
                                    const char *event_name,
                                    void (*handler)(struct timed_event *te,
                                            const struct timeval *now,
                                            void *private_data),
                                    void *private_data)
{
    struct timed_event *te, *last_te, *cur_te;

    te = TALLOC_P(mem_ctx, struct timed_event);
    if (te == NULL) {
        DEBUG(0, ("talloc failed\n"));
        return NULL;
    }

    te->when = when;
    te->event_name = event_name;
    te->handler = handler;
    te->private_data = private_data;

    /* keep the list ordered */
    last_te = NULL;
    for (cur_te = timed_events; cur_te; cur_te = cur_te->next) {
        /* if the new event comes before the current one break */
        if (!timeval_is_zero(&cur_te->when) &&
                timeval_compare(&te->when, &cur_te->when) < 0) {
            break;
        }
        last_te = cur_te;
    }

    DLIST_ADD_AFTER(timed_events, te, last_te);
    talloc_set_destructor(te, timed_event_destructor);

    DEBUG(10, ("Added timed event \"%s\": %lx\n", event_name,
               (unsigned long)te));
    return te;
}
Beispiel #10
0
static inline int frames_to_send(struct timeval *today, struct timeval *diff,
				 struct timeval *log)
{
	/* return value <0 when log + diff < today */

	struct timeval cmp;

	cmp.tv_sec  = log->tv_sec  + diff->tv_sec;
	cmp.tv_usec = log->tv_usec + diff->tv_usec;

	if (cmp.tv_usec > 1000000) {
		cmp.tv_usec -= 1000000;
		cmp.tv_sec++;
	}

	if (cmp.tv_usec < 0) {
		cmp.tv_usec += 1000000;
		cmp.tv_sec--;
	}

	return timeval_compare(&cmp, today);
}
Beispiel #11
0
void run_events(void)
{
    struct timeval now;

    if (timed_events == NULL) {
        /* No syscall if there are no events */
        DEBUG(11, ("run_events: No events\n"));
        return;
    }

    GetTimeOfDay(&now);

    if (timeval_compare(&now, &timed_events->when) < 0) {
        /* Nothing to do yet */
        DEBUG(11, ("run_events: Nothing to do\n"));
        return;
    }

    DEBUG(10, ("Running event \"%s\" %lx\n", timed_events->event_name,
               (unsigned long)timed_events));

    timed_events->handler(timed_events, &now, timed_events->private_data);
    return;
}
Beispiel #12
0
void process_blocking_lock_queue(void)
{
	struct timeval tv_curr = timeval_current();
	struct blocking_lock_record *blr, *next = NULL;
	bool recalc_timeout = False;

	/*
	 * Go through the queue and see if we can get any of the locks.
	 */

	for (blr = blocking_lock_queue; blr; blr = next) {

		next = blr->next;

		/*
		 * Go through the remaining locks and try and obtain them.
		 * The call returns True if all locks were obtained successfully
		 * and False if we still need to wait.
		 */

		DEBUG(10, ("Processing BLR = %p\n", blr));

		if(blocking_lock_record_process(blr)) {
			struct byte_range_lock *br_lck = brl_get_locks(
				talloc_tos(), blr->fsp);

			DEBUG(10, ("BLR_process returned true: cancelling and "
			    "removing lock. BLR = %p\n", blr));

			if (br_lck) {
				brl_lock_cancel(br_lck,
					blr->lock_pid,
					procid_self(),
					blr->offset,
					blr->count,
					blr->lock_flav,
					blr);
				TALLOC_FREE(br_lck);
			}

			DLIST_REMOVE(blocking_lock_queue, blr);
			TALLOC_FREE(blr);
			recalc_timeout = True;
			continue;
		}

		/*
		 * We couldn't get the locks for this record on the list.
		 * If the time has expired, return a lock error.
		 */

		if (!timeval_is_zero(&blr->expire_time) && timeval_compare(&blr->expire_time, &tv_curr) <= 0) {
			struct byte_range_lock *br_lck = brl_get_locks(
				talloc_tos(), blr->fsp);

			DEBUG(10, ("Lock timed out! BLR = %p\n", blr));

			/*
			 * Lock expired - throw away all previously
			 * obtained locks and return lock error.
			 */

			if (br_lck) {
				DEBUG(5,("process_blocking_lock_queue: "
					 "pending lock fnum = %d for file %s "
					 "timed out.\n", blr->fsp->fnum,
					 blr->fsp->fsp_name ));

				brl_lock_cancel(br_lck,
					blr->lock_pid,
					procid_self(),
					blr->offset,
					blr->count,
					blr->lock_flav,
					blr);
				TALLOC_FREE(br_lck);
			}

			blocking_lock_reply_error(blr,NT_STATUS_FILE_LOCK_CONFLICT);
			DLIST_REMOVE(blocking_lock_queue, blr);
			TALLOC_FREE(blr);
			recalc_timeout = True;
		}
	}

	if (recalc_timeout) {
		recalc_brl_timeout();
	}
}
Beispiel #13
0
static int fork_tcon_client(struct torture_context *tctx,
		int *tcon_count, unsigned tcon_timelimit,
		const char *host, const char *share)
{
	pid_t child;
	struct smbcli_state *cli;
	struct timeval end;
	struct timeval now;
	struct smbcli_options options;
	struct smbcli_session_options session_options;

	lpcfg_smbcli_options(tctx->lp_ctx, &options);
	lpcfg_smbcli_session_options(tctx->lp_ctx, &session_options);

	child = fork();
	if (child == -1) {
		printf("failed to fork child: %s\n,", strerror(errno));
		return -1;
	} else if (child != 0) {
		/* Parent, just return. */
		return 0;
	}

	/* Child. Just make as many connections as possible within the
	 * time limit. Don't bother synchronising the child start times
	 * because it's probably not work the effort, and a bit of startup
	 * jitter is probably a more realistic test.
	 */


	end = timeval_current();
	now = timeval_current();
	end.tv_sec += tcon_timelimit;
	*tcon_count = 0;

	while (timeval_compare(&now, &end) == -1) {
		NTSTATUS status;

		status = smbcli_full_connection(NULL, &cli,
				host, lpcfg_smb_ports(tctx->lp_ctx), share,
				NULL, lpcfg_socket_options(tctx->lp_ctx), cmdline_credentials,
				lpcfg_resolve_context(tctx->lp_ctx),
				tctx->ev, &options, &session_options,
				lpcfg_gensec_settings(tctx, tctx->lp_ctx));

		if (!NT_STATUS_IS_OK(status)) {
			printf("failed to connect to //%s/%s: %s\n",
				host, share, nt_errstr(status));
			goto done;
		}

		smbcli_tdis(cli);
		talloc_free(cli);

		*tcon_count = *tcon_count + 1;
		now = timeval_current();
	}

done:
	exit(0);
}
Beispiel #14
0
static int compare_share_mode_times(const void *p1, const void *p2)
{
	const struct share_mode_entry *s1 = (const struct share_mode_entry *)p1;
	const struct share_mode_entry *s2 = (const struct share_mode_entry *)p2;
	return timeval_compare(&s1->time, &s2->time);
}
Beispiel #15
0
void process_blocking_lock_queue(struct smbd_server_connection *sconn)
{
	struct timeval tv_curr = timeval_current();
	struct blocking_lock_record *blr, *next = NULL;

	if (sconn->using_smb2) {
		process_blocking_lock_queue_smb2(sconn, tv_curr);
		return;
	}

	/*
	 * Go through the queue and see if we can get any of the locks.
	 */

	for (blr = sconn->smb1.locks.blocking_lock_queue; blr; blr = next) {

		next = blr->next;

		/*
		 * Go through the remaining locks and try and obtain them.
		 * The call returns True if all locks were obtained successfully
		 * and False if we still need to wait.
		 */

		DEBUG(10, ("Processing BLR = %p\n", blr));

		/* We use set_current_service so connections with
		 * pending locks are not marked as idle.
		 */

		set_current_service(blr->fsp->conn,
				SVAL(blr->req->inbuf,smb_flg),
				false);

		if(blocking_lock_record_process(blr)) {
			struct byte_range_lock *br_lck = brl_get_locks(
				talloc_tos(), blr->fsp);

			DEBUG(10, ("BLR_process returned true: cancelling and "
			    "removing lock. BLR = %p\n", blr));

			if (br_lck) {
				brl_lock_cancel(br_lck,
					blr->smblctx,
					messaging_server_id(sconn->msg_ctx),
					blr->offset,
					blr->count,
					blr->lock_flav,
					blr);
				TALLOC_FREE(br_lck);
			}

			DLIST_REMOVE(sconn->smb1.locks.blocking_lock_queue, blr);
			TALLOC_FREE(blr);
			continue;
		}

		/*
		 * We couldn't get the locks for this record on the list.
		 * If the time has expired, return a lock error.
		 */

		if (!timeval_is_zero(&blr->expire_time) && timeval_compare(&blr->expire_time, &tv_curr) <= 0) {
			struct byte_range_lock *br_lck = brl_get_locks(
				talloc_tos(), blr->fsp);

			DEBUG(10, ("Lock timed out! BLR = %p\n", blr));

			/*
			 * Lock expired - throw away all previously
			 * obtained locks and return lock error.
			 */

			if (br_lck) {
				DEBUG(5,("process_blocking_lock_queue: "
					 "pending lock for %s, file %s "
					 "timed out.\n", fsp_fnum_dbg(blr->fsp),
					 fsp_str_dbg(blr->fsp)));

				brl_lock_cancel(br_lck,
					blr->smblctx,
					messaging_server_id(sconn->msg_ctx),
					blr->offset,
					blr->count,
					blr->lock_flav,
					blr);
				TALLOC_FREE(br_lck);
			}

			blocking_lock_reply_error(blr,NT_STATUS_FILE_LOCK_CONFLICT);
			DLIST_REMOVE(sconn->smb1.locks.blocking_lock_queue, blr);
			TALLOC_FREE(blr);
		}
	}

	recalc_brl_timeout(sconn);
}
Beispiel #16
0
int
server_run()
{
    struct timeval* timeout;
    struct timeval tv, current;
    timer_callback* timcb;
    socket_callback* sockcb;
    fd_set rfds, wfds;
    int r;

    /* No watches have been set */
    ASSERT(ctx.max_fd > -1);

    ctx.stopped = 0;

    while(!ctx.stopped)
    {
        /* Watch for the various fds */
        memcpy(&rfds, &ctx.read_fds, sizeof(rfds));
        memcpy(&wfds, &ctx.write_fds, sizeof(wfds));

        /* Prepare for timers */
        timeout = NULL;
        if(gettimeofday(&current, NULL) == -1)
            return -1;

        /* Cycle through timers */
        for(timcb = ctx.timers; timcb; )
        {
            ASSERT(timcb->callback);

            /* Call any timers that have already passed */
            if(timeval_compare(&current, &timcb->at) >= 0)
            {
                /* Convert to milliseconds, and make the call */
                r = (timcb->callback)(timeval_to_ms(current), timcb->arg);

                /* Reset timer if so desired */
                if (r == 1 && !timeval_empty(&timcb->interval))
                {
                    timeval_add(&timcb->at, &timcb->interval);

                    /* If the time has already passed, just use current time */
                    if(timeval_compare(&(timcb->at), &current) <= 0)
                        memcpy(&(timcb->at), &current, sizeof(timcb->at));
                }

                /* Otherwise remove it. Either one shot, or returned 0 */
                else
                {
                    timcb = remove_timer(timcb);
                    continue;
                }
            }

            /* Get soonest timer */
            if (!timeout || timeval_compare(&timcb->at, timeout) < 0)
                timeout = &timcb->at;

            timcb = timcb->next;
        }

        /* Convert to an offset */
        if(timeout)
        {
            memcpy(&tv, timeout, sizeof(tv));
            timeout = &tv;
            timeval_subtract(timeout, &current);
        }

        /* fprintf(stderr, "selecting with timeout: ");
           timeval_dump(timeout);
           fprintf(stderr, "\n"); */

        r = select(ctx.max_fd, &rfds, &wfds, NULL, timeout);
        if (r < 0)
        {
            /* Interrupted so try again, and possibly exit */
            if (errno == EINTR)
                continue;

            /* Programmer errors */
            ASSERT (errno != EBADF);
            ASSERT (errno != EINVAL);
            return r;
        }

        /* Timeout, just jump to timeout processing */
        if(r == 0)
            continue;

        for(sockcb = ctx.callbacks; sockcb; sockcb = sockcb->next)
        {
            ASSERT(sockcb->fd != -1);

            /* Call any that are set */
            if (FD_ISSET(sockcb->fd, &rfds))
                (sockcb->callback)(sockcb->fd, SERVER_READ, sockcb->arg);
            if (FD_ISSET(sockcb->fd, &wfds))
                (sockcb->callback)(sockcb->fd, SERVER_WRITE, sockcb->arg);
        }
    }

    return 0;
}
Beispiel #17
0
/* Return true if the ith neighbour has expired. */
int
neighbour_expired(int i, const struct timeval *now)
{
    return (timeval_compare(now, &neighbours[i].timeout) > 0);
}
Beispiel #18
0
int
main(int argc, char **argv)
{
    struct sockaddr_in6 sin6;
    int rc, fd, i, opt;
    time_t expiry_time, source_expiry_time, kernel_dump_time;
    const char **config_files = NULL;
    int num_config_files = 0;
    void *vrc;
    unsigned int seed;
    struct interface *ifp;

    gettime(&now);

    rc = read_random_bytes(&seed, sizeof(seed));
    if(rc < 0) {
        perror("read(random)");
        seed = 42;
    }

    seed ^= (now.tv_sec ^ now.tv_usec);
    srandom(seed);

    parse_address("ff02:0:0:0:0:0:1:6", protocol_group, NULL);
    protocol_port = 6696;
    change_smoothing_half_life(4);
    has_ipv6_subtrees = kernel_has_ipv6_subtrees();

    while(1) {
        opt = getopt(argc, argv,
                     "m:p:h:H:i:k:A:sruS:d:g:G:lwz:M:t:T:c:C:DL:I:V");
        if(opt < 0)
            break;

        switch(opt) {
        case 'm':
            rc = parse_address(optarg, protocol_group, NULL);
            if(rc < 0)
                goto usage;
            if(protocol_group[0] != 0xff) {
                fprintf(stderr,
                        "%s is not a multicast address\n", optarg);
                goto usage;
            }
            if(protocol_group[1] != 2) {
                fprintf(stderr,
                        "Warning: %s is not a link-local multicast address\n",
                        optarg);
            }
            break;
        case 'p':
            protocol_port = parse_nat(optarg);
            if(protocol_port <= 0 || protocol_port > 0xFFFF)
                goto usage;
            break;
        case 'h':
            default_wireless_hello_interval = parse_thousands(optarg);
            if(default_wireless_hello_interval <= 0 ||
               default_wireless_hello_interval > 0xFFFF * 10)
                goto usage;
            break;
        case 'H':
            default_wired_hello_interval = parse_thousands(optarg);
            if(default_wired_hello_interval <= 0 ||
               default_wired_hello_interval > 0xFFFF * 10)
                goto usage;
            break;
        case 'k':
            kernel_metric = parse_nat(optarg);
            if(kernel_metric < 0 || kernel_metric > 0xFFFF)
                goto usage;
            break;
        case 'A':
            allow_duplicates = parse_nat(optarg);
            if(allow_duplicates < 0 || allow_duplicates > 0xFFFF)
                goto usage;
            break;
        case 's':
            split_horizon = 0;
            break;
        case 'r':
            random_id = 1;
            break;
        case 'u':
            keep_unfeasible = 1;
            break;
        case 'S':
            state_file = optarg;
            break;
        case 'd':
            debug = parse_nat(optarg);
            if(debug < 0)
                goto usage;
            break;
        case 'g':
        case 'G':
            if(opt == 'g')
                local_server_write = 0;
            else
                local_server_write = 1;
            if(optarg[0] == '/') {
                local_server_port = -1;
                free(local_server_path);
                local_server_path = strdup(optarg);
            } else {
                local_server_port = parse_nat(optarg);
                free(local_server_path);
                local_server_path = NULL;
                if(local_server_port <= 0 || local_server_port > 0xFFFF)
                    goto usage;
            }
            break;
        case 'l':
            link_detect = 1;
            break;
        case 'w':
            all_wireless = 1;
            break;
        case 'z':
            {
                char *comma;
                diversity_kind = (int)strtol(optarg, &comma, 0);
                if(*comma == '\0')
                    diversity_factor = 128;
                else if(*comma == ',')
                    diversity_factor = parse_nat(comma + 1);
                else
                    goto usage;
                if(diversity_factor <= 0 || diversity_factor > 256)
                    goto usage;
            }
            break;
        case 'M': {
            int l = parse_nat(optarg);
            if(l < 0 || l > 3600)
                goto usage;
            change_smoothing_half_life(l);
            break;
        }
        case 't':
            export_table = parse_nat(optarg);
            if(export_table < 0 || export_table > 0xFFFF)
                goto usage;
            break;
        case 'T':
            if(add_import_table(parse_nat(optarg)))
                goto usage;
            break;
        case 'c':
            config_files = realloc(config_files,
                                   (num_config_files + 1) * sizeof(char*));
            if(config_files == NULL) {
                fprintf(stderr, "Couldn't allocate config file.\n");
                exit(1);
            }
            config_files[num_config_files++] = optarg;
            break;
        case 'C':
            rc = parse_config_from_string(optarg, strlen(optarg), NULL);
            if(rc != CONFIG_ACTION_DONE) {
                fprintf(stderr,
                        "Couldn't parse configuration from command line.\n");
                exit(1);
            }
            break;
        case 'D':
            do_daemonise = 1;
            break;
        case 'L':
            logfile = optarg;
            break;
        case 'I':
            pidfile = optarg;
            break;
        case 'V':
            fprintf(stderr, "%s\n", BABELD_VERSION);
            exit(0);
            break;
        default:
            goto usage;
        }
    }

    if(num_config_files == 0) {
        if(access("/etc/babeld.conf", F_OK) >= 0) {
            config_files = malloc(sizeof(char*));
            if(config_files == NULL) {
                fprintf(stderr, "Couldn't allocate config file.\n");
                exit(1);
            }
            config_files[num_config_files++] = "/etc/babeld.conf";
        }
    }

    for(i = 0; i < num_config_files; i++) {
        int line;
        rc = parse_config_from_file(config_files[i], &line);
        if(rc < 0) {
            fprintf(stderr,
                    "Couldn't parse configuration from file %s "
                    "(error at line %d).\n",
                    config_files[i], line);
            exit(1);
        }
    }

    free(config_files);

    if(default_wireless_hello_interval <= 0)
        default_wireless_hello_interval = 4000;
    default_wireless_hello_interval = MAX(default_wireless_hello_interval, 5);

    if(default_wired_hello_interval <= 0)
        default_wired_hello_interval = 4000;
    default_wired_hello_interval = MAX(default_wired_hello_interval, 5);

    resend_delay = 2000;
    resend_delay = MIN(resend_delay, default_wireless_hello_interval / 2);
    resend_delay = MIN(resend_delay, default_wired_hello_interval / 2);
    resend_delay = MAX(resend_delay, 20);

    if(do_daemonise) {
        if(logfile == NULL)
            logfile = "/var/log/babeld.log";
    }

    rc = reopen_logfile();
    if(rc < 0) {
        perror("reopen_logfile()");
        exit(1);
    }

    fd = open("/dev/null", O_RDONLY);
    if(fd < 0) {
        perror("open(null)");
        exit(1);
    }

    rc = dup2(fd, 0);
    if(rc < 0) {
        perror("dup2(null, 0)");
        exit(1);
    }

    close(fd);

    if(do_daemonise) {
        rc = daemonise();
        if(rc < 0) {
            perror("daemonise");
            exit(1);
        }
    }

    if(pidfile && pidfile[0] != '\0') {
        int pfd, len;
        char buf[100];

        len = snprintf(buf, 100, "%lu", (unsigned long)getpid());
        if(len < 0 || len >= 100) {
            perror("snprintf(getpid)");
            exit(1);
        }

        pfd = open(pidfile, O_WRONLY | O_CREAT | O_EXCL, 0644);
        if(pfd < 0) {
            char buf[40];
            snprintf(buf, 40, "creat(%s)", pidfile);
            buf[39] = '\0';
            perror(buf);
            exit(1);
        }

        rc = write(pfd, buf, len);
        if(rc < len) {
            perror("write(pidfile)");
            goto fail_pid;
        }

        close(pfd);
    }

    rc = kernel_setup(1);
    if(rc < 0) {
        fprintf(stderr, "kernel_setup failed.\n");
        goto fail_pid;
    }

    rc = kernel_setup_socket(1);
    if(rc < 0) {
        fprintf(stderr, "kernel_setup_socket failed.\n");
        kernel_setup(0);
        goto fail_pid;
    }

    rc = finalise_config();
    if(rc < 0) {
        fprintf(stderr, "Couldn't finalise configuration.\n");
        goto fail;
    }

    for(i = optind; i < argc; i++) {
        vrc = add_interface(argv[i], NULL);
        if(vrc == NULL)
            goto fail;
    }

    if(interfaces == NULL) {
        fprintf(stderr, "Eek... asked to run on no interfaces!\n");
        goto fail;
    }

    if(!have_id && !random_id) {
        /* We use all available interfaces here, since this increases the
           chances of getting a stable router-id in case the set of Babel
           interfaces changes. */

        for(i = 1; i < 256; i++) {
            char buf[IF_NAMESIZE], *ifname;
            unsigned char eui[8];
            ifname = if_indextoname(i, buf);
            if(ifname == NULL)
                continue;
            rc = if_eui64(ifname, i, eui);
            if(rc < 0)
                continue;
            memcpy(myid, eui, 8);
            have_id = 1;
            break;
        }
    }

    if(!have_id) {
        if(!random_id)
            fprintf(stderr,
                    "Warning: couldn't find router id -- "
                    "using random value.\n");
        rc = read_random_bytes(myid, 8);
        if(rc < 0) {
            perror("read(random)");
            goto fail;
        }
        /* Clear group and global bits */
        myid[0] &= ~3;
    }

    myseqno = (random() & 0xFFFF);

    fd = open(state_file, O_RDONLY);
    if(fd < 0 && errno != ENOENT)
        perror("open(babel-state)");
    rc = unlink(state_file);
    if(fd >= 0 && rc < 0) {
        perror("unlink(babel-state)");
        /* If we couldn't unlink it, it's probably stale. */
        close(fd);
        fd = -1;
    }
    if(fd >= 0) {
        char buf[100];
        int s;
        rc = read(fd, buf, 99);
        if(rc < 0) {
            perror("read(babel-state)");
        } else {
            buf[rc] = '\0';
            rc = sscanf(buf, "%d\n", &s);
            if(rc == 1 && s >= 0 && s <= 0xFFFF) {
                myseqno = seqno_plus(s, 1);
            } else {
                fprintf(stderr, "Couldn't parse babel-state.\n");
            }
        }
        close(fd);
        fd = -1;
    }

    protocol_socket = babel_socket(protocol_port);
    if(protocol_socket < 0) {
        perror("Couldn't create link local socket");
        goto fail;
    }

    if(local_server_port >= 0) {
        local_server_socket = tcp_server_socket(local_server_port, 1);
        if(local_server_socket < 0) {
            perror("local_server_socket");
            goto fail;
        }
    } else if(local_server_path) {
        local_server_socket = unix_server_socket(local_server_path);
        if(local_server_socket < 0) {
            perror("local_server_socket");
            goto fail;
        }
    }

    init_signals();
    rc = resize_receive_buffer(1500);
    if(rc < 0)
        goto fail;
    if(receive_buffer == NULL)
        goto fail;

    check_interfaces();

    rc = check_xroutes(0);
    if(rc < 0)
        fprintf(stderr, "Warning: couldn't check exported routes.\n");
    rc = check_rules();
    if(rc < 0)
        fprintf(stderr, "Warning: couldn't check rules.\n");

    kernel_routes_changed = 0;
    kernel_rules_changed = 0;
    kernel_link_changed = 0;
    kernel_addr_changed = 0;
    kernel_dump_time = now.tv_sec + roughly(30);
    schedule_neighbours_check(5000, 1);
    schedule_interfaces_check(30000, 1);
    expiry_time = now.tv_sec + roughly(30);
    source_expiry_time = now.tv_sec + roughly(300);

    /* Make some noise so that others notice us, and send retractions in
       case we were restarted recently */
    FOR_ALL_INTERFACES(ifp) {
        if(!if_up(ifp))
            continue;
        /* Apply jitter before we send the first message. */
        usleep(roughly(10000));
        gettime(&now);
        send_hello(ifp);
        send_wildcard_retraction(ifp);
    }

    FOR_ALL_INTERFACES(ifp) {
        if(!if_up(ifp))
            continue;
        usleep(roughly(10000));
        gettime(&now);
        send_hello(ifp);
        send_wildcard_retraction(ifp);
        send_self_update(ifp);
        send_request(ifp, NULL, 0, NULL, 0);
        flushupdates(ifp);
        flushbuf(ifp);
    }

    debugf("Entering main loop.\n");

    while(1) {
        struct timeval tv;
        fd_set readfds;

        gettime(&now);

        tv = check_neighbours_timeout;
        timeval_min(&tv, &check_interfaces_timeout);
        timeval_min_sec(&tv, expiry_time);
        timeval_min_sec(&tv, source_expiry_time);
        timeval_min_sec(&tv, kernel_dump_time);
        timeval_min(&tv, &resend_time);
        FOR_ALL_INTERFACES(ifp) {
            if(!if_up(ifp))
                continue;
            timeval_min(&tv, &ifp->flush_timeout);
            timeval_min(&tv, &ifp->hello_timeout);
            timeval_min(&tv, &ifp->update_timeout);
            timeval_min(&tv, &ifp->update_flush_timeout);
        }
        timeval_min(&tv, &unicast_flush_timeout);
        FD_ZERO(&readfds);
        if(timeval_compare(&tv, &now) > 0) {
            int maxfd = 0;
            timeval_minus(&tv, &tv, &now);
            FD_SET(protocol_socket, &readfds);
            maxfd = MAX(maxfd, protocol_socket);
            if(kernel_socket < 0) kernel_setup_socket(1);
            if(kernel_socket >= 0) {
                FD_SET(kernel_socket, &readfds);
                maxfd = MAX(maxfd, kernel_socket);
            }
            if(local_server_socket >= 0 &&
               num_local_sockets < MAX_LOCAL_SOCKETS) {
                FD_SET(local_server_socket, &readfds);
                maxfd = MAX(maxfd, local_server_socket);
            }
            for(i = 0; i < num_local_sockets; i++) {
                FD_SET(local_sockets[i].fd, &readfds);
                maxfd = MAX(maxfd, local_sockets[i].fd);
            }
            rc = select(maxfd + 1, &readfds, NULL, NULL, &tv);
            if(rc < 0) {
                if(errno != EINTR) {
                    perror("select");
                    sleep(1);
                }
                rc = 0;
                FD_ZERO(&readfds);
            }
        }

        gettime(&now);

        if(exiting)
            break;

        if(kernel_socket >= 0 && FD_ISSET(kernel_socket, &readfds)) {
            struct kernel_filter filter = {0};
            filter.route = kernel_route_notify;
            filter.addr = kernel_addr_notify;
            filter.link = kernel_link_notify;
            filter.rule = kernel_rule_notify;
            kernel_callback(&filter);
        }

        if(FD_ISSET(protocol_socket, &readfds)) {
            rc = babel_recv(protocol_socket,
                            receive_buffer, receive_buffer_size,
                            (struct sockaddr*)&sin6, sizeof(sin6));
            if(rc < 0) {
                if(errno != EAGAIN && errno != EINTR) {
                    perror("recv");
                    sleep(1);
                }
            } else {
                FOR_ALL_INTERFACES(ifp) {
                    if(!if_up(ifp))
                        continue;
                    if(ifp->ifindex == sin6.sin6_scope_id) {
                        parse_packet((unsigned char*)&sin6.sin6_addr, ifp,
                                     receive_buffer, rc);
                        VALGRIND_MAKE_MEM_UNDEFINED(receive_buffer,
                                                    receive_buffer_size);
                        break;
                    }
                }
            }
        }

        if(local_server_socket >= 0 && FD_ISSET(local_server_socket, &readfds))
           accept_local_connections();

        i = 0;
        while(i < num_local_sockets) {
            if(FD_ISSET(local_sockets[i].fd, &readfds)) {
                rc = local_read(&local_sockets[i]);
                if(rc <= 0) {
                    if(rc < 0) {
                        if(errno == EINTR || errno == EAGAIN)
                            continue;
                        perror("read(local_socket)");
                    }
                    local_socket_destroy(i);
                }
            }
            i++;
        }

        if(reopening) {
            kernel_dump_time = now.tv_sec;
            check_neighbours_timeout = now;
            expiry_time = now.tv_sec;
            rc = reopen_logfile();
            if(rc < 0) {
                perror("reopen_logfile");
                break;
            }
            reopening = 0;
        }

        if(kernel_link_changed || kernel_addr_changed) {
            check_interfaces();
            kernel_link_changed = 0;
        }

        if(kernel_routes_changed || kernel_addr_changed ||
           kernel_rules_changed || now.tv_sec >= kernel_dump_time) {
            rc = check_xroutes(1);
            if(rc < 0)
                fprintf(stderr, "Warning: couldn't check exported routes.\n");
            rc = check_rules();
            if(rc < 0)
                fprintf(stderr, "Warning: couldn't check rules.\n");
            kernel_routes_changed = kernel_rules_changed =
                kernel_addr_changed = 0;
            if(kernel_socket >= 0)
                kernel_dump_time = now.tv_sec + roughly(300);
            else
                kernel_dump_time = now.tv_sec + roughly(30);
        }

        if(timeval_compare(&check_neighbours_timeout, &now) < 0) {
            int msecs;
            msecs = check_neighbours();
            /* Multiply by 3/2 to allow neighbours to expire. */
            msecs = MAX(3 * msecs / 2, 10);
            schedule_neighbours_check(msecs, 1);
        }

        if(timeval_compare(&check_interfaces_timeout, &now) < 0) {
            check_interfaces();
            schedule_interfaces_check(30000, 1);
        }

        if(now.tv_sec >= expiry_time) {
            expire_routes();
            expire_resend();
            expiry_time = now.tv_sec + roughly(30);
        }

        if(now.tv_sec >= source_expiry_time) {
            expire_sources();
            source_expiry_time = now.tv_sec + roughly(300);
        }

        FOR_ALL_INTERFACES(ifp) {
            if(!if_up(ifp))
                continue;
            if(timeval_compare(&now, &ifp->hello_timeout) >= 0)
                send_hello(ifp);
            if(timeval_compare(&now, &ifp->update_timeout) >= 0)
                send_update(ifp, 0, NULL, 0, NULL, 0);
            if(timeval_compare(&now, &ifp->update_flush_timeout) >= 0)
                flushupdates(ifp);
        }

        if(resend_time.tv_sec != 0) {
            if(timeval_compare(&now, &resend_time) >= 0)
                do_resend();
        }

        if(unicast_flush_timeout.tv_sec != 0) {
            if(timeval_compare(&now, &unicast_flush_timeout) >= 0)
                flush_unicast(1);
        }

        FOR_ALL_INTERFACES(ifp) {
            if(!if_up(ifp))
                continue;
            if(ifp->flush_timeout.tv_sec != 0) {
                if(timeval_compare(&now, &ifp->flush_timeout) >= 0)
                    flushbuf(ifp);
            }
        }

        if(UNLIKELY(debug || dumping)) {
            dump_tables(stdout);
            dumping = 0;
        }
    }
Beispiel #19
0
int
main(int argc, char **argv)
{
    int i, opt, rc;
    int sock;
    struct timeval now;

    gettime(&now);

    inet_pton(AF_INET6, "ff02::1:6", &babel_group);
    babel_port = 6696;

    srand(now.tv_sec ^ now.tv_usec);

    while(1) {
        opt = getopt(argc, argv, "p:u:h:c:");
        if(opt < 0)
            break;

        switch(opt) {
        case 'p':               /* prefix */
            if(have_prefix)
                goto usage;
            rc = inet_pton(AF_INET6, optarg, &myprefix);
            if(rc != 1)
                goto usage;
            have_prefix = 1;
            break;
        case 'u':               /* update interval */
            update_interval = atoi(optarg);
            if(update_interval <= 0)
                goto usage;
            break;
        case 'h':               /* hello interval */
            hello_interval = atoi(optarg);
            if(hello_interval <= 0)
                goto usage;
            break;
        case 'c':               /* link cost */
            link_cost = atoi(optarg);
            if(link_cost <= 0)
                goto usage;
            break;
        default:
            goto usage;
        }
    }

    if(!have_prefix)
        fprintf(stderr, "Warning: you didn't ask me to announce a prefix.\n");

    if(argc - optind > MAXINTERFACES) {
        fprintf(stderr, "Too many interfaces.\n");
        exit(1);
    }

    for(i = 0; i < argc - optind; i++) {
        int index;

        index = if_nametoindex(argv[optind + i]);
        if(index <= 0) {
            fprintf(stderr, "Unknown interface %s\n", argv[i]);
            exit(1);
        }
        memset(&interfaces[i], 0, sizeof(interfaces[i]));
        interfaces[i].ifindex = index;
        interfaces[i].ifname = argv[optind + i];
        rc = get_local_address(interfaces[i].ifindex, &interfaces[i].address);
        if(rc < 0) {
            perror("get_local_address");
            fprintf(stderr, "Continuing anyway -- "
                    "won't perform reachibility detection "
                    "on interface %s.\n", interfaces[i].ifname);
        }
        interfaces[i].seqno = rand() & 0xFFFF;
    }
    numinterfaces = argc - optind;

    random_eui64(my_router_id);
    myseqno = rand() & 0xFFFF;

    sock = babel_socket(babel_port);
    if(sock < 0) {
        perror("babel_socket");
        exit(1);
    }

    for(i = 0; i < numinterfaces; i++) {
        rc = join_group(sock, interfaces[i].ifindex, &babel_group);
        if(rc < 0) {
            perror("setsockopt(IPV6_JOIN_GROUP)");
            exit(1);
        }
    }

    catch_signals(sigexit);

    while(!exiting) {
        struct sockaddr_in6 sin6;
        unsigned char buf[BUF_SIZE];
        struct timeval tv, update, zerotv = {0, 0};
        fd_set readfds;
        int hello_count = 0;

        /* Compute when to wake up. */
        gettime(&now);
        timeval_add_msec(&tv, &last_hello, hello_interval * 700 + rand() % 300);
        timeval_add_msec(&update, &last_update,
                         update_interval * 700 + rand() % 300);
        timeval_min(&tv, &update);

        if(selected_nexthop_metric < INFINITY) {
            int n = find_neighbour(selected_interface, &selected_nexthop, 0);
            assert(n >= 0);
            timeval_min(&tv, &neighbours[n].timeout);
            timeval_min(&tv, &selected_nexthop_timeout);
        }

        if(timeval_compare(&tv, &now) > 0)
            timeval_minus(&tv, &tv, &now);
        else
            tv = zerotv;

        FD_ZERO(&readfds);
        FD_SET(sock, &readfds);

        rc = select(sock + 1, &readfds, NULL, NULL, &tv);
        if(rc < 0 && errno != EINTR) {
            perror("select");
            nap(1000);
            continue;
        }

        if(rc > 0) {
            /* Oh good, a packet. */
            socklen_t sin6len = sizeof(sin6);
            rc = recvfrom(sock, buf, BUF_SIZE, 0,
                          (struct sockaddr*)&sin6, &sin6len);

            if(rc < 0 || rc >= BUF_SIZE) {
                if(rc < 0 && errno != EAGAIN) {
                    perror("recv");
                    nap(100);
                }
                continue;
            }

            if(sin6.sin6_family != PF_INET6) {
                fprintf(stderr, "Received unexpected packet in family %d.\n",
                        sin6.sin6_family);
                nap(100);
                continue;
            }

            i = find_interface(sin6.sin6_scope_id);
            if(i < 0) {
                fprintf(stderr, "Received packet on unknown interface %d.\n",
                        sin6.sin6_scope_id);
                nap(100);
                continue;
            }
            handle_packet(sock, buf, rc, &interfaces[i], &sin6.sin6_addr);
        }

        gettime(&now);

        if(selected_nexthop_metric < INFINITY) {
            int n = find_neighbour(selected_interface, &selected_nexthop, 0);
            assert(n >= 0);

            if(neighbour_expired(n, &now)) {
                /* Expire neighbour. */
                flush_default_route();
                delete_neighbour(n);
            } else if(timeval_compare(&now, &selected_nexthop_timeout) > 0) {
                /* Expire route. */
                flush_default_route();
            }
            /* Send a request? */
        }

        /* Is it time to send hellos? */
        if(timeval_minus_msec(&now, &last_hello) > hello_interval * 700) {
            for(i = 0; i < numinterfaces; i++)
                send_hello(sock, &interfaces[i]);
            last_hello = now;
            hello_count++;
            /* Make an expiry pass every ten hellos. */
            if(hello_count >= 10) {
                expire_neighbours();
                hello_count = 0;
            }
        }

        /* Is it time to send an update? */
        if(timeval_minus_msec(&now, &last_update) > update_interval * 700) {
            for(i = 0; i < numinterfaces; i++)
                send_update(sock, &interfaces[i], 0);
            last_update = now;
        }
    }

    /* Send a bunch of retractions. */
    for(i = 0; i < numinterfaces; i++)
        send_update(sock, &interfaces[i], 1);

    flush_default_route();

    return 0;

 usage:
    fprintf(stderr,
            "Usage: sbabeld "
            "[-p prefix] [-u interval] [-h interval] [-c cost] interface...\n");
    return 1;
}