void GC::collect(int generation) { int i; GCList *young = &generations[generation]; // the generation we are examining GCList *old; // next older generation GCList unreachable; // unreachable trash collect_mutex.lock(); // update collection and allocation counters if (generation+1 < NUM_GENERATIONS) generations[generation+1].count += 1; for (i = 0; i <= generation; i++) generations[i].count = 0; // merge younger generations with one we are currently collecting for (i = 0; i < generation; i++) { generations[generation].merge(&generations[i]); } if (generation < NUM_GENERATIONS-1) old = &generations[generation+1]; else old = young; // Using refcount and gc_refs, calculate which objects in the // container set are reachable from outside the set (i.e., have a // refcount greater than 0 when all the references within the // set are taken into account). update_refs(young); subtract_refs(young); // Leave everything reachable from outside young in young, and move // everything else (in young) to unreachable. // NOTE: This used to move the reachable objects into a reachable // set instead. But most things usually turn out to be reachable, // so it's more efficient to move the unreachable things. move_unreachable(young, &unreachable); // move reachable objects to next generation. if (young != old) old->merge(young); // call clear on objects in the unreachable set. This will cause // the reference cycles to be broken. It may also cause some objects // in finalizers to be freed. delete_garbage(&unreachable, old); collect_mutex.unlock(); }
int cmd_reset(int argc, const char **argv, const char *prefix) { int reset_type = NONE, update_ref_status = 0, quiet = 0; int patch_mode = 0, unborn; const char *rev; unsigned char sha1[20]; const char **pathspec = NULL; const struct option options[] = { OPT__QUIET(&quiet, N_("be quiet, only report errors")), OPT_SET_INT(0, "mixed", &reset_type, N_("reset HEAD and index"), MIXED), OPT_SET_INT(0, "soft", &reset_type, N_("reset only HEAD"), SOFT), OPT_SET_INT(0, "hard", &reset_type, N_("reset HEAD, index and working tree"), HARD), OPT_SET_INT(0, "merge", &reset_type, N_("reset HEAD, index and working tree"), MERGE), OPT_SET_INT(0, "keep", &reset_type, N_("reset HEAD but keep local changes"), KEEP), OPT_BOOL('p', "patch", &patch_mode, N_("select hunks interactively")), OPT_END() }; git_config(git_default_config, NULL); argc = parse_options(argc, argv, prefix, options, git_reset_usage, PARSE_OPT_KEEP_DASHDASH); pathspec = parse_args(argv, prefix, &rev); unborn = !strcmp(rev, "HEAD") && get_sha1("HEAD", sha1); if (unborn) { /* reset on unborn branch: treat as reset to empty tree */ hashcpy(sha1, EMPTY_TREE_SHA1_BIN); } else if (!pathspec) { struct commit *commit; if (get_sha1_committish(rev, sha1)) die(_("Failed to resolve '%s' as a valid revision."), rev); commit = lookup_commit_reference(sha1); if (!commit) die(_("Could not parse object '%s'."), rev); hashcpy(sha1, commit->object.sha1); } else { struct tree *tree; if (get_sha1_treeish(rev, sha1)) die(_("Failed to resolve '%s' as a valid tree."), rev); tree = parse_tree_indirect(sha1); if (!tree) die(_("Could not parse object '%s'."), rev); hashcpy(sha1, tree->object.sha1); } if (patch_mode) { if (reset_type != NONE) die(_("--patch is incompatible with --{hard,mixed,soft}")); return run_add_interactive(sha1_to_hex(sha1), "--patch=reset", pathspec); } /* git reset tree [--] paths... can be used to * load chosen paths from the tree into the index without * affecting the working tree nor HEAD. */ if (pathspec) { if (reset_type == MIXED) warning(_("--mixed with paths is deprecated; use 'git reset -- <paths>' instead.")); else if (reset_type != NONE) die(_("Cannot do %s reset with paths."), _(reset_type_names[reset_type])); } if (reset_type == NONE) reset_type = MIXED; /* by default */ if (reset_type != SOFT && reset_type != MIXED) setup_work_tree(); if (reset_type == MIXED && is_bare_repository()) die(_("%s reset is not allowed in a bare repository"), _(reset_type_names[reset_type])); /* Soft reset does not touch the index file nor the working tree * at all, but requires them in a good order. Other resets reset * the index file to the tree object we are switching to. */ if (reset_type == SOFT || reset_type == KEEP) die_if_unmerged_cache(reset_type); if (reset_type != SOFT) { struct lock_file *lock = xcalloc(1, sizeof(struct lock_file)); int newfd = hold_locked_index(lock, 1); if (reset_type == MIXED) { if (read_from_tree(pathspec, sha1)) return 1; } else { int err = reset_index(sha1, reset_type, quiet); if (reset_type == KEEP && !err) err = reset_index(sha1, MIXED, quiet); if (err) die(_("Could not reset index file to revision '%s'."), rev); } if (reset_type == MIXED) { /* Report what has not been updated. */ int flags = quiet ? REFRESH_QUIET : REFRESH_IN_PORCELAIN; refresh_index(&the_index, flags, NULL, NULL, _("Unstaged changes after reset:")); } if (write_cache(newfd, active_cache, active_nr) || commit_locked_index(lock)) die(_("Could not write new index file.")); } if (!pathspec && !unborn) { /* Any resets without paths update HEAD to the head being * switched to, saving the previous head in ORIG_HEAD before. */ update_ref_status = update_refs(rev, sha1); if (reset_type == HARD && !update_ref_status && !quiet) print_new_head_line(lookup_commit_reference(sha1)); } if (!pathspec) remove_branch_state(); return update_ref_status; }
/* This is the main function. Read this to understand how the * collection process works. */ static long collect(int generation) { int i; long m = 0; /* # objects collected */ long n = 0; /* # unreachable objects that couldn't be collected */ PyGC_Head *young; /* the generation we are examining */ PyGC_Head *old; /* next older generation */ PyGC_Head unreachable; /* non-problematic unreachable trash */ PyGC_Head finalizers; /* objects with, & reachable from, __del__ */ PyGC_Head *gc; if (delstr == NULL) { delstr = PyString_InternFromString("__del__"); if (delstr == NULL) Py_FatalError("gc couldn't allocate \"__del__\""); } if (debug & DEBUG_STATS) { PySys_WriteStderr("gc: collecting generation %d...\n", generation); PySys_WriteStderr("gc: objects in each generation:"); for (i = 0; i < NUM_GENERATIONS; i++) { PySys_WriteStderr(" %ld", gc_list_size(GEN_HEAD(i))); } PySys_WriteStderr("\n"); } /* update collection and allocation counters */ if (generation+1 < NUM_GENERATIONS) generations[generation+1].count += 1; for (i = 0; i <= generation; i++) generations[i].count = 0; /* merge younger generations with one we are currently collecting */ for (i = 0; i < generation; i++) { gc_list_merge(GEN_HEAD(i), GEN_HEAD(generation)); } /* handy references */ young = GEN_HEAD(generation); if (generation < NUM_GENERATIONS-1) old = GEN_HEAD(generation+1); else old = young; /* Using ob_refcnt and gc_refs, calculate which objects in the * container set are reachable from outside the set (i.e., have a * refcount greater than 0 when all the references within the * set are taken into account). */ update_refs(young); subtract_refs(young); /* Leave everything reachable from outside young in young, and move * everything else (in young) to unreachable. * NOTE: This used to move the reachable objects into a reachable * set instead. But most things usually turn out to be reachable, * so it's more efficient to move the unreachable things. */ gc_list_init(&unreachable); move_unreachable(young, &unreachable); /* Move reachable objects to next generation. */ if (young != old) gc_list_merge(young, old); /* All objects in unreachable are trash, but objects reachable from * finalizers can't safely be deleted. Python programmers should take * care not to create such things. For Python, finalizers means * instance objects with __del__ methods. Weakrefs with callbacks * can also call arbitrary Python code but they will be dealt with by * handle_weakrefs(). */ gc_list_init(&finalizers); move_finalizers(&unreachable, &finalizers); /* finalizers contains the unreachable objects with a finalizer; * unreachable objects reachable *from* those are also uncollectable, * and we move those into the finalizers list too. */ move_finalizer_reachable(&finalizers); /* Collect statistics on collectable objects found and print * debugging information. */ for (gc = unreachable.gc.gc_next; gc != &unreachable; gc = gc->gc.gc_next) { m++; if (debug & DEBUG_COLLECTABLE) { debug_cycle("collectable", FROM_GC(gc)); } } /* Clear weakrefs and invoke callbacks as necessary. */ m += handle_weakrefs(&unreachable, old); /* Call tp_clear on objects in the unreachable set. This will cause * the reference cycles to be broken. It may also cause some objects * in finalizers to be freed. */ delete_garbage(&unreachable, old); /* Collect statistics on uncollectable objects found and print * debugging information. */ for (gc = finalizers.gc.gc_next; gc != &finalizers; gc = gc->gc.gc_next) { n++; if (debug & DEBUG_UNCOLLECTABLE) debug_cycle("uncollectable", FROM_GC(gc)); } if (debug & DEBUG_STATS) { if (m == 0 && n == 0) { PySys_WriteStderr("gc: done.\n"); } else { PySys_WriteStderr( "gc: done, %ld unreachable, %ld uncollectable.\n", n+m, n); } } /* Append instances in the uncollectable set to a Python * reachable list of garbage. The programmer has to deal with * this if they insist on creating this type of structure. */ (void)handle_finalizers(&finalizers, old); if (PyErr_Occurred()) { if (gc_str == NULL) gc_str = PyString_FromString("garbage collection"); PyErr_WriteUnraisable(gc_str); Py_FatalError("unexpected exception during garbage collection"); } return n+m; }