Beispiel #1
0
int
main(int argc, char *argv[])
{
    lexicon_t *lex;
    model_def_t *omdef;
    model_def_t *dmdef;
    uint32 n_stream;
    const uint32 *veclen;
    uint32 ts_off;
    uint32 ts_cnt;
    FILE *fp;
    timing_t *all_timer= NULL;
    timing_t *km_timer= NULL;
    timing_t *var_timer= NULL;
    timing_t *em_timer= NULL;

    if (main_initialize(argc, argv, &lex, &omdef, &dmdef) != S3_SUCCESS) {
	return -1;
    }

    km_timer = timing_get("km");
    var_timer = timing_get("var");
    em_timer = timing_get("em");
    all_timer = timing_get("all");

    n_stream = feat_n_stream();
    veclen = feat_vecsize();

    if (strcmp((const char *)cmd_ln_access("-gthobj"), "state") == 0) {
	ts_off = *(uint32 *)cmd_ln_access("-tsoff");

	if (cmd_ln_access("-tscnt") == NULL) {
	    ts_cnt = omdef->n_tied_state - ts_off;
 	}
	else {
	    ts_cnt = *(uint32 *)cmd_ln_access("-tscnt");
	}

	if (ts_off + ts_cnt > omdef->n_tied_state) {
	    E_FATAL("Too many tied states specified\n");
	}

	n_tot_frame = 0;

	if (all_timer)
	    timing_reset(all_timer);
	if (km_timer)
	    timing_reset(km_timer);
	if (var_timer)
	    timing_reset(var_timer);
	if (em_timer)
	    timing_reset(em_timer);

	if (all_timer)
	    timing_start(all_timer);
	if (init_state((const char *)cmd_ln_access("-segdmpfn"),
		       (const char *)cmd_ln_access("-segidxfn"),
		       *(int32 *)cmd_ln_access("-ndensity"),
		       n_stream,
		       veclen,
		       *(int32 *)cmd_ln_access("-reest"),
		       (const char *)cmd_ln_access("-mixwfn"),
		       (const char *)cmd_ln_access("-meanfn"),
		       (const char *)cmd_ln_access("-varfn"),
		       ts_off,
		       ts_cnt,
		       omdef->n_tied_state,
		       (dmdef != NULL ? dmdef->n_tied_state : omdef->n_tied_state))
		       != S3_SUCCESS) {
	    E_ERROR("Unable to train [%u %u]\n", ts_off, ts_off+ts_cnt-1);
	}
	if (all_timer)
	    timing_stop(all_timer);

	if (n_tot_frame > 0) {
	    E_INFO("TOTALS:");
	    if (km_timer) {
		E_INFOCONT(" km %4.3fx %4.3e", 
			km_timer->t_cpu / (n_tot_frame * 0.01),
			(km_timer->t_cpu > 0 ?
			 km_timer->t_elapsed / km_timer->t_cpu : 0.0));
	    }
	    if (var_timer) {
		E_INFOCONT(" var %4.3fx %4.3e", 
			var_timer->t_cpu / (n_tot_frame * 0.01),
			(var_timer->t_cpu > 0 ?
			 var_timer->t_elapsed / var_timer->t_cpu : 0.0));
	    }
	    if (em_timer) {
		E_INFOCONT(" em %4.3fx %4.3e", 
			em_timer->t_cpu / (n_tot_frame * 0.01),
			(em_timer->t_cpu > 0 ?
			 em_timer->t_elapsed / em_timer->t_cpu : 0.0));
	    }
	    if (all_timer) {
		E_INFOCONT(" all %4.3fx %4.3e", 
			all_timer->t_cpu / (n_tot_frame * 0.01),
			(all_timer->t_cpu > 0 ?
			 all_timer->t_elapsed / all_timer->t_cpu : 0.0));
	    }
	    E_INFOCONT("\n");
	}
	
	if (cmd_ln_access("-tsrngfn") != NULL) {
	    fp = fopen((const char *)cmd_ln_access("-tsrngfn"),
		       "w");
	    if (fp == NULL) {
		E_FATAL_SYSTEM("Unable to open %s for reading",
			       (const char *)cmd_ln_access("-tsrngfn"));
	    }
	    
	    fprintf(fp, "%d %d\n", ts_off, ts_cnt);
	}
	else if (ts_cnt != omdef->n_tied_state) {
	    E_WARN("Subset of tied states specified, but no -tsrngfn arg");
	}
    }
    else if (strcmp((const char *)cmd_ln_access("-gthobj"), "single") == 0) {
	n_tot_frame = 0;

	if (all_timer)
	    timing_reset(all_timer);
	if (km_timer)
	    timing_reset(km_timer);
	if (var_timer)
	    timing_reset(var_timer);
	if (em_timer)
	    timing_reset(em_timer);

	if (all_timer)
	    timing_start(all_timer);
	if (init_state((const char *)cmd_ln_access("-segdmpfn"),
		       NULL,	/* No index -> single class dump file */
		       *(int32 *)cmd_ln_access("-ndensity"),
		       n_stream,
		       veclen,
		       *(int32 *)cmd_ln_access("-reest"),
		       (const char *)cmd_ln_access("-mixwfn"),
		       (const char *)cmd_ln_access("-meanfn"),
		       (const char *)cmd_ln_access("-varfn"),
		       0,
		       1,
		       1,
		       1) != S3_SUCCESS) {
	    E_ERROR("Unable to train\n");
	}
	if (all_timer)
	    timing_stop(all_timer);

	if (n_tot_frame > 0) {
	    E_INFO("TOTALS:");
	    if (km_timer) {
		E_INFOCONT(" km %4.3fx %4.3e", 
			km_timer->t_cpu / (n_tot_frame * 0.01),
			(km_timer->t_cpu > 0 ?
			 km_timer->t_elapsed / km_timer->t_cpu : 0.0));
	    }
	    if (var_timer) {
		E_INFOCONT(" var %4.3fx %4.3e", 
			var_timer->t_cpu / (n_tot_frame * 0.01),
			(var_timer->t_cpu > 0 ?
			 var_timer->t_elapsed / var_timer->t_cpu : 0.0));
	    }
	    if (em_timer) {
		E_INFOCONT(" em %4.3fx %4.3e", 
			em_timer->t_cpu / (n_tot_frame * 0.01),
			(em_timer->t_cpu > 0 ?
			 em_timer->t_elapsed / em_timer->t_cpu : 0.0));
	    }
	    if (all_timer) {
		E_INFOCONT(" all %4.3fx %4.3e", 
			all_timer->t_cpu / (n_tot_frame * 0.01),
			(all_timer->t_cpu > 0 ?
			 all_timer->t_elapsed / all_timer->t_cpu : 0.0));
	    }
	    E_INFOCONT("\n");
	}
    }

    return 0;
}
Beispiel #2
0
static int
init_state(const char *obsdmp,
	   const char *obsidx,
	   uint32 n_density,
	   uint32 n_stream,
	   const uint32 *veclen,
	   int reest,
	   const char *mixwfn,
	   const char *meanfn,
	   const char *varfn,
	   uint32 ts_off,
	   uint32 ts_cnt,
	   uint32 n_ts,
	   uint32 n_d_ts)
{
    uint32 blksz;
    vector_t ***mean;
    vector_t ***var = NULL;
    vector_t ****fullvar = NULL;
    float32  ***mixw = NULL;
    uint32 n_frame;
    uint32 ignore = 0;
    codew_t *label;
    uint32 n_corpus = 0;
    float64 sqerr;
    float64 tot_sqerr;
    segdmp_type_t t;
    uint32 i, j, ts, n;
    timing_t *km_timer;
    timing_t *var_timer;
    timing_t *em_timer;
    int32 full_covar;

    km_timer = timing_get("km");
    var_timer = timing_get("var");
    em_timer = timing_get("em");
    
    blksz = feat_blksize();

    full_covar = cmd_ln_int32("-fullvar");
    /* fully-continuous for now */
    mean = gauden_alloc_param(ts_cnt, n_stream, n_density, veclen);
    if (full_covar)
	    fullvar  = gauden_alloc_param_full(ts_cnt, n_stream, n_density, veclen);
    else
	    var  = gauden_alloc_param(ts_cnt, n_stream, n_density, veclen);
    if (mixwfn)
	mixw = (float32 ***)ckd_calloc_3d(ts_cnt,
					  n_stream,
					  n_density,
					  sizeof(float32));

    if ((const char *)cmd_ln_access("-segidxfn")) {
	E_INFO("Multi-class dump\n");
	if (segdmp_open_read((const char **)cmd_ln_access("-segdmpdirs"),
			     (const char *)cmd_ln_access("-segdmpfn"),
			     (const char *)cmd_ln_access("-segidxfn"),
			     &n,
			     &t) != S3_SUCCESS) {
	    E_FATAL("Unable to open dumps\n");
	}

	if (n != n_d_ts) {
	    E_FATAL("Expected %u tied-states in dump, but apparently %u\n",
		    n_d_ts, n);
	}
	if (t != SEGDMP_TYPE_FEAT) {
	    E_FATAL("Expected feature dump, but instead saw %u\n", t);
	}
	
	multiclass = TRUE;
    }
    else {
	E_INFO("1-class dump file\n");
	
	multiclass = FALSE;
	
	dmp_fp = s3open((const char *)cmd_ln_access("-segdmpfn"), "rb",
			&dmp_swp);
	if (dmp_fp == NULL) {
	    E_ERROR_SYSTEM("Unable to open dump file %s for reading\n",
			   (const char *)cmd_ln_access("-segdmpfn"));

	    return S3_ERROR;
	}

	if (s3read(&n_frame, sizeof(uint32), 1, dmp_fp, dmp_swp, &ignore) != 1) {
	    E_ERROR_SYSTEM("Unable to open dump file %s for reading\n",
			   (const char *)cmd_ln_access("-segdmpfn"));

	    return S3_ERROR;
	}

	data_offset = ftell(dmp_fp);
    }

    tot_sqerr = 0;
    for (i = 0; i < ts_cnt; i++) {
	ts = ts_off + i;

	/* stride not accounted for yet */
	if (o2d == NULL) {
	    if (multiclass)
		n_frame = segdmp_n_seg(ts);
	}
	else {
	    for (j = 0, n_frame = 0; j < n_o2d[ts]; j++) {
		n_frame += segdmp_n_seg(o2d[ts][j]);
	    }
	}
    
	E_INFO("Corpus %u: sz==%u frames%s\n",
	       ts, n_frame,
	       (n_frame > *(uint32 *)cmd_ln_access("-vartiethr") ? "" : " tied var"));

	if (n_frame == 0) {
	    continue;
	}


	E_INFO("Convergence ratios are abs(cur - prior) / abs(prior)\n");
	/* Do some variety of k-means clustering */
	if (km_timer)
	    timing_start(km_timer);
	sqerr = cluster(ts, n_stream, n_frame, veclen, mean[i], n_density, &label);
	if (km_timer)
	    timing_stop(km_timer);

	if (sqerr < 0) {
	    E_ERROR("Unable to do k-means for state %u; skipping...\n", ts);

	    continue;
	}

	/* Given the k-means and assuming equal prior liklihoods
	 * compute the variances */
	if (var_timer)
	    timing_start(var_timer);
	if (full_covar)
		full_variances(ts, mean[i], fullvar[i], n_density, veclen,
			       n_frame, n_stream, label);
	else
		variances(ts, mean[i], var[i], n_density, veclen, n_frame, n_stream, label);
	if (var_timer)
	    timing_stop(var_timer);

	if (mixwfn) {
	    /* initialize the mixing weights by counting # of occurrances
	     * of the top codeword over the corpus and normalizing */
	    init_mixw(mixw[i], mean[i], n_density, veclen, n_frame, n_stream, label);

	    ckd_free(label);

	    if (reest == TRUE && full_covar)
		E_ERROR("EM re-estimation is not yet supported for full covariances\n");
	    else if (reest == TRUE) {
		if (em_timer)
		    timing_start(em_timer);
		/* Do iterations of EM to estimate the mixture densities */
		reest_sum(ts, mean[i], var[i], mixw[i], n_density, n_stream,
			  n_frame, veclen,
			  *(uint32 *)cmd_ln_access("-niter"),
			  FALSE,
			  *(uint32 *)cmd_ln_access("-vartiethr"));
		if (em_timer)
		    timing_stop(em_timer);
	    }
	}
	
	++n_corpus;
	tot_sqerr += sqerr;
	    
	E_INFO("sqerr [%u] == %e\n", ts, sqerr);
    }

    if (n_corpus > 0) {
	E_INFO("sqerr = %e tot %e rms\n", tot_sqerr, sqrt(tot_sqerr/n_corpus));
    }

    if (!multiclass)
	s3close(dmp_fp);
    
    if (meanfn) {
	if (s3gau_write(meanfn,
			(const vector_t ***)mean,
			ts_cnt,
			n_stream,
			n_density,
			veclen) != S3_SUCCESS) {
	    return S3_ERROR;
	}
    }
    else {
	E_INFO("No mean file given; none written\n");
    }
		    
    if (varfn) {
	if (full_covar) {
	    if (s3gau_write_full(varfn,
				 (const vector_t ****)fullvar,
				 ts_cnt,
				 n_stream,
				 n_density,
				 veclen) != S3_SUCCESS)
		return S3_ERROR;
	}
	else {
	    if (s3gau_write(varfn,
				 (const vector_t ***)var,
				 ts_cnt,
				 n_stream,
				 n_density,
				 veclen) != S3_SUCCESS)
		return S3_ERROR;
	}
    }
    else {
	E_INFO("No variance file given; none written\n");
    }

    if (mixwfn) {
	if (s3mixw_write(mixwfn,
			 mixw,
			 ts_cnt,
			 n_stream,
			 n_density) != S3_SUCCESS) {
	    return S3_ERROR;
	}
    }
    else {
	E_INFO("No mixing weight file given; none written\n");
    }

    return S3_SUCCESS;
}
int32
viterbi_update(float64 *log_forw_prob,
	       vector_t **feature,
	       uint32 n_obs,
	       state_t *state_seq,
	       uint32 n_state,
	       model_inventory_t *inv,
	       float64 a_beam,
	       float32 spthresh,
	       s3phseg_t *phseg,
	       int32 mixw_reest,
	       int32 tmat_reest,
	       int32 mean_reest,
	       int32 var_reest,
	       int32 pass2var,
	       int32 var_is_full,
	       FILE *pdumpfh,
	       feat_t *fcb)
{
    float64 *scale = NULL;
    float64 **dscale = NULL;
    float64 **active_alpha;
    uint32 **active_astate;
    uint32 **bp;
    uint32 *n_active_astate;
    gauden_t *g;		/* Gaussian density parameters and
				   reestimation sums */
    float32 ***mixw;		/* all mixing weights */
    float64 ***now_den = NULL;	/* Short for den[t] */
    uint32 ***now_den_idx = NULL;/* Short for den_idx[t] */
    uint32 *active_cb;
    uint32 n_active_cb;
    float32 **tacc;		/* Transition matrix reestimation sum accumulators
				   for the utterance. */
    float32 ***wacc;		/* mixing weight reestimation sum accumulators
				   for the utterance. */
    float32 ***denacc = NULL;	/* mean/var reestimation accumulators for time t */
    size_t denacc_size;		/* Total size of data references in denacc.  Allows
				   for quick clears between time frames */
    uint32 n_lcl_cb;
    uint32 *cb_inv;
    uint32 i, j, q;
    int32 t;
    uint32 n_feat;
    uint32 n_density;
    uint32 n_top;
    int ret;
    timing_t *fwd_timer = NULL;
    timing_t *rstu_timer = NULL;
    timing_t *gau_timer = NULL;
    timing_t *rsts_timer = NULL;
    timing_t *rstf_timer = NULL;
    float64 log_fp;	/* accumulator for the log of the probability
			 * of observing the input given the model */
    uint32 max_n_next = 0;
    uint32 n_cb;

    static float64 *p_op = NULL;
    static float64 *p_ci_op = NULL;
    static float64 **d_term = NULL;
    static float64 **d_term_ci = NULL;

    /* caller must ensure that there is some non-zero amount
       of work to be done here */
    assert(n_obs > 0);
    assert(n_state > 0);

    /* Get the forward estimation CPU timer */
    fwd_timer = timing_get("fwd");
    /* Get the per utterance reestimation CPU timer */
    rstu_timer = timing_get("rstu");
    /* Get the Gaussian density evaluation CPU timer */
    gau_timer = timing_get("gau");
    /* Get the per state reestimation CPU timer */
    rsts_timer = timing_get("rsts");
    /* Get the per frame reestimation CPU timer */
    rstf_timer = timing_get("rstf");

    g = inv->gauden;
    n_feat = gauden_n_feat(g);
    n_density = gauden_n_density(g);
    n_top = gauden_n_top(g);
    n_cb = gauden_n_mgau(g);

    if (p_op == NULL) {
	p_op    = ckd_calloc(n_feat, sizeof(float64));
	p_ci_op = ckd_calloc(n_feat, sizeof(float64));
    }

    if (d_term == NULL) {
	d_term    = (float64 **)ckd_calloc_2d(n_feat, n_top, sizeof(float64));
	d_term_ci = (float64 **)ckd_calloc_2d(n_feat, n_top, sizeof(float64));
    }

    scale = (float64 *)ckd_calloc(n_obs, sizeof(float64));
    dscale = (float64 **)ckd_calloc(n_obs, sizeof(float64 *));
    n_active_astate = (uint32 *)ckd_calloc(n_obs, sizeof(uint32));
    active_alpha  = (float64 **)ckd_calloc(n_obs, sizeof(float64 *));
    active_astate = (uint32 **)ckd_calloc(n_obs, sizeof(uint32 *));
    active_cb = ckd_calloc(2*n_state, sizeof(uint32));
    bp = (uint32 **)ckd_calloc(n_obs, sizeof(uint32 *));

    /* Run forward algorithm, which has embedded Viterbi. */
    if (fwd_timer)
	timing_start(fwd_timer);
    ret = forward(active_alpha, active_astate, n_active_astate, bp,
		  scale, dscale,
		  feature, n_obs, state_seq, n_state,
		  inv, a_beam, phseg, 0);
    /* Dump a phoneme segmentation if requested */
    if (cmd_ln_str("-outphsegdir")) {
	    const char *phsegdir;
	    char *segfn, *uttid;

	    phsegdir = cmd_ln_str("-outphsegdir");
	    uttid = (cmd_ln_int32("-outputfullpath")
		     ? corpus_utt_full_name() : corpus_utt());
	    segfn = ckd_calloc(strlen(phsegdir) + 1
			       + strlen(uttid)
			       + strlen(".phseg") + 1, 1);
	    strcpy(segfn, phsegdir);
	    strcat(segfn, "/");
	    strcat(segfn, uttid);
	    strcat(segfn, ".phseg");
	    write_phseg(segfn, inv, state_seq, active_astate, n_active_astate,
			n_state, n_obs, active_alpha, scale, bp);
	    ckd_free(segfn);
    }
    if (fwd_timer)
	timing_stop(fwd_timer);


    if (ret != S3_SUCCESS) {

	/* Some problem with the utterance, release per utterance storage and
	 * forget about adding the utterance accumulators to the global accumulators */

	goto all_done;
    }

    mixw = inv->mixw;

    if (mixw_reest) {
	/* Need to reallocate mixing accumulators for utt */
	if (inv->l_mixw_acc) {
	    ckd_free_3d((void ***)inv->l_mixw_acc);
	    inv->l_mixw_acc = NULL;
	}
	inv->l_mixw_acc = (float32 ***)ckd_calloc_3d(inv->n_mixw_inverse,
						     n_feat,
						     n_density,
						     sizeof(float32));
    }
    wacc = inv->l_mixw_acc;
    n_lcl_cb = inv->n_cb_inverse;
    cb_inv = inv->cb_inverse;

    /* Allocate local accumulators for mean, variance reestimation
       sums if necessary */
    gauden_alloc_l_acc(g, n_lcl_cb,
		       mean_reest, var_reest,
		       var_is_full);

    if (tmat_reest) {
	if (inv->l_tmat_acc) {
	    ckd_free_2d((void **)inv->l_tmat_acc);
	    inv->l_tmat_acc = NULL;
	}
	for (i = 0; i < n_state; i++) {
	    if (state_seq[i].n_next > max_n_next)
		max_n_next = state_seq[i].n_next;
	}
	inv->l_tmat_acc = (float32 **)ckd_calloc_2d(n_state,
						    max_n_next,
						    sizeof(float32));
    }
    /* transition matrix reestimation sum accumulators
       for the utterance */
    tacc = inv->l_tmat_acc;

    n_active_cb = 0;
    now_den = (float64 ***)ckd_calloc_3d(n_lcl_cb,
					 n_feat,
					 n_top,
					 sizeof(float64));
    now_den_idx =  (uint32 ***)ckd_calloc_3d(n_lcl_cb,
					     n_feat,
					     n_top,
					     sizeof(uint32));

    if (mean_reest || var_reest) {
	/* allocate space for the per frame density counts */
	denacc = (float32 ***)ckd_calloc_3d(n_lcl_cb,
					    n_feat,
					    n_density,
					    sizeof(float32));

	/* # of bytes required to store all weighted vectors */
	denacc_size = n_lcl_cb * n_feat * n_density * sizeof(float32);
    }
    else {
	denacc = NULL;
	denacc_size = 0;
    }

    /* Okay now run through the backtrace and accumulate counts. */
    /* Find the non-emitting ending state */
    for (q = 0; q < n_active_astate[n_obs-1]; ++q) {
	if (active_astate[n_obs-1][q] == n_state-1)
	    break;
    }
    if (q == n_active_astate[n_obs-1]) {
	E_ERROR("Failed to align audio to trancript: final state of the search is not reached\n");
	ret = S3_ERROR;
	goto all_done;
    }

    for (t = n_obs-1; t >= 0; --t) {
	uint32 l_cb;
	uint32 l_ci_cb;
	float64 op, p_reest_term;
	uint32 prev;

	j = active_astate[t][q];

	/* Follow any non-emitting states at time t first. */
	while (state_seq[j].mixw == TYING_NON_EMITTING) {
	    prev = active_astate[t][bp[t][q]];

#if VITERBI_DEBUG
	    printf("Following non-emitting state at time %d, %u => %u\n",
		   t, j, prev);
#endif
	    /* Backtrace and accumulate transition counts. */
	    if (tmat_reest) {
		assert(tacc != NULL);
		tacc[prev][j - prev] += 1.0;
	    }
	    q = bp[t][q];
	    j = prev;
	}

	/* Now accumulate statistics for the real state. */
	l_cb = state_seq[j].l_cb;
	l_ci_cb = state_seq[j].l_ci_cb;
	n_active_cb = 0;

	if (gau_timer)
	    timing_start(gau_timer);

	gauden_compute_log(now_den[l_cb],
			   now_den_idx[l_cb],
			   feature[t],
			   g,
			   state_seq[j].cb,
			   NULL);
	active_cb[n_active_cb++] = l_cb;

	if (l_cb != l_ci_cb) {
	    gauden_compute_log(now_den[l_ci_cb],
			       now_den_idx[l_ci_cb],
			       feature[t],
			       g,
			       state_seq[j].ci_cb,
			       NULL);
	    active_cb[n_active_cb++] = l_ci_cb;
	}
	gauden_scale_densities_bwd(now_den, now_den_idx,
				   &dscale[t],
				   active_cb, n_active_cb, g);

	assert(state_seq[j].mixw != TYING_NON_EMITTING);
	/* Now calculate mixture densities. */
	/* This is the normalizer sum_m c_{jm} p(o_t|\lambda_{jm}) */
	op = gauden_mixture(now_den[l_cb], now_den_idx[l_cb],
			    mixw[state_seq[j].mixw], g);
	if (gau_timer)
	    timing_stop(gau_timer);

	if (rsts_timer)
	    timing_start(rsts_timer);
	/* Make up this bogus value to be consistent with backward.c */
	p_reest_term = 1.0 / op;

	/* Compute the output probability excluding the contribution
	 * of each feature stream.  i.e. p_op[0] is the output
	 * probability excluding feature stream 0 */
	partial_op(p_op,
		   op,
		   now_den[l_cb],
		   now_den_idx[l_cb],
		   mixw[state_seq[j].mixw],
		   n_feat,
		   n_top);

	/* compute the probability of each (of possibly topn) density */
	den_terms(d_term,
		  p_reest_term,
		  p_op,
		  now_den[l_cb],
		  now_den_idx[l_cb],
		  mixw[state_seq[j].mixw],
		  n_feat,
		  n_top);

	if (l_cb != l_ci_cb) {
	    /* For each feature stream f, compute:
	     *     sum_k(mixw[f][k] den[f][k])
	     * and store the results in p_ci_op */
	    partial_ci_op(p_ci_op,
			  now_den[l_ci_cb],
			  now_den_idx[l_ci_cb],
			  mixw[state_seq[j].ci_mixw],
			  n_feat,
			  n_top);

	    /* For each feature stream and density compute the terms:
	     *   w[f][k] den[f][k] / sum_k(w[f][k] den[f][k]) * post_j
	     * and store results in d_term_ci */
	    den_terms_ci(d_term_ci,
			 1.0, /* post_j = 1.0 */
			 p_ci_op,
			 now_den[l_ci_cb],
			 now_den_idx[l_ci_cb],
			 mixw[state_seq[j].ci_mixw],
			 n_feat,
			 n_top);
	}
		    

	/* accumulate the probability for each density in the mixing
	 * weight reestimation accumulators */
	if (mixw_reest) {
	    accum_den_terms(wacc[state_seq[j].l_mixw], d_term,
			    now_den_idx[l_cb], n_feat, n_top);

	    /* check if mixw and ci_mixw are different to avoid
	     * doubling the EM counts in a CI run. */
	    if (state_seq[j].mixw != state_seq[j].ci_mixw) {
                if (n_cb < inv->n_mixw) {
                    /* semi-continuous, tied mixture, and discrete case */
		    accum_den_terms(wacc[state_seq[j].l_ci_mixw], d_term,
				    now_den_idx[l_cb], n_feat, n_top);
		}
		else {
		    /* continuous case */
		    accum_den_terms(wacc[state_seq[j].l_ci_mixw], d_term_ci,
				    now_den_idx[l_ci_cb], n_feat, n_top);
		}
	    }
	}
		    
	/* accumulate the probability for each density in the 
	 * density reestimation accumulators */
	if (mean_reest || var_reest) {
	    accum_den_terms(denacc[l_cb], d_term,
			    now_den_idx[l_cb], n_feat, n_top);
	    if (l_cb != l_ci_cb) {
		accum_den_terms(denacc[l_ci_cb], d_term_ci,
				now_den_idx[l_ci_cb], n_feat, n_top);
	    }
	}
		
	if (rsts_timer)
	    timing_stop(rsts_timer);
	/* Note that there is only one state/frame so this is kind of
	   redundant */
 	if (rstf_timer)
	    timing_start(rstf_timer);
	if (mean_reest || var_reest) {
	    /* Update the mean and variance reestimation accumulators */
	    if (pdumpfh)
		fprintf(pdumpfh, "time %d:\n", t);
	    accum_gauden(denacc,
			 cb_inv,
			 n_lcl_cb,
			 feature[t],
			 now_den_idx,
			 g,
			 mean_reest,
			 var_reest,
			 pass2var,
			 inv->l_mixw_acc,
			 var_is_full,
			 pdumpfh,
			 fcb);
	    memset(&denacc[0][0][0], 0, denacc_size);
	}
	if (rstf_timer)
	    timing_stop(rstf_timer);

	if (t > 0) { 
	    prev = active_astate[t-1][bp[t][q]];
#if VITERBI_DEBUG
	    printf("Backtrace at time %d, %u => %u\n",
		   t, j, prev);
#endif
	    /* Backtrace and accumulate transition counts. */
	    if (tmat_reest) {
		assert(tacc != NULL);
		tacc[prev][j-prev] += 1.0;
	    }
	    q = bp[t][q];
	    j = prev;
	}
    }

    /* If no error was found, add the resulting utterance reestimation
     * accumulators to the global reestimation accumulators */
    if (rstu_timer)
	timing_start(rstu_timer);
    accum_global(inv, state_seq, n_state,
		 mixw_reest, tmat_reest, mean_reest, var_reest,
		 var_is_full);
    if (rstu_timer)
	timing_stop(rstu_timer);

    /* Find the final state */
    for (i = 0; i < n_active_astate[n_obs-1]; ++i) {
	if (active_astate[n_obs-1][i] == n_state-1)
	    break;
    }
    /* Calculate log[ p( O | \lambda ) ] */
    assert(active_alpha[n_obs-1][i] > 0);
    log_fp = log(active_alpha[n_obs-1][i]);
    for (t = 0; t < n_obs; t++) {
	assert(scale[t] > 0);
	log_fp -= log(scale[t]);
	for (j = 0; j < inv->gauden->n_feat; j++) {
	    log_fp += dscale[t][j];
	}
    }

    *log_forw_prob = log_fp;

 all_done:
    ckd_free((void *)scale);
    for (i = 0; i < n_obs; i++) {
	if (dscale[i])
	    ckd_free((void *)dscale[i]);
    }
    ckd_free((void **)dscale);
    
    ckd_free(n_active_astate);
    for (i = 0; i < n_obs; i++) {
	ckd_free((void *)active_alpha[i]);
	ckd_free((void *)active_astate[i]);
	ckd_free((void *)bp[i]);
    }
    ckd_free((void *)active_alpha);
    ckd_free((void *)active_astate);
    ckd_free((void *)active_cb);

    if (denacc)
	ckd_free_3d((void ***)denacc);

    if (now_den)
	ckd_free_3d((void ***)now_den);
    if (now_den_idx)
	ckd_free_3d((void ***)now_den_idx);

    if (ret != S3_SUCCESS)
	E_ERROR("%s ignored\n", corpus_utt_brief_name());

    return ret;
}
Beispiel #4
0
int main( int argc, char *argv[] )
{
    int32     k;
    char      *tsuf;
    timing_t  start;
    timing_t  end;
    timing_t  diff;
    real32    time;
    real32    secs;
    carray_t  haystack;
    hthread_t *threads;
    arg_t     *args;

    // Allocate the threads structure
    threads = (hthread_t*)malloc( tarsize * sizeof(hthread_t) );

    // Allocate the argument structures
    args    = (arg_t*)malloc( tarsize * sizeof(arg_t) );

    // Create arrays for the search string
    carray_fromstr( &haystack, beowulf );
    carray_concatstr( &haystack, britannica1 );
    carray_concatstr( &haystack, britannica2 );
    carray_concatstr( &haystack, britannica3 );
    carray_concatstr( &haystack, caesar );
    carray_concatstr( &haystack, hamlet );
    carray_concatstr( &haystack, huckfinn );
    carray_concatstr( &haystack, illiad );
    carray_concatstr( &haystack, macbeth );
    carray_concatstr( &haystack, pride );
    carray_concatstr( &haystack, sense );
    carray_concatstr( &haystack, tomsawyer );
    carray_concatstr( &haystack, twist );
    carray_concatstr( &haystack, ulysses );
    carray_concatstr( &haystack, venice );


    // Create all of the thread arguments
    for( k = 0; k < tarsize; k++ )
    {
        args[k].search = &haystack;
        args[k].found  = 0;
        carray_fromstr( &args[k].target, tar[k] );
        boyermoore_init( &args[k].bm, &args[k].target );
    }

    // Create worker threads for all of the search strings
    timing_get( &start );
    for( k = 0; k < tarsize; k++ )
    {
        hthread_create( &threads[k], NULL, search, &args[k] );
    }

    // Wait for all of the worker threads to complete
    for( k = 0; k < tarsize; k++ )
    {
        hthread_join( threads[k], (void*)&args[k].found );
    }
    timing_get( &end );
    timing_diff(diff,end,start);
    secs = timing_sec(diff);
    calculate_time( &tsuf, &time, secs );
    printf( "Test Finished: %.2f %s\n", time, tsuf );

    // Show the results and destroy the thread arguments
    for( k = 0; k < tarsize; k++ )
    {
        printf( "Thread %d found %d matches of the string '%s'\n", k, args[k].found, tar[k] );
        boyermoore_destroy( &args[k].bm );
        carray_destroy( &args[k].target );
    }

    // Exit the program
    return 0;
}
Beispiel #5
0
int32
baum_welch_update(float64 *log_forw_prob,
		  vector_t **feature,
		  uint32 n_obs,
		  state_t *state,
		  uint32 n_state,
		  model_inventory_t *inv,
		  float64 a_beam,
		  float64 b_beam,
		  float32 spthresh,
		  s3phseg_t *phseg,
		  int32 mixw_reest,
		  int32 tmat_reest,
		  int32 mean_reest,
		  int32 var_reest,
		  int32 pass2var,
		  int32 var_is_full,
		  FILE *pdumpfh,
		  float32 ***lda)
{
    float64 *scale = NULL;
    float64 **dscale = NULL;
    float64 **active_alpha;
    uint32 **active_astate;
    uint32 **bp;
    uint32 *n_active_astate;
    float64 log_fp;	/* accumulator for the log of the probability
			 * of observing the input given the model */
    uint32 t;		/* time */
    int ret;

    timing_t *fwd_timer = NULL;
    timing_t *bwd_timer = NULL;
    timing_t *rstu_timer = NULL;
    uint32 i,j;

    /* caller must ensure that there is some non-zero amount
       of work to be done here */
    assert(n_obs > 0);
    assert(n_state > 0);

    fwd_timer = timing_get("fwd");
    bwd_timer = timing_get("bwd");
    rstu_timer = timing_get("rstu");
    
    scale = (float64 *)ckd_calloc(n_obs, sizeof(float64));
    dscale = (float64 **)ckd_calloc(n_obs, sizeof(float64 *));
    n_active_astate = (uint32 *)ckd_calloc(n_obs, sizeof(uint32));
    active_alpha  = (float64 **)ckd_calloc(n_obs, sizeof(float64 *));
    active_astate = (uint32 **)ckd_calloc(n_obs, sizeof(uint32 *));
    bp = (uint32 **)ckd_calloc(n_obs, sizeof(uint32 *));

    /* Compute the scaled alpha variable and scale factors
     * for all states and time subject to the pruning constraints */
    if (fwd_timer)
	timing_start(fwd_timer);

/*
 * Debug?
 *   E_INFO("Before Forward search\n");
 */
    ret = forward(active_alpha, active_astate, n_active_astate, bp,
		  scale, dscale,
		  feature, n_obs, state, n_state,
		  inv, a_beam, phseg);

#if BW_DEBUG
    for (i=0 ; i < n_obs;i++){
      E_INFO("Number of active states %d at time %d\n",n_active_astate[i],i);
      E_INFO("Scale of time %d is %e \n",i,scale[i]);
      for(j=0 ; j < n_active_astate[i];j++){
	E_INFO("Active state: %d Active alpha: %e\n",active_astate[i][j], active_alpha[i][j]);
      }
    }
    i=0;
    j=0;
#endif

    /* Dump a phoneme segmentation if requested */
    if (cmd_ln_str("-outphsegdir")) {
	    const char *phsegdir;
	    char *segfn, *uttid;

	    phsegdir = cmd_ln_str("-outphsegdir");
	    uttid = (cmd_ln_int32("-outputfullpath")
		     ? corpus_utt_full_name() : corpus_utt());
	    segfn = ckd_calloc(strlen(phsegdir) + 1
			       + strlen(uttid)
			       + strlen(".phseg") + 1, 1);
	    strcpy(segfn, phsegdir);
	    strcat(segfn, "/");
	    strcat(segfn, uttid);
	    strcat(segfn, ".phseg");
	    write_phseg(segfn, inv, state, active_astate, n_active_astate,
			n_state, n_obs, active_alpha, scale, bp);
	    ckd_free(segfn);
    }

    if (fwd_timer)
	timing_stop(fwd_timer);

    if (ret != S3_SUCCESS) {

	/* Some problem with the utterance, release per utterance storage and
	 * forget about adding the utterance accumulators to the global accumulators */

	goto error;
    }

    /* Compute the scaled beta variable and update the reestimation
     * sums */
    if (bwd_timer)
	timing_start(bwd_timer);

#if BW_DEBUG
    E_INFO("Before Backward search\n");
#endif

    ret = backward_update(active_alpha, active_astate, n_active_astate, scale, dscale,
			  feature, n_obs,
			  state, n_state,
			  inv, b_beam, spthresh,
			  mixw_reest, tmat_reest, mean_reest, var_reest, pass2var,
			  var_is_full, pdumpfh, lda);
    if (bwd_timer)
	timing_stop(bwd_timer);

    if (ret != S3_SUCCESS) {

	/* Some problem with the utterance, release per utterance storage and
	 * forget about adding the utterance accumulators to the global accumulators */

	goto error;
    }

#if BW_DEBUG
    E_INFO("Before Global Accumulation\n");
#endif

    /* If no error was found in the forward or backward procedures,
     * add the resulting utterance reestimation accumulators to the
     * global reestimation accumulators */
    if (rstu_timer)
	timing_start(rstu_timer);
    accum_global(inv, state, n_state,
		 mixw_reest, tmat_reest, mean_reest, var_reest,
		 var_is_full);
    if (rstu_timer)
	timing_stop(rstu_timer);

    for (i = 0; i < n_active_astate[n_obs-1] && active_astate[n_obs-1][i] != (n_state-1); i++);

    assert(i < n_active_astate[n_obs-1]);

    /* Calculate log[ p( O | \lambda ) ] */
    assert(active_alpha[n_obs-1][i] > 0);
    log_fp = log(active_alpha[n_obs-1][i]);
    for (t = 0; t < n_obs; t++) {
	assert(scale[t] > 0);
	log_fp -= log(scale[t]);
        for (j = 0; j < inv->gauden->n_feat; j++) {
	    log_fp += dscale[t][j];
        }
    }

    *log_forw_prob = log_fp;

    ckd_free((void *)scale);
    ckd_free(n_active_astate);
    for (i = 0; i < n_obs; i++) {
	ckd_free((void *)active_alpha[i]);
	ckd_free((void *)active_astate[i]);
	ckd_free((void *)dscale[i]);
	ckd_free((void *)bp[i]);
    }
    ckd_free((void *)active_alpha);
    ckd_free((void *)active_astate);
    ckd_free((void **)dscale);

    return S3_SUCCESS;

error:
    ckd_free((void *)scale);
    for (i = 0; i < n_obs; i++) {
	if (dscale[i])
	    ckd_free((void *)dscale[i]);
    }
    ckd_free((void **)dscale);
    
    ckd_free(n_active_astate);
    for (i = 0; i < n_obs; i++) {
	ckd_free((void *)active_alpha[i]);
	ckd_free((void *)active_astate[i]);
	ckd_free((void *)bp[i]);
    }
    ckd_free((void *)active_alpha);
    ckd_free((void *)active_astate);

    E_ERROR("%s ignored\n", corpus_utt_brief_name());

    return S3_ERROR;
}