Beispiel #1
0
void uct_perf_iface_flush_b(ucx_perf_context_t *perf)
{
    ucs_status_t status;

    do {
        status = uct_iface_flush(perf->uct.iface, 0, NULL);
        uct_worker_progress(perf->uct.worker);
    } while (status == UCS_INPROGRESS);
}
Beispiel #2
0
ucs_status_t ucp_tag_recv(ucp_worker_h worker, void *buffer,
                          size_t length, ucp_tag_t tag, uint64_t tag_mask,
                          ucp_tag_recv_completion_t *comp)
{
    ucp_context_h context = worker->context;
    ucp_recv_request_t rreq;
    ucs_queue_iter_t iter;
    ucp_recv_desc_t *rdesc;
    ucp_tag_t unexp_tag;
    ucs_status_t status;

    /* First, search in unexpected list */
    iter = ucs_queue_iter_begin(&context->tag.unexpected);
    while (!ucs_queue_iter_end(&context->tag.unexpected, iter)) {
        rdesc = ucs_container_of(*iter, ucp_recv_desc_t, queue);
        unexp_tag = *(ucp_tag_t*)(rdesc + 1);
        if (ucp_tag_is_match(unexp_tag, tag, tag_mask)) {
            ucs_queue_del_iter(&context->tag.unexpected, iter);
            status = ucp_tag_matched(buffer, length, unexp_tag,
                                     (void*)(rdesc + 1) + sizeof(ucp_tag_t),
                                     rdesc->length - sizeof(ucp_tag_t),
                                     comp);
            uct_iface_release_am_desc(rdesc);
            goto out;
         }
         iter = ucs_queue_iter_next(iter);
    }

    /* If not found on unexpected, wait until it arrives */
    rreq.status   = UCS_INPROGRESS;
    rreq.buffer   = buffer;
    rreq.length   = length;
    rreq.tag      = tag;
    rreq.tag_mask = tag_mask;
    ucs_queue_push(&context->tag.expected, &rreq.queue);

    do {
        uct_worker_progress(worker->uct);
        /* coverity[loop_condition] */
    } while (rreq.status == UCS_INPROGRESS);

    *comp  = rreq.comp;
    status = rreq.status;

out:
    return status;
}
Beispiel #3
0
int main(int argc, char **argv)
{
    /* MPI is initially used to swap the endpoint and interface addresses so each
     * process has knowledge of the others. */
    int partner;
    int size, rank;
    uct_device_addr_t *own_dev, *peer_dev;
    uct_iface_addr_t *own_iface, *peer_iface;
    uct_ep_addr_t *own_ep, *peer_ep;
    ucs_status_t status;          /* status codes for UCS */
    uct_ep_h ep;                  /* Remote endpoint */
    ucs_async_context_t async;    /* Async event context manages times and fd notifications */
    uint8_t id = 0;
    void *arg;
    const char *tl_name = NULL;
    const char *dev_name = NULL;
    struct iface_info if_info;
    int exit_fail = 1;

    optind = 1;
    if (3 == argc) {
        dev_name = argv[1];
        tl_name  = argv[2];
    } else {
        printf("Usage: %s (<dev-name> <tl-name>)\n", argv[0]);
        fflush(stdout);
        return 1;
    }

    MPI_Init(&argc, &argv);
    MPI_Comm_size(MPI_COMM_WORLD, &size);
    if (size < 2) {
        fprintf(stderr, "Failed to create enough mpi processes\n");
        goto out;
    }

    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    if (0 == rank) {
        partner = 1;
    } else if (1 == rank) {
        partner = 0;
    } else {
        /* just wait for other processes in MPI_Finalize */
        exit_fail = 0;
        goto out;
    }

    /* Initialize context */
    status = ucs_async_context_init(&async, UCS_ASYNC_MODE_THREAD);
    CHKERR_JUMP(UCS_OK != status, "init async context", out);

    /* Create a worker object */
    status = uct_worker_create(&async, UCS_THREAD_MODE_SINGLE, &if_info.worker);
    CHKERR_JUMP(UCS_OK != status, "create worker", out_cleanup_async);

    /* Search for the desired transport */
    status = dev_tl_lookup(dev_name, tl_name, &if_info);
    CHKERR_JUMP(UCS_OK != status, "find supported device and transport", out_destroy_worker);

    /* Expect that addr len is the same on both peers */
    own_dev = (uct_device_addr_t*)calloc(2, if_info.attr.device_addr_len);
    CHKERR_JUMP(NULL == own_dev, "allocate memory for dev addrs", out_destroy_iface);
    peer_dev = (uct_device_addr_t*)((char*)own_dev + if_info.attr.device_addr_len);

    own_iface = (uct_iface_addr_t*)calloc(2, if_info.attr.iface_addr_len);
    CHKERR_JUMP(NULL == own_iface, "allocate memory for if addrs", out_free_dev_addrs);
    peer_iface = (uct_iface_addr_t*)((char*)own_iface + if_info.attr.iface_addr_len);

    /* Get device address */
    status = uct_iface_get_device_address(if_info.iface, own_dev);
    CHKERR_JUMP(UCS_OK != status, "get device address", out_free_if_addrs);

    MPI_Sendrecv(own_dev, if_info.attr.device_addr_len, MPI_BYTE, partner, 0,
                 peer_dev, if_info.attr.device_addr_len, MPI_BYTE, partner,0,
                 MPI_COMM_WORLD, MPI_STATUS_IGNORE);

    status = uct_iface_is_reachable(if_info.iface, peer_dev, NULL);
    CHKERR_JUMP(0 == status, "reach the peer", out_free_if_addrs);

    /* Get interface address */
    if (if_info.attr.cap.flags & UCT_IFACE_FLAG_CONNECT_TO_IFACE) {
        status = uct_iface_get_address(if_info.iface, own_iface);
        CHKERR_JUMP(UCS_OK != status, "get interface address", out_free_if_addrs);

        MPI_Sendrecv(own_iface, if_info.attr.iface_addr_len, MPI_BYTE, partner, 0,
                     peer_iface, if_info.attr.iface_addr_len, MPI_BYTE, partner,0,
                     MPI_COMM_WORLD, MPI_STATUS_IGNORE);
    }

    /* Again, expect that ep addr len is the same on both peers */
    own_ep = (uct_ep_addr_t*)calloc(2, if_info.attr.ep_addr_len);
    CHKERR_JUMP(NULL == own_ep, "allocate memory for ep addrs", out_free_if_addrs);
    peer_ep = (uct_ep_addr_t*)((char*)own_ep + if_info.attr.ep_addr_len);

    if (if_info.attr.cap.flags & UCT_IFACE_FLAG_CONNECT_TO_EP) {
        /* Create new endpoint */
        status = uct_ep_create(if_info.iface, &ep);
        CHKERR_JUMP(UCS_OK != status, "create endpoint", out_free_ep_addrs);

        /* Get endpoint address */
        status = uct_ep_get_address(ep, own_ep);
        CHKERR_JUMP(UCS_OK != status, "get endpoint address", out_free_ep);
    }

    MPI_Sendrecv(own_ep, if_info.attr.ep_addr_len, MPI_BYTE, partner, 0,
                 peer_ep, if_info.attr.ep_addr_len, MPI_BYTE, partner, 0,
                 MPI_COMM_WORLD, MPI_STATUS_IGNORE);

    if (if_info.attr.cap.flags & UCT_IFACE_FLAG_CONNECT_TO_EP) {
        /* Connect endpoint to a remote endpoint */
        status = uct_ep_connect_to_ep(ep, peer_dev, peer_ep);
        MPI_Barrier(MPI_COMM_WORLD);
    } else if (if_info.attr.cap.flags & UCT_IFACE_FLAG_CONNECT_TO_IFACE) {
        /* Create an endpoint which is connected to a remote interface */
        status = uct_ep_create_connected(if_info.iface, peer_dev, peer_iface, &ep);
    } else {
        status = UCS_ERR_UNSUPPORTED;
    }
    CHKERR_JUMP(UCS_OK != status, "connect endpoint", out_free_ep);

    /*Set active message handler */
    status = uct_iface_set_am_handler(if_info.iface, id, hello_world, arg, UCT_AM_CB_FLAG_SYNC);
    CHKERR_JUMP(UCS_OK != status, "set callback", out_free_ep);

    if (0 == rank) {
        uint64_t header;
        char payload[8];
        unsigned length = sizeof(payload);
        /* Send active message to remote endpoint */
        status = uct_ep_am_short(ep, id, header, payload, length);
        CHKERR_JUMP(UCS_OK != status, "send active msg", out_free_ep);
    } else if (1 == rank) {
        while (holder) {
            /* Explicitly progress any outstanding active message requests */
            uct_worker_progress(if_info.worker);
        }
    }

    /* Everything is fine, we need to call MPI_Finalize rather than MPI_Abort */
    exit_fail = 0;

out_free_ep:
    uct_ep_destroy(ep);
out_free_ep_addrs:
    free(own_ep);
out_free_if_addrs:
    free(own_iface);
out_free_dev_addrs:
    free(own_dev);
out_destroy_iface:
    uct_iface_close(if_info.iface);
    uct_md_close(if_info.pd);
out_destroy_worker:
    uct_worker_destroy(if_info.worker);
out_cleanup_async:
    ucs_async_context_cleanup(&async);
out:
    (0 == exit_fail) ? MPI_Finalize() : MPI_Abort(MPI_COMM_WORLD, 1);
    return exit_fail;
}
Beispiel #4
0
int main(int argc, char **argv)
{
	/* MPI is initially used to swap the endpoint and interface addresses so each
	 * process has knowledge of the others. */
	MPI_Status mpi_status;
	int partner;
	int size;
	struct sockaddr *ep_addr; /* Endpoint address */
	struct sockaddr *iface_addr; /* Interface address */
	ucs_status_t status; /* status codes for UCS */
	ucs_thread_mode_t thread_mode = UCS_THREAD_MODE_SINGLE; /* Specifies thread sharing mode of an object */
	uct_ep_h ep; /* Remote endpoint */
	void *arg;

	MPI_Init(NULL, NULL);
	MPI_Comm_size(MPI_COMM_WORLD, &size);
	if (size < 2) {
		fprintf(stderr, "Failed to create enough mpi processes.\n");fflush(stderr);	
		return 1;
	}
	
	MPI_Comm_rank(MPI_COMM_WORLD, &rank);
	if (0 == rank) { 
		partner = 1; 
	} else if (1 == rank) { 
		partner = 0; 
	} else { 
		MPI_Finalize(); 
		return 0; 
	}

	/* Initialize context */
	status = ucs_async_context_init(&async, UCS_ASYNC_MODE_THREAD);
	if (UCS_OK != status) {
		fprintf(stderr, "Failed to init async context.\n");fflush(stderr);
		goto out;
	}	 

	/* Create a worker object */ 
	status = uct_worker_create(&async, thread_mode, &worker);
	if (UCS_OK != status) {
		fprintf(stderr, "Failed to create worker.\n");fflush(stderr);
		goto out_cleanup_async;
	}	 

	/* The device and tranport names are determined by latency */
	status = dev_tl_lookup();
	if (UCS_OK != status) {
		fprintf(stderr, "Failed to find supported device and transport\n");fflush(stderr);
		goto out_destroy_worker;
	}

	iface_addr = calloc(1, iface_attr.iface_addr_len);
	ep_addr = calloc(1, iface_attr.ep_addr_len);
	if ((NULL == iface_addr) || (NULL == ep_addr)) { 
		goto out_destroy_iface;
	}

	/* Get interface address */
	status = uct_iface_get_address(iface, iface_addr);
	if (UCS_OK != status) {
		fprintf(stderr, "Failed to get interface address.\n");fflush(stderr);
		goto out_free;
	}	 
	
	if (iface_attr.cap.flags & UCT_IFACE_FLAG_CONNECT_TO_EP) {
		/* Create new endpoint */
		status = uct_ep_create(iface, &ep);	
		if (UCS_OK != status) {
			fprintf(stderr, "Failed to create endpoint.\n");fflush(stderr);
			goto out_free;
		}	 	
		/* Get endpoint address */
		status = uct_ep_get_address(ep, ep_addr);	
		if (UCS_OK != status) {
			fprintf(stderr, "Failed to get endpoint address.\n");fflush(stderr);
			goto out_free_ep;
		}	 	
	}

	/* Communicate interface and endpoint addresses to corresponding process */
	MPI_Send(iface_addr, iface_attr.iface_addr_len, MPI_BYTE, partner, 0, MPI_COMM_WORLD);
	MPI_Recv(iface_addr, iface_attr.iface_addr_len, MPI_BYTE, partner, 0, MPI_COMM_WORLD, &mpi_status);
	MPI_Send(ep_addr, iface_attr.ep_addr_len, MPI_BYTE, partner, 0, MPI_COMM_WORLD);
	MPI_Recv(ep_addr, iface_attr.ep_addr_len, MPI_BYTE, partner, 0, MPI_COMM_WORLD, &mpi_status);

	if (iface_attr.cap.flags & UCT_IFACE_FLAG_CONNECT_TO_EP) {
		/* Connect endpoint to a remote endpoint */
		status = uct_ep_connect_to_ep(ep, ep_addr);
	} else if (iface_attr.cap.flags & UCT_IFACE_FLAG_CONNECT_TO_IFACE) {
		/* Create an endpoint which is connected to a remote interface */
		status = uct_ep_create_connected(iface, iface_addr, &ep);
	} else status = UCS_ERR_UNSUPPORTED;
	if (UCS_OK != status) {
		fprintf(stderr, "Failed to connect endpoint\n");fflush(stderr);
		goto out_free_ep;
	}

	uint8_t id = 0; /* Tag for active message */
	/*Set active message handler */
	status = uct_iface_set_am_handler(iface, id, hello_world, arg);
	if (UCS_OK != status) {
		fprintf(stderr, "Failed to set callback.\n");fflush(stderr);
		goto out_free_ep;
	}	 	
	
	if (0 == rank) {
		uint64_t header;
		char payload[8];
		unsigned length = sizeof(payload);
		/* Send active message to remote endpoint */
		status = uct_ep_am_short(ep, id, header, payload, length);  		
	} else if (1 == rank) {
		while (holder) { 
			/* Explicitly progress any outstanding active message requests */
			uct_worker_progress(worker);
		}
	}

out_free_ep:
	uct_ep_destroy(ep);
out_free:
	free(iface_addr);
	free(ep_addr);
out_destroy_iface:
	uct_iface_close(iface);
	uct_pd_close(pd);
out_destroy_worker:
	uct_worker_destroy(worker);
out_cleanup_async:
	ucs_async_context_cleanup(&async);
out:
	MPI_Finalize();
	return 0;
}