Beispiel #1
0
VALUE layout_get(MessageLayout* layout,
                 const void* storage,
                 const upb_fielddef* field) {
  void* memory = slot_memory(layout, storage, field);
  uint32_t* oneof_case = slot_oneof_case(layout, storage, field);

  bool field_set;
  if (field_contains_hasbit(layout, field)) {
    field_set = slot_is_hasbit_set(layout, storage, field);
  } else {
    field_set = true;
  }

  if (upb_fielddef_containingoneof(field)) {
    if (*oneof_case != upb_fielddef_number(field)) {
      return layout_get_default(field);
    }
    return native_slot_get(upb_fielddef_type(field),
                           field_type_class(field),
                           memory);
  } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
    return *((VALUE *)memory);
  } else if (!field_set) {
    return layout_get_default(field);
  } else {
    return native_slot_get(upb_fielddef_type(field),
                           field_type_class(field),
                           memory);
  }
}
Beispiel #2
0
static VALUE which_oneof_field(MessageHeader* self, const upb_oneofdef* o) {
  // If no fields in the oneof, always nil.
  if (upb_oneofdef_numfields(o) == 0) {
    return Qnil;
  }
  // Grab the first field in the oneof so we can get its layout info to find the
  // oneof_case field.
  upb_oneof_iter it;
  upb_oneof_begin(&it, o);
  assert(!upb_oneof_done(&it));
  const upb_fielddef* first_field = upb_oneof_iter_field(&it);
  assert(upb_fielddef_containingoneof(first_field) != NULL);

  size_t case_ofs =
      self->descriptor->layout->
      fields[upb_fielddef_index(first_field)].case_offset;
  uint32_t oneof_case = *((uint32_t*)(Message_data(self) + case_ofs));

  if (oneof_case == ONEOF_CASE_NONE) {
    return Qnil;
  }

  // oneof_case is a field index, so find that field.
  const upb_fielddef* f = upb_oneofdef_itof(o, oneof_case);
  assert(f != NULL);

  return ID2SYM(rb_intern(upb_fielddef_name(f)));
}
Beispiel #3
0
void layout_deep_copy(MessageLayout* layout, void* to, void* from) {
  upb_msg_field_iter it;
  for (upb_msg_field_begin(&it, layout->msgdef);
       !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    const upb_fielddef* field = upb_msg_iter_field(&it);

    void* to_memory = slot_memory(layout, to, field);
    uint32_t* to_oneof_case = slot_oneof_case(layout, to, field);
    void* from_memory = slot_memory(layout, from, field);
    uint32_t* from_oneof_case = slot_oneof_case(layout, from, field);

    if (upb_fielddef_containingoneof(field)) {
      if (*from_oneof_case == upb_fielddef_number(field)) {
        *to_oneof_case = *from_oneof_case;
        native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
      }
    } else if (is_map_field(field)) {
      DEREF(to_memory, VALUE) =
          Map_deep_copy(DEREF(from_memory, VALUE));
    } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
      DEREF(to_memory, VALUE) =
          RepeatedField_deep_copy(DEREF(from_memory, VALUE));
    } else {
      if (field_contains_hasbit(layout, field)) {
        if (!slot_is_hasbit_set(layout, from, field)) continue;
        slot_set_hasbit(layout, to, field);
      }

      native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
    }
  }
}
Beispiel #4
0
void layout_clear(MessageLayout* layout,
                 const void* storage,
                 const upb_fielddef* field) {
  void* memory = slot_memory(layout, storage, field);
  uint32_t* oneof_case = slot_oneof_case(layout, storage, field);

  if (field_contains_hasbit(layout, field)) {
    slot_clear_hasbit(layout, storage, field);
  }

  if (upb_fielddef_containingoneof(field)) {
    memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
    *oneof_case = ONEOF_CASE_NONE;
  } else if (is_map_field(field)) {
    VALUE map = Qnil;

    const upb_fielddef* key_field = map_field_key(field);
    const upb_fielddef* value_field = map_field_value(field);
    VALUE type_class = field_type_class(value_field);

    if (type_class != Qnil) {
      VALUE args[3] = {
        fieldtype_to_ruby(upb_fielddef_type(key_field)),
        fieldtype_to_ruby(upb_fielddef_type(value_field)),
        type_class,
      };
      map = rb_class_new_instance(3, args, cMap);
    } else {
      VALUE args[2] = {
        fieldtype_to_ruby(upb_fielddef_type(key_field)),
        fieldtype_to_ruby(upb_fielddef_type(value_field)),
      };
      map = rb_class_new_instance(2, args, cMap);
    }

    DEREF(memory, VALUE) = map;
  } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
    VALUE ary = Qnil;

    VALUE type_class = field_type_class(field);

    if (type_class != Qnil) {
      VALUE args[2] = {
        fieldtype_to_ruby(upb_fielddef_type(field)),
        type_class,
      };
      ary = rb_class_new_instance(2, args, cRepeatedField);
    } else {
      VALUE args[1] = { fieldtype_to_ruby(upb_fielddef_type(field)) };
      ary = rb_class_new_instance(1, args, cRepeatedField);
    }

    DEREF(memory, VALUE) = ary;
  } else {
    native_slot_set(upb_fielddef_name(field),
                    upb_fielddef_type(field), field_type_class(field),
                    memory, layout_get_default(field));
  }
}
Beispiel #5
0
void layout_init(MessageLayout* layout,
                 void* storage) {
    upb_msg_field_iter it;
    for (upb_msg_field_begin(&it, layout->msgdef);
            !upb_msg_field_done(&it);
            upb_msg_field_next(&it)) {
        const upb_fielddef* field = upb_msg_iter_field(&it);
        void* memory = slot_memory(layout, storage, field);
        uint32_t* oneof_case = slot_oneof_case(layout, storage, field);

        if (upb_fielddef_containingoneof(field)) {
            memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
            *oneof_case = ONEOF_CASE_NONE;
        } else if (is_map_field(field)) {
            VALUE map = Qnil;

            const upb_fielddef* key_field = map_field_key(field);
            const upb_fielddef* value_field = map_field_value(field);
            VALUE type_class = field_type_class(value_field);

            if (type_class != Qnil) {
                VALUE args[3] = {
                    fieldtype_to_ruby(upb_fielddef_type(key_field)),
                    fieldtype_to_ruby(upb_fielddef_type(value_field)),
                    type_class,
                };
                map = rb_class_new_instance(3, args, cMap);
            } else {
                VALUE args[2] = {
                    fieldtype_to_ruby(upb_fielddef_type(key_field)),
                    fieldtype_to_ruby(upb_fielddef_type(value_field)),
                };
                map = rb_class_new_instance(2, args, cMap);
            }

            DEREF(memory, VALUE) = map;
        } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
            VALUE ary = Qnil;

            VALUE type_class = field_type_class(field);

            if (type_class != Qnil) {
                VALUE args[2] = {
                    fieldtype_to_ruby(upb_fielddef_type(field)),
                    type_class,
                };
                ary = rb_class_new_instance(2, args, cRepeatedField);
            } else {
                VALUE args[1] = { fieldtype_to_ruby(upb_fielddef_type(field)) };
                ary = rb_class_new_instance(1, args, cRepeatedField);
            }

            DEREF(memory, VALUE) = ary;
        } else {
            native_slot_init(upb_fielddef_type(field), memory);
        }
    }
}
Beispiel #6
0
void layout_set(MessageLayout* layout,
                void* storage,
                const upb_fielddef* field,
                VALUE val) {
  void* memory = slot_memory(layout, storage, field);
  uint32_t* oneof_case = slot_oneof_case(layout, storage, field);

  if (upb_fielddef_containingoneof(field)) {
    if (val == Qnil) {
      // Assigning nil to a oneof field clears the oneof completely.
      *oneof_case = ONEOF_CASE_NONE;
      memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
    } else {
      // The transition between field types for a single oneof (union) slot is
      // somewhat complex because we need to ensure that a GC triggered at any
      // point by a call into the Ruby VM sees a valid state for this field and
      // does not either go off into the weeds (following what it thinks is a
      // VALUE but is actually a different field type) or miss an object (seeing
      // what it thinks is a primitive field but is actually a VALUE for the new
      // field type).
      //
      // In order for the transition to be safe, the oneof case slot must be in
      // sync with the value slot whenever the Ruby VM has been called. Thus, we
      // use native_slot_set_value_and_case(), which ensures that both the value
      // and case number are altered atomically (w.r.t. the Ruby VM).
      native_slot_set_value_and_case(
          upb_fielddef_name(field),
          upb_fielddef_type(field), field_type_class(field),
          memory, val,
          oneof_case, upb_fielddef_number(field));
    }
  } else if (is_map_field(field)) {
    check_map_field_type(val, field);
    DEREF(memory, VALUE) = val;
  } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
    check_repeated_field_type(val, field);
    DEREF(memory, VALUE) = val;
  } else {
    native_slot_set(upb_fielddef_name(field),
                    upb_fielddef_type(field), field_type_class(field),
                    memory, val);
  }

  if (layout->fields[upb_fielddef_index(field)].hasbit !=
      MESSAGE_FIELD_NO_HASBIT) {
    slot_set_hasbit(layout, storage, field);
  }
}
Beispiel #7
0
void layout_mark(MessageLayout* layout, void* storage) {
  upb_msg_field_iter it;
  for (upb_msg_field_begin(&it, layout->msgdef);
       !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    const upb_fielddef* field = upb_msg_iter_field(&it);
    void* memory = slot_memory(layout, storage, field);
    uint32_t* oneof_case = slot_oneof_case(layout, storage, field);

    if (upb_fielddef_containingoneof(field)) {
      if (*oneof_case == upb_fielddef_number(field)) {
        native_slot_mark(upb_fielddef_type(field), memory);
      }
    } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
      rb_gc_mark(DEREF(memory, VALUE));
    } else {
      native_slot_mark(upb_fielddef_type(field), memory);
    }
  }
}
Beispiel #8
0
VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2) {
  upb_msg_field_iter it;
  for (upb_msg_field_begin(&it, layout->msgdef);
       !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    const upb_fielddef* field = upb_msg_iter_field(&it);

    void* msg1_memory = slot_memory(layout, msg1, field);
    uint32_t* msg1_oneof_case = slot_oneof_case(layout, msg1, field);
    void* msg2_memory = slot_memory(layout, msg2, field);
    uint32_t* msg2_oneof_case = slot_oneof_case(layout, msg2, field);

    if (upb_fielddef_containingoneof(field)) {
      if (*msg1_oneof_case != *msg2_oneof_case ||
          (*msg1_oneof_case == upb_fielddef_number(field) &&
           !native_slot_eq(upb_fielddef_type(field),
                           msg1_memory,
                           msg2_memory))) {
        return Qfalse;
      }
    } else if (is_map_field(field)) {
      if (!Map_eq(DEREF(msg1_memory, VALUE),
                  DEREF(msg2_memory, VALUE))) {
        return Qfalse;
      }
    } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
      if (!RepeatedField_eq(DEREF(msg1_memory, VALUE),
                            DEREF(msg2_memory, VALUE))) {
        return Qfalse;
      }
    } else {
      if (slot_is_hasbit_set(layout, msg1, field) !=
	  slot_is_hasbit_set(layout, msg2, field) ||
          !native_slot_eq(upb_fielddef_type(field),
			  msg1_memory, msg2_memory)) {
        return Qfalse;
      }
    }
  }
  return Qtrue;
}
Beispiel #9
0
static void add_handlers_for_message(const void *closure, upb_handlers *h) {
    const upb_msgdef* msgdef = upb_handlers_msgdef(h);
    Descriptor* desc = ruby_to_Descriptor(get_def_obj((void*)msgdef));
    upb_msg_field_iter i;

    // If this is a mapentry message type, set up a special set of handlers and
    // bail out of the normal (user-defined) message type handling.
    if (upb_msgdef_mapentry(msgdef)) {
        add_handlers_for_mapentry(msgdef, h, desc);
        return;
    }

    // Ensure layout exists. We may be invoked to create handlers for a given
    // message if we are included as a submsg of another message type before our
    // class is actually built, so to work around this, we just create the layout
    // (and handlers, in the class-building function) on-demand.
    if (desc->layout == NULL) {
        desc->layout = create_layout(desc->msgdef);
    }

    for (upb_msg_field_begin(&i, desc->msgdef);
            !upb_msg_field_done(&i);
            upb_msg_field_next(&i)) {
        const upb_fielddef *f = upb_msg_iter_field(&i);
        size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset +
                        sizeof(MessageHeader);

        if (upb_fielddef_containingoneof(f)) {
            size_t oneof_case_offset =
                desc->layout->fields[upb_fielddef_index(f)].case_offset +
                sizeof(MessageHeader);
            add_handlers_for_oneof_field(h, f, offset, oneof_case_offset);
        } else if (is_map_field(f)) {
            add_handlers_for_mapfield(h, f, offset, desc);
        } else if (upb_fielddef_isseq(f)) {
            add_handlers_for_repeated_field(h, f, offset);
        } else {
            add_handlers_for_singular_field(h, f, offset);
        }
    }
}
Beispiel #10
0
VALUE layout_get(MessageLayout* layout,
                 const void* storage,
                 const upb_fielddef* field) {
    void* memory = slot_memory(layout, storage, field);
    uint32_t* oneof_case = slot_oneof_case(layout, storage, field);

    if (upb_fielddef_containingoneof(field)) {
        if (*oneof_case != upb_fielddef_number(field)) {
            return Qnil;
        }
        return native_slot_get(upb_fielddef_type(field),
                               field_type_class(field),
                               memory);
    } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
        return *((VALUE *)memory);
    } else {
        return native_slot_get(upb_fielddef_type(field),
                               field_type_class(field),
                               memory);
    }
}
Beispiel #11
0
MessageLayout* create_layout(const upb_msgdef* msgdef) {
  MessageLayout* layout = ALLOC(MessageLayout);
  int nfields = upb_msgdef_numfields(msgdef);
  upb_msg_field_iter it;
  upb_msg_oneof_iter oit;
  size_t off = 0;

  layout->fields = ALLOC_N(MessageField, nfields);

  size_t hasbit = 0;
  for (upb_msg_field_begin(&it, msgdef);
       !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    const upb_fielddef* field = upb_msg_iter_field(&it);
    if (upb_fielddef_haspresence(field)) {
      layout->fields[upb_fielddef_index(field)].hasbit = hasbit++;
    } else {
      layout->fields[upb_fielddef_index(field)].hasbit =
	  MESSAGE_FIELD_NO_HASBIT;
    }
  }

  if (hasbit != 0) {
    off += (hasbit + 8 - 1) / 8;
  }

  for (upb_msg_field_begin(&it, msgdef);
       !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    const upb_fielddef* field = upb_msg_iter_field(&it);
    size_t field_size;

    if (upb_fielddef_containingoneof(field)) {
      // Oneofs are handled separately below.
      continue;
    }

    // Allocate |field_size| bytes for this field in the layout.
    field_size = 0;
    if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
      field_size = sizeof(VALUE);
    } else {
      field_size = native_slot_size(upb_fielddef_type(field));
    }
    // Align current offset up to |size| granularity.
    off = align_up_to(off, field_size);
    layout->fields[upb_fielddef_index(field)].offset = off;
    layout->fields[upb_fielddef_index(field)].case_offset =
        MESSAGE_FIELD_NO_CASE;
    off += field_size;
  }

  // Handle oneofs now -- we iterate over oneofs specifically and allocate only
  // one slot per oneof.
  //
  // We assign all value slots first, then pack the 'case' fields at the end,
  // since in the common case (modern 64-bit platform) these are 8 bytes and 4
  // bytes respectively and we want to avoid alignment overhead.
  //
  // Note that we reserve 4 bytes (a uint32) per 'case' slot because the value
  // space for oneof cases is conceptually as wide as field tag numbers. In
  // practice, it's unlikely that a oneof would have more than e.g. 256 or 64K
  // members (8 or 16 bits respectively), so conceivably we could assign
  // consecutive case numbers and then pick a smaller oneof case slot size, but
  // the complexity to implement this indirection is probably not worthwhile.
  for (upb_msg_oneof_begin(&oit, msgdef);
       !upb_msg_oneof_done(&oit);
       upb_msg_oneof_next(&oit)) {
    const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
    upb_oneof_iter fit;

    // Always allocate NATIVE_SLOT_MAX_SIZE bytes, but share the slot between
    // all fields.
    size_t field_size = NATIVE_SLOT_MAX_SIZE;
    // Align the offset.
    off = align_up_to(off, field_size);
    // Assign all fields in the oneof this same offset.
    for (upb_oneof_begin(&fit, oneof);
         !upb_oneof_done(&fit);
         upb_oneof_next(&fit)) {
      const upb_fielddef* field = upb_oneof_iter_field(&fit);
      layout->fields[upb_fielddef_index(field)].offset = off;
    }
    off += field_size;
  }

  // Now the case fields.
  for (upb_msg_oneof_begin(&oit, msgdef);
       !upb_msg_oneof_done(&oit);
       upb_msg_oneof_next(&oit)) {
    const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
    upb_oneof_iter fit;

    size_t field_size = sizeof(uint32_t);
    // Align the offset.
    off = (off + field_size - 1) & ~(field_size - 1);
    // Assign all fields in the oneof this same offset.
    for (upb_oneof_begin(&fit, oneof);
         !upb_oneof_done(&fit);
         upb_oneof_next(&fit)) {
      const upb_fielddef* field = upb_oneof_iter_field(&fit);
      layout->fields[upb_fielddef_index(field)].case_offset = off;
    }
    off += field_size;
  }

  layout->size = off;

  layout->msgdef = msgdef;
  upb_msgdef_ref(layout->msgdef, &layout->msgdef);

  return layout;
}
Beispiel #12
0
static void putmsg(VALUE msg_rb, const Descriptor* desc,
                   upb_sink *sink, int depth) {
    MessageHeader* msg;
    upb_msg_field_iter i;
    upb_status status;

    upb_sink_startmsg(sink);

    // Protect against cycles (possible because users may freely reassign message
    // and repeated fields) by imposing a maximum recursion depth.
    if (depth > ENCODE_MAX_NESTING) {
        rb_raise(rb_eRuntimeError,
                 "Maximum recursion depth exceeded during encoding.");
    }

    TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);

    for (upb_msg_field_begin(&i, desc->msgdef);
            !upb_msg_field_done(&i);
            upb_msg_field_next(&i)) {
        upb_fielddef *f = upb_msg_iter_field(&i);
        uint32_t offset =
            desc->layout->fields[upb_fielddef_index(f)].offset +
            sizeof(MessageHeader);

        if (upb_fielddef_containingoneof(f)) {
            uint32_t oneof_case_offset =
                desc->layout->fields[upb_fielddef_index(f)].case_offset +
                sizeof(MessageHeader);
            // For a oneof, check that this field is actually present -- skip all the
            // below if not.
            if (DEREF(msg, oneof_case_offset, uint32_t) !=
                    upb_fielddef_number(f)) {
                continue;
            }
            // Otherwise, fall through to the appropriate singular-field handler
            // below.
        }

        if (is_map_field(f)) {
            VALUE map = DEREF(msg, offset, VALUE);
            if (map != Qnil) {
                putmap(map, f, sink, depth);
            }
        } else if (upb_fielddef_isseq(f)) {
            VALUE ary = DEREF(msg, offset, VALUE);
            if (ary != Qnil) {
                putary(ary, f, sink, depth);
            }
        } else if (upb_fielddef_isstring(f)) {
            VALUE str = DEREF(msg, offset, VALUE);
            if (RSTRING_LEN(str) > 0) {
                putstr(str, f, sink);
            }
        } else if (upb_fielddef_issubmsg(f)) {
            putsubmsg(DEREF(msg, offset, VALUE), f, sink, depth);
        } else {
            upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));

#define T(upbtypeconst, upbtype, ctype, default_value)                \
  case upbtypeconst: {                                                \
      ctype value = DEREF(msg, offset, ctype);                        \
      if (value != default_value) {                                   \
        upb_sink_put##upbtype(sink, sel, value);                      \
      }                                                               \
    }                                                                 \
    break;

            switch (upb_fielddef_type(f)) {
                T(UPB_TYPE_FLOAT,  float,  float, 0.0)
                T(UPB_TYPE_DOUBLE, double, double, 0.0)
                T(UPB_TYPE_BOOL,   bool,   uint8_t, 0)
            case UPB_TYPE_ENUM:
                T(UPB_TYPE_INT32,  int32,  int32_t, 0)
                T(UPB_TYPE_UINT32, uint32, uint32_t, 0)
                T(UPB_TYPE_INT64,  int64,  int64_t, 0)
                T(UPB_TYPE_UINT64, uint64, uint64_t, 0)

            case UPB_TYPE_STRING:
            case UPB_TYPE_BYTES:
            case UPB_TYPE_MESSAGE:
                rb_raise(rb_eRuntimeError, "Internal error.");
            }

#undef T

        }
    }

    upb_sink_endmsg(sink, &status);
}
Beispiel #13
0
static bool upb_msglayout_init(const upb_msgdef *m,
                               upb_msglayout *l,
                               upb_msgfactory *factory) {
  upb_msg_field_iter it;
  upb_msg_oneof_iter oit;
  size_t hasbit;
  size_t submsg_count = 0;
  const upb_msglayout **submsgs;
  upb_msglayout_field *fields;

  for (upb_msg_field_begin(&it, m);
       !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    const upb_fielddef* f = upb_msg_iter_field(&it);
    if (upb_fielddef_issubmsg(f)) {
      submsg_count++;
    }
  }

  memset(l, 0, sizeof(*l));

  fields = upb_gmalloc(upb_msgdef_numfields(m) * sizeof(*fields));
  submsgs = upb_gmalloc(submsg_count * sizeof(*submsgs));

  if ((!fields && upb_msgdef_numfields(m)) ||
      (!submsgs && submsg_count)) {
    /* OOM. */
    upb_gfree(fields);
    upb_gfree(submsgs);
    return false;
  }

  l->field_count = upb_msgdef_numfields(m);
  l->fields = fields;
  l->submsgs = submsgs;

  /* Allocate data offsets in three stages:
   *
   * 1. hasbits.
   * 2. regular fields.
   * 3. oneof fields.
   *
   * OPT: There is a lot of room for optimization here to minimize the size.
   */

  /* Allocate hasbits and set basic field attributes. */
  submsg_count = 0;
  for (upb_msg_field_begin(&it, m), hasbit = 0;
       !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    const upb_fielddef* f = upb_msg_iter_field(&it);
    upb_msglayout_field *field = &fields[upb_fielddef_index(f)];

    field->number = upb_fielddef_number(f);
    field->descriptortype = upb_fielddef_descriptortype(f);
    field->label = upb_fielddef_label(f);

    if (upb_fielddef_issubmsg(f)) {
      const upb_msglayout *sub_layout =
          upb_msgfactory_getlayout(factory, upb_fielddef_msgsubdef(f));
      field->submsg_index = submsg_count++;
      submsgs[field->submsg_index] = sub_layout;
    }

    if (upb_fielddef_haspresence(f) && !upb_fielddef_containingoneof(f)) {
      field->presence = (hasbit++);
    } else {
      field->presence = 0;
    }
  }

  /* Account for space used by hasbits. */
  l->size = div_round_up(hasbit, 8);

  /* Allocate non-oneof fields. */
  for (upb_msg_field_begin(&it, m); !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    const upb_fielddef* f = upb_msg_iter_field(&it);
    size_t field_size = upb_msg_fielddefsize(f);
    size_t index = upb_fielddef_index(f);

    if (upb_fielddef_containingoneof(f)) {
      /* Oneofs are handled separately below. */
      continue;
    }

    fields[index].offset = upb_msglayout_place(l, field_size);
  }

  /* Allocate oneof fields.  Each oneof field consists of a uint32 for the case
   * and space for the actual data. */
  for (upb_msg_oneof_begin(&oit, m); !upb_msg_oneof_done(&oit);
       upb_msg_oneof_next(&oit)) {
    const upb_oneofdef* o = upb_msg_iter_oneof(&oit);
    upb_oneof_iter fit;

    size_t case_size = sizeof(uint32_t);  /* Could potentially optimize this. */
    size_t field_size = 0;
    uint32_t case_offset;
    uint32_t data_offset;

    /* Calculate field size: the max of all field sizes. */
    for (upb_oneof_begin(&fit, o);
         !upb_oneof_done(&fit);
         upb_oneof_next(&fit)) {
      const upb_fielddef* f = upb_oneof_iter_field(&fit);
      field_size = UPB_MAX(field_size, upb_msg_fielddefsize(f));
    }

    /* Align and allocate case offset. */
    case_offset = upb_msglayout_place(l, case_size);
    data_offset = upb_msglayout_place(l, field_size);

    for (upb_oneof_begin(&fit, o);
         !upb_oneof_done(&fit);
         upb_oneof_next(&fit)) {
      const upb_fielddef* f = upb_oneof_iter_field(&fit);
      fields[upb_fielddef_index(f)].offset = data_offset;
      fields[upb_fielddef_index(f)].presence = ~case_offset;
    }
  }

  /* Size of the entire structure should be a multiple of its greatest
   * alignment.  TODO: track overall alignment for real? */
  l->size = align_up(l->size, 8);

  return true;
}