void MovingMeshFB::moveMesh()
{
  int i, j, k, m;
  double epsilon = 0.2;
  double error = 1.;
  double area, h, l[3], d[3];
  while (error > epsilon) {
    getMoveDirection();
    error = 0;
    for (i = 0;i < n_geometry(2);i ++) {
      const Point<2>& x0 = point(geometry(2,i).vertex(0));
      const Point<2>& x1 = point(geometry(2,i).vertex(1)); 
      const Point<2>& x2 = point(geometry(2,i).vertex(2));
      l[0] = (x2[0] - x1[0])*(x2[0] - x1[0]) + (x2[1] - x1[1])*(x2[1] - x1[1]);
      l[1] = (x0[0] - x2[0])*(x0[0] - x2[0]) + (x0[1] - x2[1])*(x0[1] - x2[1]);
      l[2] = (x1[0] - x0[0])*(x1[0] - x0[0]) + (x1[1] - x0[1])*(x1[1] - x0[1]);
      area = (x1[0] - x0[0])*(x2[1] - x0[1]) - (x2[0] - x0[0])*(x1[1] - x0[1]);
      h = 0.5*area/sqrt(*std::max_element(&l[0], &l[3]));
      for (k = 0;k < 3;++ k) {
	m = geometry(2,i).vertex(k);
	for (d[k] = 0.0, j = 0;j < 2;j ++) {
	  d[k] += move_direction[m][j]*move_direction[m][j];
	}
      }
      h = sqrt(*std::max_element(&d[0], &d[3]))/h;
      if (error < h) error = h;
    }
    std::cerr << "mesh moving error = " << error << std::endl;
    getMoveStepLength();
    for (i = 0;i < n_move_step;i ++) {
      updateSolution();
      updateMesh();
    };
  };
}
void layout1(Rectangle rectangles[4]){
	Rectangle pack={0,0};
	for(int i=0;i<4;i++){
		if(pack.height<rectangles[i].height)
			pack.height=rectangles[i].height;
		pack.width+=rectangles[i].width;
	}
	updateSolution(pack);
}
//-----------------------------------------------------------------------
void
EBConsBackwardEulerIntegrator::
computeDiffusion(LevelData<EBCellFAB>& a_diffusionTerm,
                 const LevelData<EBCellFAB>& a_oldTemperature,
                 Real a_specificHeat,
                 const LevelData<EBCellFAB>& a_oldDensity,
                 const LevelData<EBCellFAB>& a_newDensity,
                 const LevelData<EBCellFAB>& a_source,
                 Real a_time,
                 Real a_timeStep,
                 bool a_zeroTemp)
{
  // Allocate storage for the new temperature.
  LevelData<EBCellFAB> newTemp;
  EBCellFactory fact(m_eblg.getEBISL());
  newTemp.define(m_eblg.getDBL(), 1, 4*IntVect::Unit, fact);
  EBLevelDataOps::setVal(newTemp, 0.0);

  //          n+1
  // Compute T.
  updateSolution(newTemp, a_oldTemperature, a_specificHeat, a_oldDensity,
                 a_newDensity, a_source, a_time, a_timeStep, a_zeroTemp);

  //            n+1             n
  // ([rho Cv T]    - [rho Cv T] )
  // ----------------------------- - a_source -> a_diffusionTerm.
  //              dt
  a_oldTemperature.copyTo(a_diffusionTerm);
  for (DataIterator dit = m_eblg.getDBL().dataIterator(); dit.ok(); ++dit)
  {
    EBCellFAB& diff = a_diffusionTerm[dit()];

    //           n
    // [rho Cv T]   -> diff
    diff *= a_oldDensity[dit()];
    diff *= a_specificHeat;

    //           n+1
    // [rho Cv T]   -> newRhoCvT
    EBCellFAB& newRhoCvT = newTemp[dit()];
    newRhoCvT *= a_newDensity[dit()];
    newRhoCvT *= a_specificHeat;

    // Subtract newRhoCvT from diff, and divide by -dt.
    diff -= newRhoCvT;
    diff /= -a_timeStep;

    // Subtract off the source.
    diff -= a_source[dit()];
  }
}
void layout2(Rectangle rectangles[4]){
	for(int bottom=0;bottom<4;bottom++){
		Rectangle pack={0,0};
		for(int i=0;i<4;i++)
			if(i!=bottom){
				if(pack.height<rectangles[i].height)
					pack.height=rectangles[i].height;
				pack.width+=rectangles[i].width;
			}
		pack.height+=rectangles[bottom].height;
		if(pack.width<rectangles[bottom].width)
			pack.width=rectangles[bottom].width;
		updateSolution(pack);
	}
}
void layout4(Rectangle rectangles[4]){
	for(int left=0;left<4;left++)
		for(int right=0;right<4;right++){
			if(left==right)
				continue;
			Rectangle pack={0,0};
			for(int i=0;i<4;i++)
				if(i!=left && i!=right){
					pack.height+=rectangles[i].height;
					if(pack.width<rectangles[i].width)
						pack.width=rectangles[i].width;
				}
			if(pack.height<std::max(rectangles[left].height,rectangles[right].height))
				pack.height=std::max(rectangles[left].height,rectangles[right].height);
			pack.width+=rectangles[left].width+rectangles[right].width;
			updateSolution(pack);
		}
}
void layout3(Rectangle rectangles[4]){
	for(int bottom=0;bottom<4;bottom++)
		for(int right=0;right<4;right++){
			if(bottom==right)
				continue;
			Rectangle pack={0,0};
			for(int i=0;i<4;i++)
				if(i!=bottom && i!=right){
					if(pack.height<rectangles[i].height)
						pack.height=rectangles[i].height;
					pack.width+=rectangles[i].width;
				}
			pack.height+=rectangles[bottom].height;
			if(pack.width<rectangles[bottom].width)
				pack.width=rectangles[bottom].width;
			if(pack.height<rectangles[right].height)
				pack.height=rectangles[right].height;
			pack.width+=rectangles[right].width;
			updateSolution(pack);
		}
}
void layout5(Rectangle rectangles[4]){
	int sequence[4]={0,1,2,3};
	do{
		Rectangle pack={0,0};
		pack.height=std::max(	rectangles[sequence[0]].height+rectangles[sequence[1]].height,
								rectangles[sequence[2]].height+rectangles[sequence[3]].height);
		if(rectangles[sequence[0]].width>=rectangles[sequence[1]].width){
			if(rectangles[sequence[2]].height<rectangles[sequence[0]].height)
				pack.width=rectangles[sequence[0]].width+std::max(	rectangles[sequence[2]].width,
																	rectangles[sequence[3]].width);
			else if(rectangles[sequence[2]].height<rectangles[sequence[0]].height+rectangles[sequence[1]].height)
				pack.width=std::max(rectangles[sequence[0]].width+rectangles[sequence[2]].width,
									rectangles[sequence[1]].width+rectangles[sequence[3]].width);
			else
				pack.width=std::max(rectangles[sequence[0]].width+rectangles[sequence[2]].width,
									rectangles[sequence[3]].width);
		}
		else
			continue;
		updateSolution(pack);
	}while(std::next_permutation(sequence,sequence+4));
}
        SimulatorReport nonlinearIteration(const int iteration,
                                           const SimulatorTimerInterface& timer,
                                           NonlinearSolverType& nonlinear_solver)
        {
            SimulatorReport report;
            failureReport_ = SimulatorReport();
            Dune::Timer perfTimer;

            perfTimer.start();
            if (iteration == 0) {
                // For each iteration we store in a vector the norms of the residual of
                // the mass balance for each active phase, the well flux and the well equations.
                residual_norms_history_.clear();
                current_relaxation_ = 1.0;
                dx_old_ = 0.0;
                convergence_reports_.push_back({timer.reportStepNum(), timer.currentStepNum(), {}});
                convergence_reports_.back().report.reserve(11);
            }

            report.total_linearizations = 1;

            try {
                report += assembleReservoir(timer, iteration);
                report.assemble_time += perfTimer.stop();
            }
            catch (...) {
                report.assemble_time += perfTimer.stop();
                failureReport_ += report;
                // todo (?): make the report an attribute of the class
                throw; // continue throwing the stick
            }

            std::vector<double> residual_norms;
            perfTimer.reset();
            perfTimer.start();
            // the step is not considered converged until at least minIter iterations is done
            {
                auto convrep = getConvergence(timer, iteration,residual_norms);
                report.converged = convrep.converged()  && iteration > nonlinear_solver.minIter();;
                ConvergenceReport::Severity severity = convrep.severityOfWorstFailure();
                convergence_reports_.back().report.push_back(std::move(convrep));

                // Throw if any NaN or too large residual found.
                if (severity == ConvergenceReport::Severity::NotANumber) {
                    OPM_THROW(Opm::NumericalIssue, "NaN residual found!");
                } else if (severity == ConvergenceReport::Severity::TooLarge) {
                    OPM_THROW(Opm::NumericalIssue, "Too large residual found!");
                }
            }

             // checking whether the group targets are converged
             if (wellModel().wellCollection().groupControlActive()) {
                  report.converged = report.converged && wellModel().wellCollection().groupTargetConverged(wellModel().wellState().wellRates());
             }

            report.update_time += perfTimer.stop();
            residual_norms_history_.push_back(residual_norms);
            if (!report.converged) {
                perfTimer.reset();
                perfTimer.start();
                report.total_newton_iterations = 1;

                // enable single precision for solvers when dt is smaller then 20 days
                //residual_.singlePrecision = (unit::convert::to(dt, unit::day) < 20.) ;

                // Compute the nonlinear update.
                const int nc = UgGridHelpers::numCells(grid_);
                BVector x(nc);

                // apply the Schur compliment of the well model to the reservoir linearized
                // equations
                wellModel().linearize(ebosSimulator().model().linearizer().jacobian(),
                                      ebosSimulator().model().linearizer().residual());

                // Solve the linear system.
                linear_solve_setup_time_ = 0.0;
                try {
                    solveJacobianSystem(x);
                    report.linear_solve_setup_time += linear_solve_setup_time_;
                    report.linear_solve_time += perfTimer.stop();
                    report.total_linear_iterations += linearIterationsLastSolve();
                }
                catch (...) {
                    report.linear_solve_setup_time += linear_solve_setup_time_;
                    report.linear_solve_time += perfTimer.stop();
                    report.total_linear_iterations += linearIterationsLastSolve();

                    failureReport_ += report;
                    throw; // re-throw up
                }

                perfTimer.reset();
                perfTimer.start();

                // handling well state update before oscillation treatment is a decision based
                // on observation to avoid some big performance degeneration under some circumstances.
                // there is no theorectical explanation which way is better for sure.
                wellModel().postSolve(x);

                if (param_.use_update_stabilization_) {
                    // Stabilize the nonlinear update.
                    bool isOscillate = false;
                    bool isStagnate = false;
                    nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate);
                    if (isOscillate) {
                        current_relaxation_ -= nonlinear_solver.relaxIncrement();
                        current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
                        if (terminalOutputEnabled()) {
                            std::string msg = "    Oscillating behavior detected: Relaxation set to "
                                    + std::to_string(current_relaxation_);
                            OpmLog::info(msg);
                        }
                    }
                    nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_);
                }

                // Apply the update, with considering model-dependent limitations and
                // chopping of the update.
                updateSolution(x);

                report.update_time += perfTimer.stop();
            }

            return report;
        }
Beispiel #9
0
// ##################################################################
//
// step solution
//
// ##################################################################
void SOLVER::stepSolution(void)
{
   double coef;

   //
   // Euler explicit
   // 
   if (strcmp(stepType,"euler") == 0 )
   {
      if (sb->visc) 
      {
         cout << "Not yet implemented. exit.\n";
         exit(1);
         // computeRHSv;
      }
      else
         computeRHS("explicit");

      coef = 1.;
      updateSolution(sb->q,sb->q,coef);
   }
   //
   // Runge - Kutta 3
   //
   else if (strcmp(stepType,"rk3") == 0 )
   {
      // RK step 1 
      computeRHS("explicit");
      coef=0.25;
      updateSolution(sb->q,sb->qt,coef);
      coef=8.0/15;
      updateSolution(sb->q,sb->q,coef);

      // RK step 2 
      computeRHS("explicit");
      coef=5.0/12;
      updateSolution(sb->qt,sb->q,coef);

      // RK step 3 
      computeRHS("explicit");
      coef=3.0/4.0;
      updateSolution(sb->qt,sb->q,coef);
   }
   //
   // ADI ( Alternating Direction Implicit)
   //
   else if (strcmp(stepType,"ADI")==0)
   {
      // if(sb->idual==0)
      // {
         computeRHS("implicit");
         ADI();
      // }
      // else //dual time stepping
      // {
      //    printf("Error. Dual Time stepping not yet implemented.\n");
      //    exit(1);
      //    // for (i = 0; i < NQ*mb->nCell; i++) sb->pq[i] = sb->q[i];

      //    // for(k = 0; k < sb->ndual; k++)
      //    // {
      //    //    DualcomputeRHSk(g,s,l2norm,s->cflnum);
      //    //    DualADI(g,s,s->cflnum,dt);
      //    // }

      //    // for (i=0;i<NVAR*g->ncells;i++) s->q[i] = s->pq[i];
      // }
   }
}