void AC_AttitudeControl::input_euler_angle_roll_pitch_euler_rate_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds)
{
    // Convert from centidegrees on public interface to radians
    float euler_roll_angle_rad = radians(euler_roll_angle_cd*0.01f);
    float euler_pitch_angle_rad = radians(euler_pitch_angle_cd*0.01f);
    float euler_yaw_rate_rads = radians(euler_yaw_rate_cds*0.01f);

    Vector3f    att_error_euler_rad;

    // Add roll trim to compensate tail rotor thrust in heli (will return zero on multirotors)
    euler_roll_angle_rad += get_roll_trim_rad();

    // Set roll/pitch attitude targets from input.
    _att_target_euler_rad.x = constrain_float(euler_roll_angle_rad, -get_tilt_limit_rad(), get_tilt_limit_rad());
    _att_target_euler_rad.y = constrain_float(euler_pitch_angle_rad, -get_tilt_limit_rad(), get_tilt_limit_rad());

    // Update roll/pitch attitude error.
    att_error_euler_rad.x = wrap_PI(_att_target_euler_rad.x - _ahrs.roll);
    att_error_euler_rad.y = wrap_PI(_att_target_euler_rad.y - _ahrs.pitch);

    // Zero the roll and pitch feed-forward rate.
    _att_target_euler_rate_rads.x = 0;
    _att_target_euler_rate_rads.y = 0;

    if (get_accel_yaw_max_radss() > 0.0f) {
        // When yaw acceleration limiting is enabled, the yaw input shaper constrains angular acceleration about the yaw axis, slewing
        // the output rate towards the input rate.
        float rate_change_limit_rads = get_accel_yaw_max_radss() * _dt;
        _att_target_euler_rate_rads.z += constrain_float(euler_yaw_rate_rads - _att_target_euler_rate_rads.z, -rate_change_limit_rads, rate_change_limit_rads);

        // The output rate is used to update the attitude target euler angles and is fed forward into the rate controller.
        update_att_target_and_error_yaw(_att_target_euler_rate_rads.z, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX_RAD);
    } else {
        // When yaw acceleration limiting is disabled, the attitude target is simply rotated using the input rate and the input rate
        // is fed forward into the rate controller.
        _att_target_euler_rate_rads.z = euler_yaw_rate_rads;
        update_att_target_and_error_yaw(_att_target_euler_rate_rads.z, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX_RAD);
    }

    // Convert 321-intrinsic euler angle errors to a body-frame rotation vector
    // NOTE: This results in an approximation of the attitude error based on a linearization about the current attitude
    euler_rate_to_ang_vel(Vector3f(_ahrs.roll,_ahrs.pitch,_ahrs.yaw), att_error_euler_rad, _att_error_rot_vec_rad);

    // Compute the angular velocity target from the attitude error
    update_ang_vel_target_from_att_error();

    // Convert euler angle derivatives of desired attitude into a body-frame angular velocity vector for feedforward
    // NOTE: This should be done about the desired attitude instead of about the vehicle attitude
    euler_rate_to_ang_vel(Vector3f(_ahrs.roll,_ahrs.pitch,_ahrs.yaw), _att_target_euler_rate_rads, _att_target_ang_vel_rads);
    // NOTE: A rotation of _att_target_ang_vel_rads from desired body frame to estimated body frame is possibly omitted here

    // Add the angular velocity feedforward
    _ang_vel_target_rads += _att_target_ang_vel_rads;
}
void AC_AttitudeControl::input_euler_rate_roll_pitch_yaw(float euler_roll_rate_cds, float euler_pitch_rate_cds, float euler_yaw_rate_cds)
{
    // Convert from centidegrees on public interface to radians
    float euler_roll_rate_rads = radians(euler_roll_rate_cds*0.01f);
    float euler_pitch_rate_rads = radians(euler_pitch_rate_cds*0.01f);
    float euler_yaw_rate_rads = radians(euler_yaw_rate_cds*0.01f);

    Vector3f att_error_euler_rad;

    // Compute acceleration-limited euler roll rate
    if (get_accel_roll_max_radss() > 0.0f) {
        float rate_change_limit_rads = get_accel_roll_max_radss() * _dt;
        _att_target_euler_rate_rads.x += constrain_float(euler_roll_rate_rads - _att_target_euler_rate_rads.x, -rate_change_limit_rads, rate_change_limit_rads);
    } else {
        _att_target_euler_rate_rads.x = euler_roll_rate_rads;
    }

    // Compute acceleration-limited euler pitch rate
    if (get_accel_pitch_max_radss() > 0.0f) {
        float rate_change_limit_rads = get_accel_pitch_max_radss() * _dt;
        _att_target_euler_rate_rads.y += constrain_float(euler_pitch_rate_rads - _att_target_euler_rate_rads.y, -rate_change_limit_rads, rate_change_limit_rads);
    } else {
        _att_target_euler_rate_rads.y = euler_pitch_rate_rads;
    }

    // Compute acceleration-limited euler yaw rate
    if (get_accel_yaw_max_radss() > 0.0f) {
        float rate_change_limit_rads = get_accel_yaw_max_radss() * _dt;
        _att_target_euler_rate_rads.z += constrain_float(euler_yaw_rate_rads - _att_target_euler_rate_rads.z, -rate_change_limit_rads, rate_change_limit_rads);
    } else {
        _att_target_euler_rate_rads.z = euler_yaw_rate_rads;
    }

    // Update the attitude target from the computed euler rates
    update_att_target_and_error_roll(_att_target_euler_rate_rads.x, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX_RAD);
    update_att_target_and_error_pitch(_att_target_euler_rate_rads.y, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_PITCH_OVERSHOOT_ANGLE_MAX_RAD);
    update_att_target_and_error_yaw(_att_target_euler_rate_rads.z, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX_RAD);

    // Apply tilt limit
    _att_target_euler_rad.x = constrain_float(_att_target_euler_rad.x, -get_tilt_limit_rad(), get_tilt_limit_rad());
    _att_target_euler_rad.y = constrain_float(_att_target_euler_rad.y, -get_tilt_limit_rad(), get_tilt_limit_rad());

    // Convert 321-intrinsic euler angle errors to a body-frame rotation vector
    // NOTE: This results in an approximation of the attitude error based on a linearization about the current attitude
    euler_rate_to_ang_vel(Vector3f(_ahrs.roll,_ahrs.pitch,_ahrs.yaw), att_error_euler_rad, _att_error_rot_vec_rad);

    // Compute the angular velocity target from the attitude error
    update_ang_vel_target_from_att_error();

    // Convert euler angle derivatives of desired attitude into a body-frame angular velocity vector for feedforward
    euler_rate_to_ang_vel(_att_target_euler_rad, _att_target_euler_rate_rads, _att_target_ang_vel_rads);

    // Add the angular velocity feedforward, rotated into vehicle frame
    Matrix3f Trv;
    get_rotation_reference_to_vehicle(Trv);
    _ang_vel_target_rads += Trv * _att_target_ang_vel_rads;
}
void AC_AttitudeControl::input_euler_angle_roll_pitch_euler_rate_yaw_smooth(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds, float smoothing_gain)
{
    // Convert from centidegrees on public interface to radians
    float euler_roll_angle_rad = radians(euler_roll_angle_cd*0.01f);
    float euler_pitch_angle_rad = radians(euler_pitch_angle_cd*0.01f);
    float euler_yaw_rate_rads = radians(euler_yaw_rate_cds*0.01f);

    // Sanity check smoothing gain
    smoothing_gain = constrain_float(smoothing_gain,1.0f,50.0f);

    // Add roll trim to compensate tail rotor thrust in heli (will return zero on multirotors)
    euler_roll_angle_rad += get_roll_trim_rad();

    Vector3f att_error_euler_rad;

    if ((get_accel_roll_max_radss() > 0.0f) && _rate_bf_ff_enabled) {
        // When roll acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler roll-axis
        // angular velocity that will cause the euler roll angle to smoothly stop at the input angle with limited deceleration
        // and an exponential decay specified by smoothing_gain at the end.
        float euler_rate_desired_rads = sqrt_controller(euler_roll_angle_rad-_att_target_euler_rad.x, smoothing_gain, get_accel_roll_max_radss());

        // Acceleration is limited directly to smooth the beginning of the curve.
        float rate_change_limit_rads = get_accel_roll_max_radss() * _dt;
        _att_target_euler_rate_rads.x = constrain_float(euler_rate_desired_rads, _att_target_euler_rate_rads.x-rate_change_limit_rads, _att_target_euler_rate_rads.x+rate_change_limit_rads);

        // The output rate is used to update the attitude target euler angles and is fed forward into the rate controller.
        update_att_target_and_error_roll(_att_target_euler_rate_rads.x, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX_RAD);
    } else {
        // When acceleration limiting and feedforward are not enabled, the target roll euler angle is simply set to the
        // input value and the feedforward rate is zeroed.
        _att_target_euler_rad.x = euler_roll_angle_rad;
        att_error_euler_rad.x = wrap_PI(_att_target_euler_rad.x - _ahrs.roll);
        _att_target_euler_rate_rads.x = 0;
    }
    _att_target_euler_rad.x = constrain_float(_att_target_euler_rad.x, -get_tilt_limit_rad(), get_tilt_limit_rad());

    if ((get_accel_pitch_max_radss() > 0.0f) && _rate_bf_ff_enabled) {
        // When pitch acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler pitch-axis
        // angular velocity that will cause the euler pitch angle to smoothly stop at the input angle with limited deceleration
        // and an exponential decay specified by smoothing_gain at the end.
        float euler_rate_desired_rads = sqrt_controller(euler_pitch_angle_rad-_att_target_euler_rad.y, smoothing_gain, get_accel_pitch_max_radss());

        // Acceleration is limited directly to smooth the beginning of the curve.
        float rate_change_limit_rads = get_accel_pitch_max_radss() * _dt;
        _att_target_euler_rate_rads.y = constrain_float(euler_rate_desired_rads, _att_target_euler_rate_rads.y-rate_change_limit_rads, _att_target_euler_rate_rads.y+rate_change_limit_rads);

        // The output rate is used to update the attitude target euler angles and is fed forward into the rate controller.
        update_att_target_and_error_pitch(_att_target_euler_rate_rads.y, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX_RAD);
    } else {
        _att_target_euler_rad.y = euler_pitch_angle_rad;
        att_error_euler_rad.y = wrap_PI(_att_target_euler_rad.y - _ahrs.pitch);
        _att_target_euler_rate_rads.y = 0;
    }
    _att_target_euler_rad.y = constrain_float(_att_target_euler_rad.y, -get_tilt_limit_rad(), get_tilt_limit_rad());

    if (get_accel_yaw_max_radss() > 0.0f) {
        // When yaw acceleration limiting is enabled, the yaw input shaper constrains angular acceleration about the yaw axis, slewing
        // the output rate towards the input rate.
        float rate_change_limit_rads = get_accel_yaw_max_radss() * _dt;
        _att_target_euler_rate_rads.z += constrain_float(euler_yaw_rate_rads - _att_target_euler_rate_rads.z, -rate_change_limit_rads, rate_change_limit_rads);

        // The output rate is used to update the attitude target euler angles and is fed forward into the rate controller.
        update_att_target_and_error_yaw(_att_target_euler_rate_rads.z, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX_RAD);
    } else {
        // When yaw acceleration limiting is disabled, the attitude target is simply rotated using the input rate and the input rate
        // is fed forward into the rate controller.
        _att_target_euler_rate_rads.z = euler_yaw_rate_rads;
        update_att_target_and_error_yaw(_att_target_euler_rate_rads.z, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX_RAD);
    }

    // Convert 321-intrinsic euler angle errors to a body-frame rotation vector
    // NOTE: This results in an approximation of the attitude error based on a linearization about the current attitude
    euler_rate_to_ang_vel(Vector3f(_ahrs.roll,_ahrs.pitch,_ahrs.yaw), att_error_euler_rad, _att_error_rot_vec_rad);

    // Compute the angular velocity target from the attitude error
    update_ang_vel_target_from_att_error();

    // Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward
    if (_rate_bf_ff_enabled) {
        euler_rate_to_ang_vel(Vector3f(_ahrs.roll,_ahrs.pitch,_ahrs.yaw), _att_target_euler_rate_rads, _att_target_ang_vel_rads);
    } else {
        euler_rate_to_ang_vel(Vector3f(_ahrs.roll,_ahrs.pitch,_ahrs.yaw), Vector3f(0,0,_att_target_euler_rate_rads.z), _att_target_ang_vel_rads);
    }
    // NOTE: Rotation of _att_target_ang_vel_rads from desired body frame to estimated body frame is possibly omitted here

    // Add the angular velocity feedforward
    _ang_vel_target_rads += _att_target_ang_vel_rads;
}