Beispiel #1
0
void *pvPortMalloc( size_t xWantedSize )
{
void *pvReturn = NULL;
static uint8_t *pucAlignedHeap = NULL;

	/* Ensure that blocks are always aligned to the required number of bytes. */
	#if( portBYTE_ALIGNMENT != 1 )
	{
		if( xWantedSize & portBYTE_ALIGNMENT_MASK )
		{
			/* Byte alignment required. */
			xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
		}
	}
	#endif

	vTaskSuspendAll();
	{
		if( pucAlignedHeap == NULL )
		{
			/* Ensure the heap starts on a correctly aligned boundary. */
			pucAlignedHeap = ( uint8_t * ) ( ( ( portPOINTER_SIZE_TYPE ) &ucHeap[ portBYTE_ALIGNMENT ] ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
		}

		/* Check there is enough room left for the allocation. */
		if( ( ( xNextFreeByte + xWantedSize ) < configADJUSTED_HEAP_SIZE ) &&
			( ( xNextFreeByte + xWantedSize ) > xNextFreeByte )	)/* Check for overflow. */
		{
			/* Return the next free byte then increment the index past this
			block. */
			pvReturn = pucAlignedHeap + xNextFreeByte;
			xNextFreeByte += xWantedSize;
		}

		traceMALLOC( pvReturn, xWantedSize );
	}
	( void ) xTaskResumeAll();

	#if( configUSE_MALLOC_FAILED_HOOK == 1 )
	{
		if( pvReturn == NULL )
		{
		  /* EST: Using configuration macro name for hook */
			extern void configUSE_MALLOC_FAILED_HOOK_NAME( void );
      configUSE_MALLOC_FAILED_HOOK_NAME();
		}
	}
	#endif

	return pvReturn;
}
Beispiel #2
0
void *pvPortMalloc( size_t xWantedSize )
{
void *pvReturn;

	vTaskSuspendAll();
	{
		pvReturn = malloc( xWantedSize );
		traceMALLOC( pvReturn, xWantedSize );
	}
	(void)xTaskResumeAll();

	#if( configUSE_MALLOC_FAILED_HOOK == 1 )
	{
		if( pvReturn == NULL )
		{
      FRTOS1_vApplicationMallocFailedHook();
		}
	}
	#endif
	
	return pvReturn;
}
Beispiel #3
0
void *pvPortMalloc( size_t xWantedSize )
{
BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
static BaseType_t xHeapHasBeenInitialised = pdFALSE;
void *pvReturn = NULL;

	vTaskSuspendAll();
	{
		/* If this is the first call to malloc then the heap will require
		initialisation to setup the list of free blocks. */
		if( xHeapHasBeenInitialised == pdFALSE )
		{
			prvHeapInit();
			xHeapHasBeenInitialised = pdTRUE;
		}

		/* The wanted size is increased so it can contain a BlockLink_t
		structure in addition to the requested amount of bytes. */
		if( xWantedSize > 0 )
		{
			xWantedSize += heapSTRUCT_SIZE;

			/* Ensure that blocks are always aligned to the required number of bytes. */
			if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0 )
			{
				/* Byte alignment required. */
				xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
			}
		}

		if( ( xWantedSize > 0 ) && ( xWantedSize < configADJUSTED_HEAP_SIZE ) )
		{
			/* Blocks are stored in byte order - traverse the list from the start
			(smallest) block until one of adequate size is found. */
			pxPreviousBlock = &xStart;
			pxBlock = xStart.pxNextFreeBlock;
			while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
			{
				pxPreviousBlock = pxBlock;
				pxBlock = pxBlock->pxNextFreeBlock;
			}

			/* If we found the end marker then a block of adequate size was not found. */
			if( pxBlock != &xEnd )
			{
				/* Return the memory space - jumping over the BlockLink_t structure
				at its start. */
				pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + heapSTRUCT_SIZE );

				/* This block is being returned for use so must be taken out of the
				list of free blocks. */
				pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;

				/* If the block is larger than required it can be split into two. */
				if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
				{
					/* This block is to be split into two.  Create a new block
					following the number of bytes requested. The void cast is
					used to prevent byte alignment warnings from the compiler. */
					pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize );

					/* Calculate the sizes of two blocks split from the single
					block. */
					pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
					pxBlock->xBlockSize = xWantedSize;

					/* Insert the new block into the list of free blocks. */
					prvInsertBlockIntoFreeList( ( pxNewBlockLink ) );
				}

				xFreeBytesRemaining -= pxBlock->xBlockSize;
			}
		}

		traceMALLOC( pvReturn, xWantedSize );
	}
	( void ) xTaskResumeAll();

	#if( configUSE_MALLOC_FAILED_HOOK == 1 )
	{
		if( pvReturn == NULL )
		{
			extern void vApplicationMallocFailedHook( void );
			vApplicationMallocFailedHook();
		}
	}
	#endif

	return pvReturn;
}
Beispiel #4
0
void *pvPortMalloc( size_t xWantedSize )
{
    BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
    void *pvReturn = NULL;

    vTaskSuspendAll();
    {
        /* If this is the first call to malloc then the heap will require
        initialisation to setup the list of free blocks. */
        if( pxEnd == NULL )
        {
            prvHeapInit();
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }

        /* Check the requested block size is not so large that the top bit is
        set.  The top bit of the block size member of the BlockLink_t structure
        is used to determine who owns the block - the application or the
        kernel, so it must be free. */
        if( ( xWantedSize & xBlockAllocatedBit ) == 0 )
        {
            /* The wanted size is increased so it can contain a BlockLink_t
            structure in addition to the requested amount of bytes. */
            if( xWantedSize > 0 )
            {
                xWantedSize += xHeapStructSize;

                /* Ensure that blocks are always aligned to the required number
                of bytes. */
                if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0x00 )
                {
                    /* Byte alignment required. */
                    xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
                    configASSERT( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) == 0 );
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }

            if( ( xWantedSize > 0 ) && ( xWantedSize <= xFreeBytesRemaining ) )
            {
                /* Traverse the list from the start	(lowest address) block until
                one	of adequate size is found. */
                pxPreviousBlock = &xStart;
                pxBlock = xStart.pxNextFreeBlock;
                while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
                {
                    pxPreviousBlock = pxBlock;
                    pxBlock = pxBlock->pxNextFreeBlock;
                }

                /* If the end marker was reached then a block of adequate size
                was	not found. */
                if( pxBlock != pxEnd )
                {
                    /* Return the memory space pointed to - jumping over the
                    BlockLink_t structure at its start. */
                    pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + xHeapStructSize );

                    /* This block is being returned for use so must be taken out
                    of the list of free blocks. */
                    pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;

                    /* If the block is larger than required it can be split into
                    two. */
                    if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
                    {
                        /* This block is to be split into two.  Create a new
                        block following the number of bytes requested. The void
                        cast is used to prevent byte alignment warnings from the
                        compiler. */
                        pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize );
                        configASSERT( ( ( ( size_t ) pxNewBlockLink ) & portBYTE_ALIGNMENT_MASK ) == 0 );

                        /* Calculate the sizes of two blocks split from the
                        single block. */
                        pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
                        pxBlock->xBlockSize = xWantedSize;

                        /* Insert the new block into the list of free blocks. */
                        prvInsertBlockIntoFreeList( pxNewBlockLink );
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }

                    xFreeBytesRemaining -= pxBlock->xBlockSize;

                    if( xFreeBytesRemaining < xMinimumEverFreeBytesRemaining )
                    {
                        xMinimumEverFreeBytesRemaining = xFreeBytesRemaining;
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }

                    /* The block is being returned - it is allocated and owned
                    by the application and has no "next" block. */
                    pxBlock->xBlockSize |= xBlockAllocatedBit;
                    pxBlock->pxNextFreeBlock = NULL;
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }

        traceMALLOC( pvReturn, xWantedSize );
    }
    ( void ) xTaskResumeAll();

#if( configUSE_MALLOC_FAILED_HOOK == 1 )
    {
        if( pvReturn == NULL )
        {
            extern void vApplicationMallocFailedHook( void );
            vApplicationMallocFailedHook();
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }
    }
#endif

    configASSERT( ( ( ( size_t ) pvReturn ) & ( size_t ) portBYTE_ALIGNMENT_MASK ) == 0 );
    return pvReturn;
}
Beispiel #5
0
void *pvPortMalloc( size_t xWantedSize, const char * file, unsigned line, bool use_iram)
#endif
{
BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
void *pvReturn = NULL;
static bool is_inited = false;

    if (!is_inited) {
        void vPortDefineHeapRegions( const HeapRegion_t * const pxHeapRegions );
        xHeapRegions[0].pucStartAddress = ( uint8_t * )&_heap_start;
        xHeapRegions[0].xSizeInBytes = (( size_t)( 0x40000000 - (uint32)&_heap_start));
        
        xHeapRegions[1].pucStartAddress = ( uint8_t * )&_lit4_end;
        xHeapRegions[1].xSizeInBytes = (( size_t)( 0x4010C000 - (uint32)&_lit4_end));

        is_inited = true;
        vPortDefineHeapRegions(xHeapRegions);
    }

	/* The heap must be initialised before the first call to
	prvPortMalloc(). */
	configASSERT( pxEnd );

//	vTaskSuspendAll();
	ETS_INTR_LOCK();
	{
		/* Check the requested block size is not so large that the top bit is
		set.  The top bit of the block size member of the BlockLink_t structure
		is used to determine who owns the block - the application or the
		kernel, so it must be free. */
		if( ( xWantedSize & xBlockAllocatedBit ) == 0 )
		{
			/* The wanted size is increased so it can contain a BlockLink_t
			structure in addition to the requested amount of bytes. */
			if( xWantedSize > 0 )
			{
				xWantedSize += uxHeapStructSize;

				/* Ensure that blocks are always aligned to the required number
				of bytes. */
				if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0x00 )
				{
					/* Byte alignment required. */
					xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}

			if( ( xWantedSize > 0 ) && ( xWantedSize <= xFreeBytesRemaining ) )
			{
				/* Traverse the list from the start	(lowest address) block until
				one	of adequate size is found. */
				pxPreviousBlock = &xStart;
				pxBlock = xStart.pxNextFreeBlock;

                BlockLink_t *pxIterator;
                /* Iterate through the list until a block is found that has a higher address
                than the block being inserted. */
                for( pxIterator = &xStart; pxIterator->pxNextFreeBlock != 0; pxIterator = pxIterator->pxNextFreeBlock )
                {
                    if ((line == 0 || use_iram == true) && (uint32)pxIterator->pxNextFreeBlock > 0x40000000 && pxIterator->pxNextFreeBlock->xBlockSize > xWantedSize) {
                        pxPreviousBlock = pxIterator;
                        pxBlock = pxIterator->pxNextFreeBlock;
                        break;
                    }
                }

				while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
				{
					pxPreviousBlock = pxBlock;
					pxBlock = pxBlock->pxNextFreeBlock;
				}

				/* If the end marker was reached then a block of adequate size
				was	not found. */
				if( pxBlock != pxEnd )
				{
					/* Return the memory space pointed to - jumping over the
					BlockLink_t structure at its start. */
					pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + uxHeapStructSize );

					/* This block is being returned for use so must be taken out
					of the list of free blocks. */
					pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;

					/* If the block is larger than required it can be split into
					two. */
					if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
					{
						/* This block is to be split into two.  Create a new
						block following the number of bytes requested. The void
						cast is used to prevent byte alignment warnings from the
						compiler. */
						pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize );

						/* Calculate the sizes of two blocks split from the
						single block. */
						pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
						pxBlock->xBlockSize = xWantedSize;

						/* Insert the new block into the list of free blocks. */
						prvInsertBlockIntoFreeList( ( pxNewBlockLink ) );
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}

					xFreeBytesRemaining -= pxBlock->xBlockSize;

					if( xFreeBytesRemaining < xMinimumEverFreeBytesRemaining )
					{
						xMinimumEverFreeBytesRemaining = xFreeBytesRemaining;
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}

					/* The block is being returned - it is allocated and owned
					by the application and has no "next" block. */
					pxBlock->xBlockSize |= xBlockAllocatedBit;
					pxBlock->pxNextFreeBlock = NULL;
                    
#ifdef MEMLEAK_DEBUG
					if(uxHeapStructSize >= sizeof( BlockLink_t )){
						pxBlock->file = file;
						pxBlock->line = line;
					}
					//link the use block
					prvInsertBlockIntoUsedList(pxBlock);
#endif
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}

		traceMALLOC( pvReturn, xWantedSize );
	}
	// ( void ) xTaskResumeAll();
    ETS_INTR_UNLOCK();

	#if( configUSE_MALLOC_FAILED_HOOK == 1 )
	{
		if( pvReturn == NULL )
		{
			extern void vApplicationMallocFailedHook( void );
			vApplicationMallocFailedHook();
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}
	#endif

	return pvReturn;
}