static void *
svga_create_sampler_state(struct pipe_context *pipe,
                          const struct pipe_sampler_state *sampler)
{
   struct svga_context *svga = svga_context(pipe);
   struct svga_sampler_state *cso = CALLOC_STRUCT( svga_sampler_state );
   
   cso->mipfilter = translate_mip_filter(sampler->min_mip_filter);
   cso->magfilter = translate_img_filter( sampler->mag_img_filter );
   cso->minfilter = translate_img_filter( sampler->min_img_filter );
   cso->aniso_level = MAX2( (unsigned) sampler->max_anisotropy, 1 );
   cso->lod_bias = sampler->lod_bias;
   cso->addressu = translate_wrap_mode(sampler->wrap_s);
   cso->addressv = translate_wrap_mode(sampler->wrap_t);
   cso->addressw = translate_wrap_mode(sampler->wrap_r);
   cso->normalized_coords = sampler->normalized_coords;
   cso->compare_mode = sampler->compare_mode;
   cso->compare_func = sampler->compare_func;

   {
      ubyte r = float_to_ubyte(sampler->border_color[0]);
      ubyte g = float_to_ubyte(sampler->border_color[1]);
      ubyte b = float_to_ubyte(sampler->border_color[2]);
      ubyte a = float_to_ubyte(sampler->border_color[3]);

      util_pack_color_ub( r, g, b, a,
                          PIPE_FORMAT_B8G8R8A8_UNORM,
                          &cso->bordercolor );
   }

   /* No SVGA3D support for:
    *    - min/max LOD clamping
    */
   cso->min_lod = 0;
   cso->view_min_lod = MAX2(sampler->min_lod, 0);
   cso->view_max_lod = MAX2(sampler->max_lod, 0);

   /* Use min_mipmap */
   if (svga->debug.use_min_mipmap) {
      if (cso->view_min_lod == cso->view_max_lod) {
         cso->min_lod = cso->view_min_lod;
         cso->view_min_lod = 0;
         cso->view_max_lod = 1000; /* Just a high number */
         cso->mipfilter = SVGA3D_TEX_FILTER_NONE;
      }
   }

   SVGA_DBG(DEBUG_VIEWS, "min %u, view(min %u, max %u) lod, mipfilter %s\n",
            cso->min_lod, cso->view_min_lod, cso->view_max_lod,
            cso->mipfilter == SVGA3D_TEX_FILTER_NONE ? "SVGA3D_TEX_FILTER_NONE" : "SOMETHING");

   return cso;
}
Beispiel #2
0
static void i915ImportTexObjState( struct gl_texture_object *texObj )
{   
   i915TextureObjectPtr t = (i915TextureObjectPtr)texObj->DriverData;
   int minFilt = 0, mipFilt = 0, magFilt = 0, shadow = 0;

   if(INTEL_DEBUG&DEBUG_DRI)
      fprintf(stderr, "%s\n", __FUNCTION__);

   switch (texObj->MinFilter) {
   case GL_NEAREST:
      minFilt = FILTER_NEAREST;
      mipFilt = MIPFILTER_NONE;
      break;
   case GL_LINEAR:
      minFilt = FILTER_LINEAR;
      mipFilt = MIPFILTER_NONE;
      break;
   case GL_NEAREST_MIPMAP_NEAREST:
      minFilt = FILTER_NEAREST;
      mipFilt = MIPFILTER_NEAREST;
      break;
   case GL_LINEAR_MIPMAP_NEAREST:
      minFilt = FILTER_LINEAR;
      mipFilt = MIPFILTER_NEAREST;
      break;
   case GL_NEAREST_MIPMAP_LINEAR:
      minFilt = FILTER_NEAREST;
      mipFilt = MIPFILTER_LINEAR;
      break;
   case GL_LINEAR_MIPMAP_LINEAR:
      minFilt = FILTER_LINEAR;
      mipFilt = MIPFILTER_LINEAR;
      break;
   default:
      break;
   }

   if ( texObj->MaxAnisotropy > 1.0 ) {
      minFilt = FILTER_ANISOTROPIC; 
      magFilt = FILTER_ANISOTROPIC;
   }
   else {
      switch (texObj->MagFilter) {
      case GL_NEAREST:
	 magFilt = FILTER_NEAREST;
	 break;
      case GL_LINEAR:
	 magFilt = FILTER_LINEAR;
	 break;
      default:
	 break;
      }  
   }

   if (texObj->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB && 
       texObj->Target != GL_TEXTURE_3D) {

      shadow = SS2_SHADOW_ENABLE;
      shadow |= intel_translate_compare_func( texObj->CompareFunc );
      
      minFilt = FILTER_4X4_FLAT;
      magFilt = FILTER_4X4_FLAT;
   }


   t->Setup[I915_TEXREG_SS2] &= ~(SS2_MIN_FILTER_MASK |
				 SS2_MIP_FILTER_MASK |
				 SS2_MAG_FILTER_MASK |
				 SS2_SHADOW_ENABLE |
				 SS2_SHADOW_FUNC_MASK);
   t->Setup[I915_TEXREG_SS2] |= ((minFilt << SS2_MIN_FILTER_SHIFT) |
				(mipFilt << SS2_MIP_FILTER_SHIFT) |
				(magFilt << SS2_MAG_FILTER_SHIFT) |
				shadow);

   {
      GLuint ss3 = t->Setup[I915_TEXREG_SS3] & ~(SS3_TCX_ADDR_MODE_MASK |
						SS3_TCY_ADDR_MODE_MASK |
						SS3_TCZ_ADDR_MODE_MASK);
      GLenum ws = texObj->WrapS;
      GLenum wt = texObj->WrapT;
      GLenum wr = texObj->WrapR;
      
      t->refs_border_color = 0;

      if (texObj->Target == GL_TEXTURE_3D &&
	  (texObj->MinFilter != GL_NEAREST ||
	   texObj->MagFilter != GL_NEAREST)) {
	 
	 /* Try to mimic GL_CLAMP functionality a little better -
	  * switch to CLAMP_TO_BORDER whenever a non-NEAREST filter is
	  * in use.  Only do this for 3D textures at the moment --
	  * doing it universally would fix the conform texbc.c
	  * failure, though.
	  */
	 if (ws == GL_CLAMP) ws = GL_CLAMP_TO_BORDER;
	 if (wt == GL_CLAMP) wt = GL_CLAMP_TO_BORDER;
	 if (wr == GL_CLAMP) wr = GL_CLAMP_TO_BORDER;

	 /* 3D textures don't seem to respect the border color.
	  * Fallback if there's ever a danger that they might refer to
	  * it.
	  */
	 if (ws == GL_CLAMP_TO_BORDER) t->refs_border_color = 1;
	 if (wt == GL_CLAMP_TO_BORDER) t->refs_border_color = 1;
	 if (wr == GL_CLAMP_TO_BORDER) t->refs_border_color = 1;
      }

      ss3 |= translate_wrap_mode(ws) << SS3_TCX_ADDR_MODE_SHIFT;
      ss3 |= translate_wrap_mode(wt) << SS3_TCY_ADDR_MODE_SHIFT;
      ss3 |= translate_wrap_mode(wr) << SS3_TCZ_ADDR_MODE_SHIFT;
   
      if (ss3 != t->Setup[I915_TEXREG_SS3]) {
	 t->intel.dirty = I915_UPLOAD_TEX_ALL;
	 t->Setup[I915_TEXREG_SS3] = ss3;
      }
   }

   {   
      const GLubyte *color = texObj->_BorderChan;

      t->Setup[I915_TEXREG_SS4] = INTEL_PACKCOLOR8888(color[0],color[1],
						     color[2],color[3]);
   }
}
/* Recalculate all state from scratch.  Perhaps not the most
 * efficient, but this has gotten complex enough that we need
 * something which is understandable and reliable.
 */
static GLboolean
i830_update_tex_unit(struct intel_context *intel, GLuint unit, GLuint ss3)
{
   GLcontext *ctx = &intel->ctx;
   struct i830_context *i830 = i830_context(ctx);
   struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current;
   struct intel_texture_object *intelObj = intel_texture_object(tObj);
   struct gl_texture_image *firstImage;
   GLuint *state = i830->state.Tex[unit], format, pitch;

   memset(state, 0, sizeof(state));

   /*We need to refcount these. */

   if (i830->state.tex_buffer[unit] != NULL) {
       dri_bo_unreference(i830->state.tex_buffer[unit]);
       i830->state.tex_buffer[unit] = NULL;
   }

   if (!intelObj->imageOverride && !intel_finalize_mipmap_tree(intel, unit))
      return GL_FALSE;

   /* Get first image here, since intelObj->firstLevel will get set in
    * the intel_finalize_mipmap_tree() call above.
    */
   firstImage = tObj->Image[0][intelObj->firstLevel];

   if (intelObj->imageOverride) {
      i830->state.tex_buffer[unit] = NULL;
      i830->state.tex_offset[unit] = intelObj->textureOffset;

      switch (intelObj->depthOverride) {
      case 32:
	 format = MAPSURF_32BIT | MT_32BIT_ARGB8888;
	 break;
      case 24:
      default:
	 format = MAPSURF_32BIT | MT_32BIT_XRGB8888;
	 break;
      case 16:
	 format = MAPSURF_16BIT | MT_16BIT_RGB565;
	 break;
      }

      pitch = intelObj->pitchOverride;
   } else {
      dri_bo_reference(intelObj->mt->region->buffer);
      i830->state.tex_buffer[unit] = intelObj->mt->region->buffer;
      i830->state.tex_offset[unit] = intel_miptree_image_offset(intelObj->mt,
								0, intelObj->
								firstLevel);

      format = translate_texture_format(firstImage->TexFormat->MesaFormat);
      pitch = intelObj->mt->pitch * intelObj->mt->cpp;
   }

   state[I830_TEXREG_TM0LI] = (_3DSTATE_LOAD_STATE_IMMEDIATE_2 |
                               (LOAD_TEXTURE_MAP0 << unit) | 4);

/*    state[I830_TEXREG_TM0S0] = (TM0S0_USE_FENCE | */
/* 			       t->intel.TextureOffset); */


   state[I830_TEXREG_TM0S1] =
      (((firstImage->Height - 1) << TM0S1_HEIGHT_SHIFT) |
       ((firstImage->Width - 1) << TM0S1_WIDTH_SHIFT) | format);

   state[I830_TEXREG_TM0S2] =
      ((((pitch / 4) - 1) << TM0S2_PITCH_SHIFT) | TM0S2_CUBE_FACE_ENA_MASK);

   {
      if (tObj->Target == GL_TEXTURE_CUBE_MAP)
         state[I830_TEXREG_CUBE] = (_3DSTATE_MAP_CUBE | MAP_UNIT(unit) |
                                    CUBE_NEGX_ENABLE |
                                    CUBE_POSX_ENABLE |
                                    CUBE_NEGY_ENABLE |
                                    CUBE_POSY_ENABLE |
                                    CUBE_NEGZ_ENABLE | CUBE_POSZ_ENABLE);
      else
         state[I830_TEXREG_CUBE] = (_3DSTATE_MAP_CUBE | MAP_UNIT(unit));
   }




   {
      GLuint minFilt, mipFilt, magFilt;

      switch (tObj->MinFilter) {
      case GL_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_NEAREST_MIPMAP_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_LINEAR_MIPMAP_NEAREST:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_NEAREST_MIPMAP_LINEAR:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_LINEAR;
         break;
      case GL_LINEAR_MIPMAP_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_LINEAR;
         break;
      default:
         return GL_FALSE;
      }

      if (tObj->MaxAnisotropy > 1.0) {
         minFilt = FILTER_ANISOTROPIC;
         magFilt = FILTER_ANISOTROPIC;
      }
      else {
         switch (tObj->MagFilter) {
         case GL_NEAREST:
            magFilt = FILTER_NEAREST;
            break;
         case GL_LINEAR:
            magFilt = FILTER_LINEAR;
            break;
         default:
            return GL_FALSE;
         }
      }

      state[I830_TEXREG_TM0S3] = i830->lodbias_tm0s3[unit];

#if 0
      /* YUV conversion:
       */
      if (firstImage->TexFormat->MesaFormat == MESA_FORMAT_YCBCR ||
          firstImage->TexFormat->MesaFormat == MESA_FORMAT_YCBCR_REV)
         state[I830_TEXREG_TM0S3] |= SS2_COLORSPACE_CONVERSION;
#endif

      state[I830_TEXREG_TM0S3] |= ((intelObj->lastLevel -
                                    intelObj->firstLevel) *
                                   4) << TM0S3_MIN_MIP_SHIFT;

      state[I830_TEXREG_TM0S3] |= ((minFilt << TM0S3_MIN_FILTER_SHIFT) |
                                   (mipFilt << TM0S3_MIP_FILTER_SHIFT) |
                                   (magFilt << TM0S3_MAG_FILTER_SHIFT));
   }

   {
      GLenum ws = tObj->WrapS;
      GLenum wt = tObj->WrapT;


      /* 3D textures not available on i830
       */
      if (tObj->Target == GL_TEXTURE_3D)
         return GL_FALSE;

      state[I830_TEXREG_MCS] = (_3DSTATE_MAP_COORD_SET_CMD |
                                MAP_UNIT(unit) |
                                ENABLE_TEXCOORD_PARAMS |
                                ss3 |
                                ENABLE_ADDR_V_CNTL |
                                TEXCOORD_ADDR_V_MODE(translate_wrap_mode(wt))
                                | ENABLE_ADDR_U_CNTL |
                                TEXCOORD_ADDR_U_MODE(translate_wrap_mode
                                                     (ws)));
   }


   state[I830_TEXREG_TM0S4] = INTEL_PACKCOLOR8888(tObj->_BorderChan[0],
                                                  tObj->_BorderChan[1],
                                                  tObj->_BorderChan[2],
                                                  tObj->_BorderChan[3]);


   I830_ACTIVESTATE(i830, I830_UPLOAD_TEX(unit), GL_TRUE);
   /* memcmp was already disabled, but definitely won't work as the
    * region might now change and that wouldn't be detected:
    */
   I830_STATECHANGE(i830, I830_UPLOAD_TEX(unit));
   return GL_TRUE;
}
Beispiel #4
0
static void *
i915_create_sampler_state(struct pipe_context *pipe,
                          const struct pipe_sampler_state *sampler)
{
   struct i915_sampler_state *cso = CALLOC_STRUCT( i915_sampler_state );
   const unsigned ws = sampler->wrap_s;
   const unsigned wt = sampler->wrap_t;
   const unsigned wr = sampler->wrap_r;
   unsigned minFilt, magFilt;
   unsigned mipFilt;

   cso->templ = *sampler;

   mipFilt = translate_mip_filter(sampler->min_mip_filter);
   minFilt = translate_img_filter( sampler->min_img_filter );
   magFilt = translate_img_filter( sampler->mag_img_filter );

   if (sampler->max_anisotropy > 1)
      minFilt = magFilt = FILTER_ANISOTROPIC;

   if (sampler->max_anisotropy > 2) {
      cso->state[0] |= SS2_MAX_ANISO_4;
   }

   {
      int b = (int) (sampler->lod_bias * 16.0);
      b = CLAMP(b, -256, 255);
      cso->state[0] |= ((b << SS2_LOD_BIAS_SHIFT) & SS2_LOD_BIAS_MASK);
   }

   /* Shadow:
    */
   if (sampler->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
   {
      cso->state[0] |= (SS2_SHADOW_ENABLE |
                        i915_translate_shadow_compare_func(sampler->compare_func));

      minFilt = FILTER_4X4_FLAT;
      magFilt = FILTER_4X4_FLAT;
   }

   cso->state[0] |= ((minFilt << SS2_MIN_FILTER_SHIFT) |
                     (mipFilt << SS2_MIP_FILTER_SHIFT) |
                     (magFilt << SS2_MAG_FILTER_SHIFT));

   cso->state[1] |=
      ((translate_wrap_mode(ws) << SS3_TCX_ADDR_MODE_SHIFT) |
       (translate_wrap_mode(wt) << SS3_TCY_ADDR_MODE_SHIFT) |
       (translate_wrap_mode(wr) << SS3_TCZ_ADDR_MODE_SHIFT));

   if (sampler->normalized_coords)
      cso->state[1] |= SS3_NORMALIZED_COORDS;

   {
      int minlod = (int) (16.0 * sampler->min_lod);
      int maxlod = (int) (16.0 * sampler->max_lod);
      minlod = CLAMP(minlod, 0, 16 * 11);
      maxlod = CLAMP(maxlod, 0, 16 * 11);

      if (minlod > maxlod)
	 maxlod = minlod;

      cso->minlod = minlod;
      cso->maxlod = maxlod;
   }

   {
      ubyte r = float_to_ubyte(sampler->border_color.f[0]);
      ubyte g = float_to_ubyte(sampler->border_color.f[1]);
      ubyte b = float_to_ubyte(sampler->border_color.f[2]);
      ubyte a = float_to_ubyte(sampler->border_color.f[3]);
      cso->state[2] = I915PACKCOLOR8888(r, g, b, a);
   }
   return cso;
}
/* Recalculate all state from scratch.  Perhaps not the most
 * efficient, but this has gotten complex enough that we need
 * something which is understandable and reliable.
 */
static GLboolean
i915_update_tex_unit(struct intel_context *intel, GLuint unit, GLuint ss3)
{
   struct gl_context *ctx = &intel->ctx;
   struct i915_context *i915 = i915_context(ctx);
   struct gl_texture_unit *tUnit = &ctx->Texture.Unit[unit];
   struct gl_texture_object *tObj = tUnit->_Current;
   struct intel_texture_object *intelObj = intel_texture_object(tObj);
   struct gl_texture_image *firstImage;
   GLuint *state = i915->state.Tex[unit], format, pitch;
   GLint lodbias, aniso = 0;
   GLubyte border[4];
   GLfloat maxlod;

   memset(state, 0, sizeof(state));

   /*We need to refcount these. */

   if (i915->state.tex_buffer[unit] != NULL) {
       drm_intel_bo_unreference(i915->state.tex_buffer[unit]);
       i915->state.tex_buffer[unit] = NULL;
   }

   if (!intel_finalize_mipmap_tree(intel, unit))
      return GL_FALSE;

   /* Get first image here, since intelObj->firstLevel will get set in
    * the intel_finalize_mipmap_tree() call above.
    */
   firstImage = tObj->Image[0][intelObj->firstLevel];

   drm_intel_bo_reference(intelObj->mt->region->buffer);
   i915->state.tex_buffer[unit] = intelObj->mt->region->buffer;
   i915->state.tex_offset[unit] = 0; /* Always the origin of the miptree */

   format = translate_texture_format(firstImage->TexFormat,
				     firstImage->InternalFormat,
				     tObj->DepthMode);
   pitch = intelObj->mt->region->pitch * intelObj->mt->cpp;

   state[I915_TEXREG_MS3] =
      (((firstImage->Height - 1) << MS3_HEIGHT_SHIFT) |
       ((firstImage->Width - 1) << MS3_WIDTH_SHIFT) | format);

   if (intelObj->mt->region->tiling != I915_TILING_NONE) {
      state[I915_TEXREG_MS3] |= MS3_TILED_SURFACE;
      if (intelObj->mt->region->tiling == I915_TILING_Y)
	 state[I915_TEXREG_MS3] |= MS3_TILE_WALK;
   }

   /* We get one field with fraction bits for the maximum addressable
    * (lowest resolution) LOD.  Use it to cover both MAX_LEVEL and
    * MAX_LOD.
    */
   maxlod = MIN2(tObj->MaxLod, tObj->_MaxLevel - tObj->BaseLevel);
   state[I915_TEXREG_MS4] =
      ((((pitch / 4) - 1) << MS4_PITCH_SHIFT) |
       MS4_CUBE_FACE_ENA_MASK |
       (U_FIXED(CLAMP(maxlod, 0.0, 11.0), 2) << MS4_MAX_LOD_SHIFT) |
       ((firstImage->Depth - 1) << MS4_VOLUME_DEPTH_SHIFT));


   {
      GLuint minFilt, mipFilt, magFilt;

      switch (tObj->MinFilter) {
      case GL_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_NEAREST_MIPMAP_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_LINEAR_MIPMAP_NEAREST:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_NEAREST_MIPMAP_LINEAR:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_LINEAR;
         break;
      case GL_LINEAR_MIPMAP_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_LINEAR;
         break;
      default:
         return GL_FALSE;
      }

      if (tObj->MaxAnisotropy > 1.0) {
         minFilt = FILTER_ANISOTROPIC;
         magFilt = FILTER_ANISOTROPIC;
         if (tObj->MaxAnisotropy > 2.0)
            aniso = SS2_MAX_ANISO_4;
         else
            aniso = SS2_MAX_ANISO_2;
      }
      else {
         switch (tObj->MagFilter) {
         case GL_NEAREST:
            magFilt = FILTER_NEAREST;
            break;
         case GL_LINEAR:
            magFilt = FILTER_LINEAR;
            break;
         default:
            return GL_FALSE;
         }
      }

      lodbias = (int) ((tUnit->LodBias + tObj->LodBias) * 16.0);
      if (lodbias < -256)
          lodbias = -256;
      if (lodbias > 255)
          lodbias = 255;
      state[I915_TEXREG_SS2] = ((lodbias << SS2_LOD_BIAS_SHIFT) & 
                                SS2_LOD_BIAS_MASK);

      /* YUV conversion:
       */
      if (firstImage->TexFormat == MESA_FORMAT_YCBCR ||
          firstImage->TexFormat == MESA_FORMAT_YCBCR_REV)
         state[I915_TEXREG_SS2] |= SS2_COLORSPACE_CONVERSION;

      /* Shadow:
       */
      if (tObj->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB &&
          tObj->Target != GL_TEXTURE_3D) {
         if (tObj->Target == GL_TEXTURE_1D) 
            return GL_FALSE;

         state[I915_TEXREG_SS2] |=
            (SS2_SHADOW_ENABLE |
             intel_translate_shadow_compare_func(tObj->CompareFunc));

         minFilt = FILTER_4X4_FLAT;
         magFilt = FILTER_4X4_FLAT;
      }

      state[I915_TEXREG_SS2] |= ((minFilt << SS2_MIN_FILTER_SHIFT) |
                                 (mipFilt << SS2_MIP_FILTER_SHIFT) |
                                 (magFilt << SS2_MAG_FILTER_SHIFT) |
                                 aniso);
   }

   {
      GLenum ws = tObj->WrapS;
      GLenum wt = tObj->WrapT;
      GLenum wr = tObj->WrapR;
      float minlod;

      /* We program 1D textures as 2D textures, so the 2D texcoord could
       * result in sampling border values if we don't set the T wrap to
       * repeat.
       */
      if (tObj->Target == GL_TEXTURE_1D)
	 wt = GL_REPEAT;

      /* 3D textures don't seem to respect the border color.
       * Fallback if there's ever a danger that they might refer to
       * it.  
       * 
       * Effectively this means fallback on 3D clamp or
       * clamp_to_border.
       */
      if (tObj->Target == GL_TEXTURE_3D &&
          (tObj->MinFilter != GL_NEAREST ||
           tObj->MagFilter != GL_NEAREST) &&
          (ws == GL_CLAMP ||
           wt == GL_CLAMP ||
           wr == GL_CLAMP ||
           ws == GL_CLAMP_TO_BORDER ||
           wt == GL_CLAMP_TO_BORDER || wr == GL_CLAMP_TO_BORDER))
         return GL_FALSE;

      /* Only support TEXCOORDMODE_CLAMP_EDGE and TEXCOORDMODE_CUBE (not 
       * used) when using cube map texture coordinates
       */
      if (tObj->Target == GL_TEXTURE_CUBE_MAP_ARB &&
          (((ws != GL_CLAMP) && (ws != GL_CLAMP_TO_EDGE)) ||
           ((wt != GL_CLAMP) && (wt != GL_CLAMP_TO_EDGE))))
          return GL_FALSE;

      state[I915_TEXREG_SS3] = ss3;     /* SS3_NORMALIZED_COORDS */

      state[I915_TEXREG_SS3] |=
         ((translate_wrap_mode(ws) << SS3_TCX_ADDR_MODE_SHIFT) |
          (translate_wrap_mode(wt) << SS3_TCY_ADDR_MODE_SHIFT) |
          (translate_wrap_mode(wr) << SS3_TCZ_ADDR_MODE_SHIFT));

      minlod = MIN2(tObj->MinLod, tObj->_MaxLevel - tObj->BaseLevel);
      state[I915_TEXREG_SS3] |= (unit << SS3_TEXTUREMAP_INDEX_SHIFT);
      state[I915_TEXREG_SS3] |= (U_FIXED(CLAMP(minlod, 0.0, 11.0), 4) <<
				 SS3_MIN_LOD_SHIFT);

   }

   /* convert border color from float to ubyte */
   CLAMPED_FLOAT_TO_UBYTE(border[0], tObj->BorderColor.f[0]);
   CLAMPED_FLOAT_TO_UBYTE(border[1], tObj->BorderColor.f[1]);
   CLAMPED_FLOAT_TO_UBYTE(border[2], tObj->BorderColor.f[2]);
   CLAMPED_FLOAT_TO_UBYTE(border[3], tObj->BorderColor.f[3]);

   if (firstImage->_BaseFormat == GL_DEPTH_COMPONENT) {
      /* GL specs that border color for depth textures is taken from the
       * R channel, while the hardware uses A.  Spam R into all the channels
       * for safety.
       */
      state[I915_TEXREG_SS4] = PACK_COLOR_8888(border[0],
					       border[0],
					       border[0],
					       border[0]);
   } else {
      state[I915_TEXREG_SS4] = PACK_COLOR_8888(border[3],
					       border[0],
					       border[1],
					       border[2]);
   }


   I915_ACTIVESTATE(i915, I915_UPLOAD_TEX(unit), GL_TRUE);
   /* memcmp was already disabled, but definitely won't work as the
    * region might now change and that wouldn't be detected:
    */
   I915_STATECHANGE(i915, I915_UPLOAD_TEX(unit));


#if 0
   DBG(TEXTURE, "state[I915_TEXREG_SS2] = 0x%x\n", state[I915_TEXREG_SS2]);
   DBG(TEXTURE, "state[I915_TEXREG_SS3] = 0x%x\n", state[I915_TEXREG_SS3]);
   DBG(TEXTURE, "state[I915_TEXREG_SS4] = 0x%x\n", state[I915_TEXREG_SS4]);
   DBG(TEXTURE, "state[I915_TEXREG_MS2] = 0x%x\n", state[I915_TEXREG_MS2]);
   DBG(TEXTURE, "state[I915_TEXREG_MS3] = 0x%x\n", state[I915_TEXREG_MS3]);
   DBG(TEXTURE, "state[I915_TEXREG_MS4] = 0x%x\n", state[I915_TEXREG_MS4]);
#endif

   return GL_TRUE;
}
Beispiel #6
0
/**
 * Sets the sampler state for a single unit.
 */
static void
gen7_update_sampler_state(struct brw_context *brw, int unit,
			  struct gen7_sampler_state *sampler)
{
   struct intel_context *intel = &brw->intel;
   struct gl_context *ctx = &intel->ctx;
   struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
   struct gl_texture_object *texObj = texUnit->_Current;
   struct gl_sampler_object *gl_sampler = _mesa_get_samplerobj(ctx, unit);
   bool using_nearest = false;

   switch (gl_sampler->MinFilter) {
   case GL_NEAREST:
      sampler->ss0.min_filter = BRW_MAPFILTER_NEAREST;
      sampler->ss0.mip_filter = BRW_MIPFILTER_NONE;
      using_nearest = true;
      break;
   case GL_LINEAR:
      sampler->ss0.min_filter = BRW_MAPFILTER_LINEAR;
      sampler->ss0.mip_filter = BRW_MIPFILTER_NONE;
      break;
   case GL_NEAREST_MIPMAP_NEAREST:
      sampler->ss0.min_filter = BRW_MAPFILTER_NEAREST;
      sampler->ss0.mip_filter = BRW_MIPFILTER_NEAREST;
      break;
   case GL_LINEAR_MIPMAP_NEAREST:
      sampler->ss0.min_filter = BRW_MAPFILTER_LINEAR;
      sampler->ss0.mip_filter = BRW_MIPFILTER_NEAREST;
      break;
   case GL_NEAREST_MIPMAP_LINEAR:
      sampler->ss0.min_filter = BRW_MAPFILTER_NEAREST;
      sampler->ss0.mip_filter = BRW_MIPFILTER_LINEAR;
      break;
   case GL_LINEAR_MIPMAP_LINEAR:
      sampler->ss0.min_filter = BRW_MAPFILTER_LINEAR;
      sampler->ss0.mip_filter = BRW_MIPFILTER_LINEAR;
      break;
   default:
      break;
   }

   /* Set Anisotropy: */
   if (gl_sampler->MaxAnisotropy > 1.0) {
      sampler->ss0.min_filter = BRW_MAPFILTER_ANISOTROPIC;
      sampler->ss0.mag_filter = BRW_MAPFILTER_ANISOTROPIC;

      if (gl_sampler->MaxAnisotropy > 2.0) {
	 sampler->ss3.max_aniso = MIN2((gl_sampler->MaxAnisotropy - 2) / 2,
				       BRW_ANISORATIO_16);
      }
   }
   else {
      switch (gl_sampler->MagFilter) {
      case GL_NEAREST:
	 sampler->ss0.mag_filter = BRW_MAPFILTER_NEAREST;
	 using_nearest = true;
	 break;
      case GL_LINEAR:
	 sampler->ss0.mag_filter = BRW_MAPFILTER_LINEAR;
	 break;
      default:
	 break;
      }
   }

   sampler->ss3.r_wrap_mode = translate_wrap_mode(gl_sampler->WrapR,
						  using_nearest);
   sampler->ss3.s_wrap_mode = translate_wrap_mode(gl_sampler->WrapS,
						  using_nearest);
   sampler->ss3.t_wrap_mode = translate_wrap_mode(gl_sampler->WrapT,
						  using_nearest);

   /* Cube-maps on 965 and later must use the same wrap mode for all 3
    * coordinate dimensions.  Futher, only CUBE and CLAMP are valid.
    */
   if (texObj->Target == GL_TEXTURE_CUBE_MAP) {
      if (ctx->Texture.CubeMapSeamless &&
	  (gl_sampler->MinFilter != GL_NEAREST ||
	   gl_sampler->MagFilter != GL_NEAREST)) {
	 sampler->ss3.r_wrap_mode = BRW_TEXCOORDMODE_CUBE;
	 sampler->ss3.s_wrap_mode = BRW_TEXCOORDMODE_CUBE;
	 sampler->ss3.t_wrap_mode = BRW_TEXCOORDMODE_CUBE;
      } else {
	 sampler->ss3.r_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
	 sampler->ss3.s_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
	 sampler->ss3.t_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
      }
   } else if (texObj->Target == GL_TEXTURE_1D) {
      /* There's a bug in 1D texture sampling - it actually pays
       * attention to the wrap_t value, though it should not.
       * Override the wrap_t value here to GL_REPEAT to keep
       * any nonexistent border pixels from floating in.
       */
      sampler->ss3.t_wrap_mode = BRW_TEXCOORDMODE_WRAP;
   }

   /* Set shadow function: */
   if (gl_sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) {
      /* Shadowing is "enabled" by emitting a particular sampler
       * message (sample_c).  So need to recompile WM program when
       * shadow comparison is enabled on each/any texture unit.
       */
      sampler->ss1.shadow_function =
	 intel_translate_shadow_compare_func(gl_sampler->CompareFunc);
   }

   /* Set LOD bias: */
   sampler->ss0.lod_bias = S_FIXED(CLAMP(texUnit->LodBias +
					 gl_sampler->LodBias, -16, 15), 8);

   sampler->ss0.lod_preclamp = 1; /* OpenGL mode */
   sampler->ss0.default_color_mode = 0; /* OpenGL/DX10 mode */

   /* Set BaseMipLevel, MaxLOD, MinLOD:
    *
    * XXX: I don't think that using firstLevel, lastLevel works,
    * because we always setup the surface state as if firstLevel ==
    * level zero.  Probably have to subtract firstLevel from each of
    * these:
    */
   sampler->ss0.base_level = U_FIXED(0, 1);

   sampler->ss1.max_lod = U_FIXED(CLAMP(gl_sampler->MaxLod, 0, 13), 8);
   sampler->ss1.min_lod = U_FIXED(CLAMP(gl_sampler->MinLod, 0, 13), 8);

   upload_default_color(brw, gl_sampler, unit);

   sampler->ss2.default_color_pointer = brw->wm.sdc_offset[unit] >> 5;
}
static void brw_update_sampler_state( const struct pipe_sampler_state *pipe_sampler,
				      unsigned sdc_gs_offset,
				      struct brw_sampler_state *sampler)
{
   memset(sampler, 0, sizeof(*sampler));

   switch (pipe_sampler->min_mip_filter) {
   case PIPE_TEX_FILTER_NEAREST:
      sampler->ss0.min_filter = BRW_MAPFILTER_NEAREST;
      break;
   case PIPE_TEX_FILTER_LINEAR:
      sampler->ss0.min_filter = BRW_MAPFILTER_LINEAR;
      break;
   case PIPE_TEX_FILTER_ANISO:
      sampler->ss0.min_filter = BRW_MAPFILTER_ANISOTROPIC;
      break;
   default:
      break;
   }

   switch (pipe_sampler->min_mip_filter) {
   case PIPE_TEX_MIPFILTER_NEAREST:
      sampler->ss0.mip_filter = BRW_MIPFILTER_NEAREST;
      break;
   case PIPE_TEX_MIPFILTER_LINEAR:
      sampler->ss0.mip_filter = BRW_MIPFILTER_LINEAR;
      break;
   case PIPE_TEX_MIPFILTER_NONE:
      sampler->ss0.mip_filter = BRW_MIPFILTER_NONE;
      break;
   default:
      break;
   }
   /* Set Anisotropy:
    */
   switch (pipe_sampler->mag_img_filter) {
   case PIPE_TEX_FILTER_NEAREST:
      sampler->ss0.mag_filter = BRW_MAPFILTER_NEAREST;
      break;
   case PIPE_TEX_FILTER_LINEAR:
      sampler->ss0.mag_filter = BRW_MAPFILTER_LINEAR;
      break;
   case PIPE_TEX_FILTER_ANISO:
      sampler->ss0.mag_filter = BRW_MAPFILTER_LINEAR;
      break;
   default:
      break;
   }

   if (pipe_sampler->max_anisotropy > 2.0) {
      sampler->ss3.max_aniso = MAX2((pipe_sampler->max_anisotropy - 2) / 2,
                                    BRW_ANISORATIO_16);
   }

   sampler->ss1.s_wrap_mode = translate_wrap_mode(pipe_sampler->wrap_s);
   sampler->ss1.r_wrap_mode = translate_wrap_mode(pipe_sampler->wrap_r);
   sampler->ss1.t_wrap_mode = translate_wrap_mode(pipe_sampler->wrap_t);

   /* Fulsim complains if I don't do this.  Hardware doesn't mind:
    */
#if 0
   if (texObj->Target == GL_TEXTURE_CUBE_MAP_ARB) {
      sampler->ss1.r_wrap_mode = BRW_TEXCOORDMODE_CUBE;
      sampler->ss1.s_wrap_mode = BRW_TEXCOORDMODE_CUBE;
      sampler->ss1.t_wrap_mode = BRW_TEXCOORDMODE_CUBE;
   }
#endif

   /* Set shadow function:
    */
   if (pipe_sampler->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) {
      /* Shadowing is "enabled" by emitting a particular sampler
       * message (sample_c).  So need to recompile WM program when
       * shadow comparison is enabled on each/any texture unit.
       */
      sampler->ss0.shadow_function = intel_translate_shadow_compare_func(pipe_sampler->compare_func);
   }

   /* Set LOD bias:
    */
   sampler->ss0.lod_bias = S_FIXED(CLAMP(pipe_sampler->lod_bias, -16, 15), 6);

   sampler->ss0.lod_preclamp = 1; /* OpenGL mode */
   sampler->ss0.default_color_mode = 0; /* OpenGL/DX10 mode */

   /* Set BaseMipLevel, MaxLOD, MinLOD:
    *
    * XXX: I don't think that using firstLevel, lastLevel works,
    * because we always setup the surface state as if firstLevel ==
    * level zero.  Probably have to subtract firstLevel from each of
    * these:
    */
   sampler->ss0.base_level = U_FIXED(0, 1);

   sampler->ss1.max_lod = U_FIXED(MIN2(MAX2(pipe_sampler->max_lod, 0), 13), 6);
   sampler->ss1.min_lod = U_FIXED(MIN2(MAX2(pipe_sampler->min_lod, 0), 13), 6);

   sampler->ss2.default_color_pointer = sdc_gs_offset >> 5;
}
Beispiel #8
0
/**
 * Sets the sampler state for a single unit.
 */
static void
gen7_update_sampler_state(struct brw_context *brw, int unit, int ss_index,
			  struct gen7_sampler_state *sampler,
                          uint32_t *sdc_offset)
{
   struct gl_context *ctx = &brw->ctx;
   struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
   struct gl_texture_object *texObj = texUnit->_Current;
   struct gl_sampler_object *gl_sampler = _mesa_get_samplerobj(ctx, unit);
   bool using_nearest = false;

   /* These don't use samplers at all. */
   if (texObj->Target == GL_TEXTURE_BUFFER)
      return;

   switch (gl_sampler->MinFilter) {
   case GL_NEAREST:
      sampler->ss0.min_filter = BRW_MAPFILTER_NEAREST;
      sampler->ss0.mip_filter = BRW_MIPFILTER_NONE;
      using_nearest = true;
      break;
   case GL_LINEAR:
      sampler->ss0.min_filter = BRW_MAPFILTER_LINEAR;
      sampler->ss0.mip_filter = BRW_MIPFILTER_NONE;
      break;
   case GL_NEAREST_MIPMAP_NEAREST:
      sampler->ss0.min_filter = BRW_MAPFILTER_NEAREST;
      sampler->ss0.mip_filter = BRW_MIPFILTER_NEAREST;
      break;
   case GL_LINEAR_MIPMAP_NEAREST:
      sampler->ss0.min_filter = BRW_MAPFILTER_LINEAR;
      sampler->ss0.mip_filter = BRW_MIPFILTER_NEAREST;
      break;
   case GL_NEAREST_MIPMAP_LINEAR:
      sampler->ss0.min_filter = BRW_MAPFILTER_NEAREST;
      sampler->ss0.mip_filter = BRW_MIPFILTER_LINEAR;
      break;
   case GL_LINEAR_MIPMAP_LINEAR:
      sampler->ss0.min_filter = BRW_MAPFILTER_LINEAR;
      sampler->ss0.mip_filter = BRW_MIPFILTER_LINEAR;
      break;
   default:
      break;
   }

   /* Set Anisotropy: */
   if (gl_sampler->MaxAnisotropy > 1.0) {
      sampler->ss0.min_filter = BRW_MAPFILTER_ANISOTROPIC;
      sampler->ss0.mag_filter = BRW_MAPFILTER_ANISOTROPIC;
      sampler->ss0.aniso_algorithm = 1;

      if (gl_sampler->MaxAnisotropy > 2.0) {
	 sampler->ss3.max_aniso = MIN2((gl_sampler->MaxAnisotropy - 2) / 2,
				       BRW_ANISORATIO_16);
      }
   }
   else {
      switch (gl_sampler->MagFilter) {
      case GL_NEAREST:
	 sampler->ss0.mag_filter = BRW_MAPFILTER_NEAREST;
	 using_nearest = true;
	 break;
      case GL_LINEAR:
	 sampler->ss0.mag_filter = BRW_MAPFILTER_LINEAR;
	 break;
      default:
	 break;
      }
   }

   sampler->ss3.r_wrap_mode = translate_wrap_mode(gl_sampler->WrapR,
						  using_nearest);
   sampler->ss3.s_wrap_mode = translate_wrap_mode(gl_sampler->WrapS,
						  using_nearest);
   sampler->ss3.t_wrap_mode = translate_wrap_mode(gl_sampler->WrapT,
						  using_nearest);

   /* Cube-maps on 965 and later must use the same wrap mode for all 3
    * coordinate dimensions.  Futher, only CUBE and CLAMP are valid.
    */
   if (texObj->Target == GL_TEXTURE_CUBE_MAP ||
       texObj->Target == GL_TEXTURE_CUBE_MAP_ARRAY) {
      if ((ctx->Texture.CubeMapSeamless || gl_sampler->CubeMapSeamless) &&
	  (gl_sampler->MinFilter != GL_NEAREST ||
	   gl_sampler->MagFilter != GL_NEAREST)) {
	 sampler->ss3.r_wrap_mode = BRW_TEXCOORDMODE_CUBE;
	 sampler->ss3.s_wrap_mode = BRW_TEXCOORDMODE_CUBE;
	 sampler->ss3.t_wrap_mode = BRW_TEXCOORDMODE_CUBE;
      } else {
	 sampler->ss3.r_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
	 sampler->ss3.s_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
	 sampler->ss3.t_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
      }
   } else if (texObj->Target == GL_TEXTURE_1D) {
      /* There's a bug in 1D texture sampling - it actually pays
       * attention to the wrap_t value, though it should not.
       * Override the wrap_t value here to GL_REPEAT to keep
       * any nonexistent border pixels from floating in.
       */
      sampler->ss3.t_wrap_mode = BRW_TEXCOORDMODE_WRAP;
   }

   /* Set shadow function: */
   if (gl_sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) {
      /* Shadowing is "enabled" by emitting a particular sampler
       * message (sample_c).  So need to recompile WM program when
       * shadow comparison is enabled on each/any texture unit.
       */
      sampler->ss1.shadow_function =
	 intel_translate_shadow_compare_func(gl_sampler->CompareFunc);
   }

   /* Set LOD bias: */
   sampler->ss0.lod_bias = S_FIXED(CLAMP(texUnit->LodBias +
					 gl_sampler->LodBias, -16, 15), 8);

   sampler->ss0.lod_preclamp = 1; /* OpenGL mode */
   sampler->ss0.default_color_mode = 0; /* OpenGL/DX10 mode */

   sampler->ss0.base_level = U_FIXED(0, 1);

   sampler->ss1.max_lod = U_FIXED(CLAMP(gl_sampler->MaxLod, 0, 13), 8);
   sampler->ss1.min_lod = U_FIXED(CLAMP(gl_sampler->MinLod, 0, 13), 8);

   /* The sampler can handle non-normalized texture rectangle coordinates
    * natively
    */
   if (texObj->Target == GL_TEXTURE_RECTANGLE) {
      sampler->ss3.non_normalized_coord = 1;
   }

   upload_default_color(brw, gl_sampler, unit, sdc_offset);

   sampler->ss2.default_color_pointer = *sdc_offset >> 5;

   if (sampler->ss0.min_filter != BRW_MAPFILTER_NEAREST)
      sampler->ss3.address_round |= BRW_ADDRESS_ROUNDING_ENABLE_U_MIN |
                                    BRW_ADDRESS_ROUNDING_ENABLE_V_MIN |
                                    BRW_ADDRESS_ROUNDING_ENABLE_R_MIN;
   if (sampler->ss0.mag_filter != BRW_MAPFILTER_NEAREST)
      sampler->ss3.address_round |= BRW_ADDRESS_ROUNDING_ENABLE_U_MAG |
                                    BRW_ADDRESS_ROUNDING_ENABLE_V_MAG |
                                    BRW_ADDRESS_ROUNDING_ENABLE_R_MAG;
}
Beispiel #9
0
/* Recalculate all state from scratch.  Perhaps not the most
 * efficient, but this has gotten complex enough that we need
 * something which is understandable and reliable.
 */
static bool
i915_update_tex_unit(struct intel_context *intel, GLuint unit, GLuint ss3)
{
   struct gl_context *ctx = &intel->ctx;
   struct i915_context *i915 = i915_context(ctx);
   struct gl_texture_unit *tUnit = &ctx->Texture.Unit[unit];
   struct gl_texture_object *tObj = tUnit->_Current;
   struct intel_texture_object *intelObj = intel_texture_object(tObj);
   struct gl_texture_image *firstImage;
   struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
   GLuint *state = i915->state.Tex[unit], format, pitch;
   GLint lodbias, aniso = 0;
   GLubyte border[4];
   GLfloat maxlod;

   memset(state, 0, sizeof(state));

   /*We need to refcount these. */

   if (i915->state.tex_buffer[unit] != NULL) {
       drm_intel_bo_unreference(i915->state.tex_buffer[unit]);
       i915->state.tex_buffer[unit] = NULL;
   }

   if (!intel_finalize_mipmap_tree(intel, unit))
      return false;

   /* Get first image here, since intelObj->firstLevel will get set in
    * the intel_finalize_mipmap_tree() call above.
    */
   firstImage = tObj->Image[0][tObj->BaseLevel];

   drm_intel_bo_reference(intelObj->mt->region->bo);
   i915->state.tex_buffer[unit] = intelObj->mt->region->bo;
   i915->state.tex_offset[unit] = intelObj->mt->offset;

   format = translate_texture_format(firstImage->TexFormat,
				     tObj->DepthMode);
   pitch = intelObj->mt->region->pitch * intelObj->mt->cpp;

   state[I915_TEXREG_MS3] =
      (((firstImage->Height - 1) << MS3_HEIGHT_SHIFT) |
       ((firstImage->Width - 1) << MS3_WIDTH_SHIFT) | format);

   if (intelObj->mt->region->tiling != I915_TILING_NONE) {
      state[I915_TEXREG_MS3] |= MS3_TILED_SURFACE;
      if (intelObj->mt->region->tiling == I915_TILING_Y)
	 state[I915_TEXREG_MS3] |= MS3_TILE_WALK;
   }

   /* We get one field with fraction bits for the maximum addressable
    * (lowest resolution) LOD.  Use it to cover both MAX_LEVEL and
    * MAX_LOD.
    */
   maxlod = MIN2(sampler->MaxLod, tObj->_MaxLevel - tObj->BaseLevel);
   state[I915_TEXREG_MS4] =
      ((((pitch / 4) - 1) << MS4_PITCH_SHIFT) |
       MS4_CUBE_FACE_ENA_MASK |
       (U_FIXED(CLAMP(maxlod, 0.0, 11.0), 2) << MS4_MAX_LOD_SHIFT) |
       ((firstImage->Depth - 1) << MS4_VOLUME_DEPTH_SHIFT));


   {
      GLuint minFilt, mipFilt, magFilt;

      switch (sampler->MinFilter) {
      case GL_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_NEAREST_MIPMAP_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_LINEAR_MIPMAP_NEAREST:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_NEAREST_MIPMAP_LINEAR:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_LINEAR;
         break;
      case GL_LINEAR_MIPMAP_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_LINEAR;
         break;
      default:
         return false;
      }

      if (sampler->MaxAnisotropy > 1.0) {
         minFilt = FILTER_ANISOTROPIC;
         magFilt = FILTER_ANISOTROPIC;
         if (sampler->MaxAnisotropy > 2.0)
            aniso = SS2_MAX_ANISO_4;
         else
            aniso = SS2_MAX_ANISO_2;
      }
      else {
         switch (sampler->MagFilter) {
         case GL_NEAREST:
            magFilt = FILTER_NEAREST;
            break;
         case GL_LINEAR:
            magFilt = FILTER_LINEAR;
            break;
         default:
            return false;
         }
      }

      lodbias = (int) ((tUnit->LodBias + sampler->LodBias) * 16.0);
      if (lodbias < -256)
          lodbias = -256;
      if (lodbias > 255)
          lodbias = 255;
      state[I915_TEXREG_SS2] = ((lodbias << SS2_LOD_BIAS_SHIFT) & 
                                SS2_LOD_BIAS_MASK);

      /* YUV conversion:
       */
      if (firstImage->TexFormat == MESA_FORMAT_YCBCR ||
          firstImage->TexFormat == MESA_FORMAT_YCBCR_REV)
         state[I915_TEXREG_SS2] |= SS2_COLORSPACE_CONVERSION;

      /* Shadow:
       */
      if (sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB &&
          tObj->Target != GL_TEXTURE_3D) {
         if (tObj->Target == GL_TEXTURE_1D) 
            return false;

         state[I915_TEXREG_SS2] |=
            (SS2_SHADOW_ENABLE |
             intel_translate_shadow_compare_func(sampler->CompareFunc));

         minFilt = FILTER_4X4_FLAT;
         magFilt = FILTER_4X4_FLAT;
      }

      state[I915_TEXREG_SS2] |= ((minFilt << SS2_MIN_FILTER_SHIFT) |
                                 (mipFilt << SS2_MIP_FILTER_SHIFT) |
                                 (magFilt << SS2_MAG_FILTER_SHIFT) |
                                 aniso);
   }

   {
      GLenum ws = sampler->WrapS;
      GLenum wt = sampler->WrapT;
      GLenum wr = sampler->WrapR;
      float minlod;

      /* We program 1D textures as 2D textures, so the 2D texcoord could
       * result in sampling border values if we don't set the T wrap to
       * repeat.
       */
      if (tObj->Target == GL_TEXTURE_1D)
	 wt = GL_REPEAT;

      /* 3D textures don't seem to respect the border color.
       * Fallback if there's ever a danger that they might refer to
       * it.  
       * 
       * Effectively this means fallback on 3D clamp or
       * clamp_to_border.
       */
      if (tObj->Target == GL_TEXTURE_3D &&
          (sampler->MinFilter != GL_NEAREST ||
           sampler->MagFilter != GL_NEAREST) &&
          (ws == GL_CLAMP ||
           wt == GL_CLAMP ||
           wr == GL_CLAMP ||
           ws == GL_CLAMP_TO_BORDER ||
           wt == GL_CLAMP_TO_BORDER || wr == GL_CLAMP_TO_BORDER))
         return false;

      /* Only support TEXCOORDMODE_CLAMP_EDGE and TEXCOORDMODE_CUBE (not 
       * used) when using cube map texture coordinates
       */
      if (tObj->Target == GL_TEXTURE_CUBE_MAP_ARB &&
          (((ws != GL_CLAMP) && (ws != GL_CLAMP_TO_EDGE)) ||
           ((wt != GL_CLAMP) && (wt != GL_CLAMP_TO_EDGE))))
          return false;

      /*
       * According to 3DSTATE_MAP_STATE at page of 104 in Bspec
       * Vol3d 3D Instructions:
       *   [DevGDG and DevAlv]: Must be a power of 2 for cube maps.
       *   [DevLPT, DevCST and DevBLB]: If not a power of 2, cube maps
       *      must have all faces enabled.
       *
       * But, as I tested on pineview(DevBLB derived), the rendering is
       * bad(you will find the color isn't samplered right in some
       * fragments). After checking, it seems that the texture layout is
       * wrong: making the width and height align of 4(although this
       * doesn't make much sense) will fix this issue and also broke some
       * others. Well, Bspec mentioned nothing about the layout alignment
       * and layout for NPOT cube map.  I guess the Bspec just assume it's
       * a POT cube map.
       *
       * Thus, I guess we need do this for other platforms as well.
       */
      if (tObj->Target == GL_TEXTURE_CUBE_MAP_ARB &&
          !is_power_of_two(firstImage->Height))
         return false;

      state[I915_TEXREG_SS3] = ss3;     /* SS3_NORMALIZED_COORDS */

      state[I915_TEXREG_SS3] |=
         ((translate_wrap_mode(ws) << SS3_TCX_ADDR_MODE_SHIFT) |
          (translate_wrap_mode(wt) << SS3_TCY_ADDR_MODE_SHIFT) |
          (translate_wrap_mode(wr) << SS3_TCZ_ADDR_MODE_SHIFT));

      minlod = MIN2(sampler->MinLod, tObj->_MaxLevel - tObj->BaseLevel);
      state[I915_TEXREG_SS3] |= (unit << SS3_TEXTUREMAP_INDEX_SHIFT);
      state[I915_TEXREG_SS3] |= (U_FIXED(CLAMP(minlod, 0.0, 11.0), 4) <<
				 SS3_MIN_LOD_SHIFT);

   }

   /* convert border color from float to ubyte */
   CLAMPED_FLOAT_TO_UBYTE(border[0], sampler->BorderColor.f[0]);
   CLAMPED_FLOAT_TO_UBYTE(border[1], sampler->BorderColor.f[1]);
   CLAMPED_FLOAT_TO_UBYTE(border[2], sampler->BorderColor.f[2]);
   CLAMPED_FLOAT_TO_UBYTE(border[3], sampler->BorderColor.f[3]);

   if (firstImage->_BaseFormat == GL_DEPTH_COMPONENT) {
      /* GL specs that border color for depth textures is taken from the
       * R channel, while the hardware uses A.  Spam R into all the channels
       * for safety.
       */
      state[I915_TEXREG_SS4] = PACK_COLOR_8888(border[0],
					       border[0],
					       border[0],
					       border[0]);
   } else {
      state[I915_TEXREG_SS4] = PACK_COLOR_8888(border[3],
					       border[0],
					       border[1],
					       border[2]);
   }


   I915_ACTIVESTATE(i915, I915_UPLOAD_TEX(unit), true);
   /* memcmp was already disabled, but definitely won't work as the
    * region might now change and that wouldn't be detected:
    */
   I915_STATECHANGE(i915, I915_UPLOAD_TEX(unit));


#if 0
   DBG(TEXTURE, "state[I915_TEXREG_SS2] = 0x%x\n", state[I915_TEXREG_SS2]);
   DBG(TEXTURE, "state[I915_TEXREG_SS3] = 0x%x\n", state[I915_TEXREG_SS3]);
   DBG(TEXTURE, "state[I915_TEXREG_SS4] = 0x%x\n", state[I915_TEXREG_SS4]);
   DBG(TEXTURE, "state[I915_TEXREG_MS2] = 0x%x\n", state[I915_TEXREG_MS2]);
   DBG(TEXTURE, "state[I915_TEXREG_MS3] = 0x%x\n", state[I915_TEXREG_MS3]);
   DBG(TEXTURE, "state[I915_TEXREG_MS4] = 0x%x\n", state[I915_TEXREG_MS4]);
#endif

   return true;
}
Beispiel #10
0
/* Recalculate all state from scratch.  Perhaps not the most
 * efficient, but this has gotten complex enough that we need
 * something which is understandable and reliable.
 */
static GLboolean
i830_update_tex_unit(struct intel_context *intel, GLuint unit, GLuint ss3)
{
   GLcontext *ctx = &intel->ctx;
   struct i830_context *i830 = i830_context(ctx);
   struct gl_texture_unit *tUnit = &ctx->Texture.Unit[unit];
   struct gl_texture_object *tObj = tUnit->_Current;
   struct intel_texture_object *intelObj = intel_texture_object(tObj);
   struct gl_texture_image *firstImage;
   GLuint *state = i830->state.Tex[unit], format, pitch;
   GLint lodbias;
   GLubyte border[4];
   GLuint dst_x, dst_y;

   memset(state, 0, sizeof(state));

   /*We need to refcount these. */

   if (i830->state.tex_buffer[unit] != NULL) {
       drm_intel_bo_unreference(i830->state.tex_buffer[unit]);
       i830->state.tex_buffer[unit] = NULL;
   }

   if (!intel_finalize_mipmap_tree(intel, unit))
      return GL_FALSE;

   /* Get first image here, since intelObj->firstLevel will get set in
    * the intel_finalize_mipmap_tree() call above.
    */
   firstImage = tObj->Image[0][intelObj->firstLevel];

   intel_miptree_get_image_offset(intelObj->mt, intelObj->firstLevel, 0, 0,
				  &dst_x, &dst_y);

   drm_intel_bo_reference(intelObj->mt->region->buffer);
   i830->state.tex_buffer[unit] = intelObj->mt->region->buffer;
   pitch = intelObj->mt->region->pitch * intelObj->mt->cpp;

   /* XXX: This calculation is probably broken for tiled images with
    * a non-page-aligned offset.
    */
   i830->state.tex_offset[unit] = dst_x * intelObj->mt->cpp + dst_y * pitch;

   format = translate_texture_format(firstImage->TexFormat,
				     firstImage->InternalFormat);

   state[I830_TEXREG_TM0LI] = (_3DSTATE_LOAD_STATE_IMMEDIATE_2 |
                               (LOAD_TEXTURE_MAP0 << unit) | 4);

   state[I830_TEXREG_TM0S1] =
      (((firstImage->Height - 1) << TM0S1_HEIGHT_SHIFT) |
       ((firstImage->Width - 1) << TM0S1_WIDTH_SHIFT) | format);

   if (intelObj->mt->region->tiling != I915_TILING_NONE) {
      state[I830_TEXREG_TM0S1] |= TM0S1_TILED_SURFACE;
      if (intelObj->mt->region->tiling == I915_TILING_Y)
	 state[I830_TEXREG_TM0S1] |= TM0S1_TILE_WALK;
   }

   state[I830_TEXREG_TM0S2] =
      ((((pitch / 4) - 1) << TM0S2_PITCH_SHIFT) | TM0S2_CUBE_FACE_ENA_MASK);

   {
      if (tObj->Target == GL_TEXTURE_CUBE_MAP)
         state[I830_TEXREG_CUBE] = (_3DSTATE_MAP_CUBE | MAP_UNIT(unit) |
                                    CUBE_NEGX_ENABLE |
                                    CUBE_POSX_ENABLE |
                                    CUBE_NEGY_ENABLE |
                                    CUBE_POSY_ENABLE |
                                    CUBE_NEGZ_ENABLE | CUBE_POSZ_ENABLE);
      else
         state[I830_TEXREG_CUBE] = (_3DSTATE_MAP_CUBE | MAP_UNIT(unit));
   }




   {
      GLuint minFilt, mipFilt, magFilt;

      switch (tObj->MinFilter) {
      case GL_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_NEAREST_MIPMAP_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_LINEAR_MIPMAP_NEAREST:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_NEAREST_MIPMAP_LINEAR:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_LINEAR;
         break;
      case GL_LINEAR_MIPMAP_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_LINEAR;
         break;
      default:
         return GL_FALSE;
      }

      if (tObj->MaxAnisotropy > 1.0) {
         minFilt = FILTER_ANISOTROPIC;
         magFilt = FILTER_ANISOTROPIC;
      }
      else {
         switch (tObj->MagFilter) {
         case GL_NEAREST:
            magFilt = FILTER_NEAREST;
            break;
         case GL_LINEAR:
            magFilt = FILTER_LINEAR;
            break;
         default:
            return GL_FALSE;
         }
      }

      lodbias = (int) ((tUnit->LodBias + tObj->LodBias) * 16.0);
      if (lodbias < -64)
          lodbias = -64;
      if (lodbias > 63)
          lodbias = 63;
      
      state[I830_TEXREG_TM0S3] = ((lodbias << TM0S3_LOD_BIAS_SHIFT) & 
                                  TM0S3_LOD_BIAS_MASK);
#if 0
      /* YUV conversion:
       */
      if (firstImage->TexFormat->MesaFormat == MESA_FORMAT_YCBCR ||
          firstImage->TexFormat->MesaFormat == MESA_FORMAT_YCBCR_REV)
         state[I830_TEXREG_TM0S3] |= SS2_COLORSPACE_CONVERSION;
#endif

      state[I830_TEXREG_TM0S3] |= ((intelObj->lastLevel -
                                    intelObj->firstLevel) *
                                   4) << TM0S3_MIN_MIP_SHIFT;

      state[I830_TEXREG_TM0S3] |= ((minFilt << TM0S3_MIN_FILTER_SHIFT) |
                                   (mipFilt << TM0S3_MIP_FILTER_SHIFT) |
                                   (magFilt << TM0S3_MAG_FILTER_SHIFT));
   }

   {
      GLenum ws = tObj->WrapS;
      GLenum wt = tObj->WrapT;


      /* 3D textures not available on i830
       */
      if (tObj->Target == GL_TEXTURE_3D)
         return GL_FALSE;

      state[I830_TEXREG_MCS] = (_3DSTATE_MAP_COORD_SET_CMD |
                                MAP_UNIT(unit) |
                                ENABLE_TEXCOORD_PARAMS |
                                ss3 |
                                ENABLE_ADDR_V_CNTL |
                                TEXCOORD_ADDR_V_MODE(translate_wrap_mode(wt))
                                | ENABLE_ADDR_U_CNTL |
                                TEXCOORD_ADDR_U_MODE(translate_wrap_mode
                                                     (ws)));
   }

   /* convert border color from float to ubyte */
   CLAMPED_FLOAT_TO_UBYTE(border[0], tObj->BorderColor.f[0]);
   CLAMPED_FLOAT_TO_UBYTE(border[1], tObj->BorderColor.f[1]);
   CLAMPED_FLOAT_TO_UBYTE(border[2], tObj->BorderColor.f[2]);
   CLAMPED_FLOAT_TO_UBYTE(border[3], tObj->BorderColor.f[3]);

   state[I830_TEXREG_TM0S4] = PACK_COLOR_8888(border[3],
					      border[0],
					      border[1],
					      border[2]);

   I830_ACTIVESTATE(i830, I830_UPLOAD_TEX(unit), GL_TRUE);
   /* memcmp was already disabled, but definitely won't work as the
    * region might now change and that wouldn't be detected:
    */
   I830_STATECHANGE(i830, I830_UPLOAD_TEX(unit));
   return GL_TRUE;
}
Beispiel #11
0
/**
 * Define a vgpu10 sampler state.
 */
static void
define_sampler_state_object(struct svga_context *svga,
                            struct svga_sampler_state *ss,
                            const struct pipe_sampler_state *ps)
{
   uint8_t max_aniso = (uint8_t) 255; /* XXX fix me */
   boolean anisotropic;
   uint8 compare_func;
   SVGA3dFilter filter;
   SVGA3dRGBAFloat bcolor;
   unsigned try;
   float min_lod, max_lod;

   assert(svga_have_vgpu10(svga));

   anisotropic = ss->aniso_level > 1.0f;

   filter = translate_filter_mode(ps->min_mip_filter,
                                  ps->min_img_filter,
                                  ps->mag_img_filter,
                                  anisotropic,
                                  ss->compare_mode);

   compare_func = translate_comparison_func(ss->compare_func);

   COPY_4V(bcolor.value, ps->border_color.f);

   assert(ps->min_lod <= ps->max_lod);

   if (ps->min_mip_filter == PIPE_TEX_MIPFILTER_NONE) {
      /* just use the base level image */
      min_lod = max_lod = 0.0f;
   }
   else {
      min_lod = ps->min_lod;
      max_lod = ps->max_lod;
   }

   /* If shadow comparisons are enabled, create two sampler states: one
    * with the given shadow compare mode, another with shadow comparison off.
    * We need the later because in some cases, we have to do the shadow
    * compare in the shader.  So, we don't want to do it twice.
    */
   STATIC_ASSERT(PIPE_TEX_COMPARE_NONE == 0);
   STATIC_ASSERT(PIPE_TEX_COMPARE_R_TO_TEXTURE == 1);
   ss->id[1] = SVGA3D_INVALID_ID;

   unsigned i;
   for (i = 0; i <= ss->compare_mode; i++) {
      ss->id[i] = util_bitmask_add(svga->sampler_object_id_bm);

      /* Loop in case command buffer is full and we need to flush and retry */
      for (try = 0; try < 2; try++) {
         enum pipe_error ret =
            SVGA3D_vgpu10_DefineSamplerState(svga->swc,
                                             ss->id[i],
                                             filter,
                                             ss->addressu,
                                             ss->addressv,
                                             ss->addressw,
                                             ss->lod_bias, /* float */
                                             max_aniso,
                                             compare_func,
                                             bcolor,
                                             min_lod,       /* float */
                                             max_lod);      /* float */
         if (ret == PIPE_OK)
            break;
         svga_context_flush(svga, NULL);
      }

      /* turn off the shadow compare option for second iteration */
      filter &= ~SVGA3D_FILTER_COMPARE;
   }
}


static void *
svga_create_sampler_state(struct pipe_context *pipe,
                          const struct pipe_sampler_state *sampler)
{
   struct svga_context *svga = svga_context(pipe);
   struct svga_sampler_state *cso = CALLOC_STRUCT( svga_sampler_state );

   if (!cso)
      return NULL;

   cso->mipfilter = translate_mip_filter(sampler->min_mip_filter);
   cso->magfilter = translate_img_filter( sampler->mag_img_filter );
   cso->minfilter = translate_img_filter( sampler->min_img_filter );
   cso->aniso_level = MAX2( sampler->max_anisotropy, 1 );
   if (sampler->max_anisotropy)
      cso->magfilter = cso->minfilter = SVGA3D_TEX_FILTER_ANISOTROPIC;
   cso->lod_bias = sampler->lod_bias;
   cso->addressu = translate_wrap_mode(sampler->wrap_s);
   cso->addressv = translate_wrap_mode(sampler->wrap_t);
   cso->addressw = translate_wrap_mode(sampler->wrap_r);
   cso->normalized_coords = sampler->normalized_coords;
   cso->compare_mode = sampler->compare_mode;
   cso->compare_func = sampler->compare_func;

   {
      uint32 r = float_to_ubyte(sampler->border_color.f[0]);
      uint32 g = float_to_ubyte(sampler->border_color.f[1]);
      uint32 b = float_to_ubyte(sampler->border_color.f[2]);
      uint32 a = float_to_ubyte(sampler->border_color.f[3]);

      cso->bordercolor = (a << 24) | (r << 16) | (g << 8) | b;
   }

   /* No SVGA3D support for:
    *    - min/max LOD clamping
    */
   cso->min_lod = 0;
   cso->view_min_lod = MAX2((int) (sampler->min_lod + 0.5), 0);
   cso->view_max_lod = MAX2((int) (sampler->max_lod + 0.5), 0);

   /* Use min_mipmap */
   if (svga->debug.use_min_mipmap) {
      if (cso->view_min_lod == cso->view_max_lod) {
         cso->min_lod = cso->view_min_lod;
         cso->view_min_lod = 0;
         cso->view_max_lod = 1000; /* Just a high number */
         cso->mipfilter = SVGA3D_TEX_FILTER_NONE;
      }
   }

   if (svga_have_vgpu10(svga)) {
      define_sampler_state_object(svga, cso, sampler);
   }

   SVGA_DBG(DEBUG_SAMPLERS,
            "New sampler: min %u, view(min %u, max %u) lod, mipfilter %s\n",
            cso->min_lod, cso->view_min_lod, cso->view_max_lod,
            cso->mipfilter == SVGA3D_TEX_FILTER_NONE ? "SVGA3D_TEX_FILTER_NONE" : "SOMETHING");

   svga->hud.num_sampler_objects++;
   SVGA_STATS_COUNT_INC(svga_screen(svga->pipe.screen)->sws,
                        SVGA_STATS_COUNT_SAMPLER);

   return cso;
}


static void
svga_bind_sampler_states(struct pipe_context *pipe,
                         enum pipe_shader_type shader,
                         unsigned start,
                         unsigned num,
                         void **samplers)
{
   struct svga_context *svga = svga_context(pipe);
   unsigned i;
   boolean any_change = FALSE;

   assert(shader < PIPE_SHADER_TYPES);
   assert(start + num <= PIPE_MAX_SAMPLERS);

   /* Pre-VGPU10 only supports FS textures */
   if (!svga_have_vgpu10(svga) && shader != PIPE_SHADER_FRAGMENT)
      return;

   for (i = 0; i < num; i++) {
      if (svga->curr.sampler[shader][start + i] != samplers[i])
         any_change = TRUE;
      svga->curr.sampler[shader][start + i] = samplers[i];
   }

   if (!any_change) {
      return;
   }

   /* find highest non-null sampler[] entry */
   {
      unsigned j = MAX2(svga->curr.num_samplers[shader], start + num);
      while (j > 0 && svga->curr.sampler[shader][j - 1] == NULL)
         j--;
      svga->curr.num_samplers[shader] = j;
   }

   svga->dirty |= SVGA_NEW_SAMPLER;
}


static void
svga_delete_sampler_state(struct pipe_context *pipe, void *sampler)
{
   struct svga_sampler_state *ss = (struct svga_sampler_state *) sampler;
   struct svga_context *svga = svga_context(pipe);

   if (svga_have_vgpu10(svga)) {
      unsigned i;
      for (i = 0; i < 2; i++) {
         enum pipe_error ret;

         if (ss->id[i] != SVGA3D_INVALID_ID) {
            svga_hwtnl_flush_retry(svga);

            ret = SVGA3D_vgpu10_DestroySamplerState(svga->swc, ss->id[i]);
            if (ret != PIPE_OK) {
               svga_context_flush(svga, NULL);
               ret = SVGA3D_vgpu10_DestroySamplerState(svga->swc, ss->id[i]);
            }
            util_bitmask_clear(svga->sampler_object_id_bm, ss->id[i]);
         }
      }
   }

   FREE(sampler);
   svga->hud.num_sampler_objects--;
}


static struct pipe_sampler_view *
svga_create_sampler_view(struct pipe_context *pipe,
                         struct pipe_resource *texture,
                         const struct pipe_sampler_view *templ)
{
   struct svga_context *svga = svga_context(pipe);
   struct svga_pipe_sampler_view *sv = CALLOC_STRUCT(svga_pipe_sampler_view);

   if (!sv) {
      return NULL;
   }

   sv->base = *templ;
   sv->base.reference.count = 1;
   sv->base.texture = NULL;
   pipe_resource_reference(&sv->base.texture, texture);

   sv->base.context = pipe;
   sv->id = SVGA3D_INVALID_ID;

   svga->hud.num_samplerview_objects++;
   SVGA_STATS_COUNT_INC(svga_screen(svga->pipe.screen)->sws,
                        SVGA_STATS_COUNT_SAMPLERVIEW);

   return &sv->base;
}


static void
svga_sampler_view_destroy(struct pipe_context *pipe,
                          struct pipe_sampler_view *view)
{
   struct svga_context *svga = svga_context(pipe);
   struct svga_pipe_sampler_view *sv = svga_pipe_sampler_view(view);

   if (svga_have_vgpu10(svga) && sv->id != SVGA3D_INVALID_ID) {
      if (view->context != pipe) {
         /* The SVGA3D device will generate an error (and on Linux, cause
          * us to abort) if we try to destroy a shader resource view from
          * a context other than the one it was created with.  Skip the
          * SVGA3D_vgpu10_DestroyShaderResourceView() and leak the sampler
          * view for now.  This should only sometimes happen when a shared
          * texture is deleted.
          */
         _debug_printf("context mismatch in %s\n", __func__);
      }
      else {
         enum pipe_error ret;

         svga_hwtnl_flush_retry(svga); /* XXX is this needed? */

         ret = SVGA3D_vgpu10_DestroyShaderResourceView(svga->swc, sv->id);
         if (ret != PIPE_OK) {
            svga_context_flush(svga, NULL);
            ret = SVGA3D_vgpu10_DestroyShaderResourceView(svga->swc, sv->id);
         }
         util_bitmask_clear(svga->sampler_view_id_bm, sv->id);
      }
   }

   pipe_resource_reference(&sv->base.texture, NULL);

   FREE(sv);
   svga->hud.num_samplerview_objects--;
}


static void
svga_set_sampler_views(struct pipe_context *pipe,
                       enum pipe_shader_type shader,
                       unsigned start,
                       unsigned num,
                       struct pipe_sampler_view **views)
{
   struct svga_context *svga = svga_context(pipe);
   unsigned flag_1d = 0;
   unsigned flag_srgb = 0;
   uint i;
   boolean any_change = FALSE;

   assert(shader < PIPE_SHADER_TYPES);
   assert(start + num <= ARRAY_SIZE(svga->curr.sampler_views[shader]));

   /* Pre-VGPU10 only supports FS textures */
   if (!svga_have_vgpu10(svga) && shader != PIPE_SHADER_FRAGMENT)
      return;

   SVGA_STATS_TIME_PUSH(svga_sws(svga), SVGA_STATS_TIME_SETSAMPLERVIEWS);

   /* This bit of code works around a quirk in the CSO module.
    * If start=num=0 it means all sampler views should be released.
    * Note that the CSO module treats sampler views for fragment shaders
    * differently than other shader types.
    */
   if (start == 0 && num == 0 && svga->curr.num_sampler_views[shader] > 0) {
      for (i = 0; i < svga->curr.num_sampler_views[shader]; i++) {
         pipe_sampler_view_release(pipe, &svga->curr.sampler_views[shader][i]);
      }
      any_change = TRUE;
   }

   for (i = 0; i < num; i++) {
      enum pipe_texture_target target;

      if (svga->curr.sampler_views[shader][start + i] != views[i]) {
         /* Note: we're using pipe_sampler_view_release() here to work around
          * a possible crash when the old view belongs to another context that
          * was already destroyed.
          */
         pipe_sampler_view_release(pipe, &svga->curr.sampler_views[shader][start + i]);
         pipe_sampler_view_reference(&svga->curr.sampler_views[shader][start + i],
                                     views[i]);
         any_change = TRUE;
      }

      if (!views[i])
         continue;

      if (util_format_is_srgb(views[i]->format))
         flag_srgb |= 1 << (start + i);

      target = views[i]->target;
      if (target == PIPE_TEXTURE_1D) {
         flag_1d |= 1 << (start + i);
      } else if (target == PIPE_TEXTURE_RECT) {
         /* If the size of the bound texture changes, we need to emit new
          * const buffer values.
          */
         svga->dirty |= SVGA_NEW_TEXTURE_CONSTS;
      } else if (target == PIPE_BUFFER) {
         /* If the size of the bound buffer changes, we need to emit new
          * const buffer values.
          */
         svga->dirty |= SVGA_NEW_TEXTURE_CONSTS;
      }
   }

   if (!any_change) {
      goto done;
   }

   /* find highest non-null sampler_views[] entry */
   {
      unsigned j = MAX2(svga->curr.num_sampler_views[shader], start + num);
      while (j > 0 && svga->curr.sampler_views[shader][j - 1] == NULL)
         j--;
      svga->curr.num_sampler_views[shader] = j;
   }

   svga->dirty |= SVGA_NEW_TEXTURE_BINDING;

   if (flag_srgb != svga->curr.tex_flags.flag_srgb ||
       flag_1d != svga->curr.tex_flags.flag_1d) {
      svga->dirty |= SVGA_NEW_TEXTURE_FLAGS;
      svga->curr.tex_flags.flag_1d = flag_1d;
      svga->curr.tex_flags.flag_srgb = flag_srgb;
   }

   /* Check if any of the sampler view resources collide with the framebuffer
    * color buffers or depth stencil resource. If so, set the NEW_FRAME_BUFFER
    * dirty bit so that emit_framebuffer can be invoked to create backed view
    * for the conflicted surface view.
    */
   if (svga_check_sampler_framebuffer_resource_collision(svga, shader)) {
      svga->dirty |= SVGA_NEW_FRAME_BUFFER;
   }

done:
   SVGA_STATS_TIME_POP(svga_sws(svga));
}

/**
 * Clean up sampler, sampler view state at context destruction time
 */
void
svga_cleanup_sampler_state(struct svga_context *svga)
{
   enum pipe_shader_type shader;

   for (shader = 0; shader <= PIPE_SHADER_GEOMETRY; shader++) {
      unsigned i;

      for (i = 0; i < svga->state.hw_draw.num_sampler_views[shader]; i++) {
         pipe_sampler_view_release(&svga->pipe,
                                   &svga->state.hw_draw.sampler_views[shader][i]);
      }
   }
   
   /* free polygon stipple state */
   if (svga->polygon_stipple.sampler) {
      svga->pipe.delete_sampler_state(&svga->pipe, svga->polygon_stipple.sampler);
   }

   if (svga->polygon_stipple.sampler_view) {
      svga->pipe.sampler_view_destroy(&svga->pipe,
                                      &svga->polygon_stipple.sampler_view->base);
   }
   pipe_resource_reference(&svga->polygon_stipple.texture, NULL);
}

void
svga_init_sampler_functions( struct svga_context *svga )
{
   svga->pipe.create_sampler_state = svga_create_sampler_state;
   svga->pipe.bind_sampler_states = svga_bind_sampler_states;
   svga->pipe.delete_sampler_state = svga_delete_sampler_state;
   svga->pipe.set_sampler_views = svga_set_sampler_views;
   svga->pipe.create_sampler_view = svga_create_sampler_view;
   svga->pipe.sampler_view_destroy = svga_sampler_view_destroy;
}