static int test_upper( unsigned int length ) { ompi_datatype_t *pdt; opal_convertor_t * pConv; int rc = OMPI_SUCCESS; unsigned int i, iov_count, split_chunk, total_length; size_t max_data; struct iovec iov[5]; TIMER_DATA_TYPE start, end; long total_time; printf( "test upper matrix\n" ); pdt = upper_matrix( length ); /*dt_dump( pdt );*/ total_length = length * (length + 1) * ( sizeof(double) / 2); pConv = opal_convertor_create( remote_arch, 0 ); if( OMPI_SUCCESS != opal_convertor_prepare_for_send( pConv, &(pdt->super), 1, NULL ) ) { printf( "Cannot attach the datatype to a convertor\n" ); return OMPI_ERROR; } GET_TIME( start ); split_chunk = (length + 1) * sizeof(double); /* split_chunk = (total_length + 1) * sizeof(double); */ for( i = total_length; i > 0; ) { iov_count = 5; max_data = 0; opal_convertor_raw( pConv, iov, &iov_count, &max_data ); i -= max_data; } GET_TIME( end ); total_time = ELAPSED_TIME( start, end ); printf( "complete raw in %ld microsec\n", total_time ); /* test the automatic destruction pf the data */ ompi_datatype_destroy( &pdt ); assert( pdt == NULL ); OBJ_RELEASE( pConv ); return rc; }
static int test_upper( unsigned int length ) { double *mat1, *mat2, *inbuf; opal_datatype_t *pdt; opal_convertor_t * pConv; char *ptr; int rc; unsigned int i, j, iov_count, split_chunk, total_length; size_t max_data; struct iovec a; TIMER_DATA_TYPE start, end; long total_time; printf( "test upper matrix\n" ); pdt = upper_matrix( length ); opal_datatype_dump( pdt ); mat1 = malloc( length * length * sizeof(double) ); init_random_upper_matrix( length, mat1 ); mat2 = calloc( length * length, sizeof(double) ); total_length = length * (length + 1) * ( sizeof(double) / 2); inbuf = (double*)malloc( total_length ); ptr = (char*)inbuf; /* copy upper matrix in the array simulating the input buffer */ for( i = 0; i < length; i++ ) { uint32_t pos = i * length + i; for( j = i; j < length; j++, pos++ ) { *inbuf = mat1[pos]; inbuf++; } } inbuf = (double*)ptr; pConv = opal_convertor_create( remote_arch, 0 ); if( OPAL_SUCCESS != opal_convertor_prepare_for_recv( pConv, pdt, 1, mat2 ) ) { printf( "Cannot attach the datatype to a convertor\n" ); return OPAL_ERROR; } GET_TIME( start ); split_chunk = (length + 1) * sizeof(double); /* split_chunk = (total_length + 1) * sizeof(double); */ for( i = total_length; i > 0; ) { if( i <= split_chunk ) { /* equal test just to be able to set a breakpoint */ split_chunk = i; } a.iov_base = ptr; a.iov_len = split_chunk; iov_count = 1; max_data = split_chunk; opal_convertor_unpack( pConv, &a, &iov_count, &max_data ); ptr += max_data; i -= max_data; if( mat2[0] != inbuf[0] ) assert(0); } GET_TIME( end ); total_time = ELAPSED_TIME( start, end ); printf( "complete unpacking in %ld microsec\n", total_time ); free( inbuf ); rc = check_diag_matrix( length, mat1, mat2 ); free( mat1 ); free( mat2 ); /* test the automatic destruction pf the data */ opal_datatype_destroy( &pdt ); assert( pdt == NULL ); OBJ_RELEASE( pConv ); return rc; }
/** * Main function. Call several tests and print-out the results. It try to stress the convertor * using difficult data-type constructions as well as strange segment sizes for the conversion. * Usually, it is able to detect most of the data-type and convertor problems. Any modifications * on the data-type engine should first pass all the tests from this file, before going into other * tests. */ int main( int argc, char* argv[] ) { opal_datatype_t *pdt, *pdt1, *pdt2, *pdt3; int rc, length = 500; opal_datatype_init(); /** * By default simulate homogeneous architectures. */ remote_arch = opal_local_arch; printf( "\n\n#\n * TEST CREATE CONTIGUOUS\n #\n\n" ); pdt = create_contiguous_type( &opal_datatype_int1, 10 ); if( outputFlags & CHECK_PACK_UNPACK ) { local_copy_ddt_count(pdt, 100); local_copy_with_convertor(pdt, 100, 956); } OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "\n\n#\n * TEST STRANGE DATATYPE\n #\n\n" ); pdt = create_strange_dt(); if( outputFlags & CHECK_PACK_UNPACK ) { local_copy_ddt_count(pdt, 1); local_copy_with_convertor(pdt, 1, 956); } OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "\n\n#\n * TEST UPPER TRIANGULAR MATRIX (size 100)\n #\n\n" ); pdt = upper_matrix(100); if( outputFlags & CHECK_PACK_UNPACK ) { local_copy_ddt_count(pdt, 1); local_copy_with_convertor(pdt, 1, 48); } OBJ_RELEASE( pdt ); assert( pdt == NULL ); mpich_typeub(); mpich_typeub2(); mpich_typeub3(); printf( "\n\n#\n * TEST UPPER MATRIX\n #\n\n" ); rc = test_upper( length ); if( rc == 0 ) printf( "decode [PASSED]\n" ); else printf( "decode [NOT PASSED]\n" ); printf( "\n\n#\n * TEST MATRIX BORDERS\n #\n\n" ); pdt = test_matrix_borders( length, 100 ); if( outputFlags & DUMP_DATA_AFTER_COMMIT ) { opal_datatype_dump( pdt ); } OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "\n\n#\n * TEST CONTIGUOUS\n #\n\n" ); pdt = test_contiguous(); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "\n\n#\n * TEST STRUCT\n #\n\n" ); pdt = test_struct(); OBJ_RELEASE( pdt ); assert( pdt == NULL ); opal_datatype_create_contiguous(0, &opal_datatype_empty, &pdt1); opal_datatype_create_contiguous(0, &opal_datatype_empty, &pdt2); opal_datatype_create_contiguous(0, &opal_datatype_empty, &pdt3); opal_datatype_add( pdt3, &opal_datatype_int4, 10, 0, -1 ); opal_datatype_add( pdt3, &opal_datatype_float4, 5, 10 * sizeof(int), -1 ); opal_datatype_add( pdt2, &opal_datatype_float4, 1, 0, -1 ); opal_datatype_add( pdt2, pdt3, 3, sizeof(int) * 1, -1 ); opal_datatype_add( pdt1, &opal_datatype_int8, 5, 0, -1 ); opal_datatype_add( pdt1, &opal_datatype_float16, 2, sizeof(long long) * 5, -1 ); printf( ">>--------------------------------------------<<\n" ); if( outputFlags & DUMP_DATA_AFTER_COMMIT ) { opal_datatype_dump( pdt1 ); } printf( ">>--------------------------------------------<<\n" ); if( outputFlags & DUMP_DATA_AFTER_COMMIT ) { opal_datatype_dump( pdt2 ); } printf( ">>--------------------------------------------<<\n" ); if( outputFlags & DUMP_DATA_AFTER_COMMIT ) { opal_datatype_dump( pdt3 ); } OBJ_RELEASE( pdt1 ); assert( pdt1 == NULL ); OBJ_RELEASE( pdt2 ); assert( pdt2 == NULL ); OBJ_RELEASE( pdt3 ); assert( pdt3 == NULL ); printf( ">>--------------------------------------------<<\n" ); printf( " Contiguous data-type (opal_datatype_float8)\n" ); if( outputFlags & CHECK_PACK_UNPACK ) { const opal_datatype_t const* ddt = &opal_datatype_float8; local_copy_ddt_count( ddt, 4500); local_copy_with_convertor( ddt, 4500, 12 ); local_copy_with_convertor_2datatypes( ddt, 4500, ddt, 4500, 12 ); } printf( ">>--------------------------------------------<<\n" ); printf( ">>--------------------------------------------<<\n" ); if( outputFlags & CHECK_PACK_UNPACK ) { printf( "Contiguous multiple data-type (4500*1)\n" ); pdt = create_contiguous_type( &opal_datatype_float8, 4500 ); local_copy_ddt_count(pdt, 1); local_copy_with_convertor( pdt, 1, 12 ); local_copy_with_convertor_2datatypes( pdt, 1, pdt, 1, 12 ); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "Contiguous multiple data-type (450*10)\n" ); pdt = create_contiguous_type( &opal_datatype_float8, 450 ); local_copy_ddt_count(pdt, 10); local_copy_with_convertor( pdt, 10, 12 ); local_copy_with_convertor_2datatypes( pdt, 10, pdt, 10, 12 ); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "Contiguous multiple data-type (45*100)\n" ); pdt = create_contiguous_type( &opal_datatype_float8, 45 ); local_copy_ddt_count(pdt, 100); local_copy_with_convertor( pdt, 100, 12 ); local_copy_with_convertor_2datatypes( pdt, 100, pdt, 100, 12 ); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "Contiguous multiple data-type (100*45)\n" ); pdt = create_contiguous_type( &opal_datatype_float8, 100 ); local_copy_ddt_count(pdt, 45); local_copy_with_convertor( pdt, 45, 12 ); local_copy_with_convertor_2datatypes( pdt, 45, pdt, 45, 12 ); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "Contiguous multiple data-type (10*450)\n" ); pdt = create_contiguous_type( &opal_datatype_float8, 10 ); local_copy_ddt_count(pdt, 450); local_copy_with_convertor( pdt, 450, 12 ); local_copy_with_convertor_2datatypes( pdt, 450, pdt, 450, 12 ); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "Contiguous multiple data-type (1*4500)\n" ); pdt = create_contiguous_type( &opal_datatype_float8, 1 ); local_copy_ddt_count(pdt, 4500); local_copy_with_convertor( pdt, 4500, 12 ); local_copy_with_convertor_2datatypes( pdt, 4500, pdt, 4500, 12 ); OBJ_RELEASE( pdt ); assert( pdt == NULL ); } printf( ">>--------------------------------------------<<\n" ); printf( ">>--------------------------------------------<<\n" ); printf( "Vector data-type (450 times 10 double stride 11)\n" ); pdt = create_vector_type( &opal_datatype_float8, 450, 10, 11 ); opal_datatype_dump( pdt ); if( outputFlags & CHECK_PACK_UNPACK ) { local_copy_ddt_count(pdt, 1); local_copy_with_convertor( pdt, 1, 12 ); local_copy_with_convertor_2datatypes( pdt, 1, pdt, 1, 12 ); local_copy_with_convertor( pdt, 1, 82 ); local_copy_with_convertor_2datatypes( pdt, 1, pdt, 1, 82 ); local_copy_with_convertor( pdt, 1, 6000 ); local_copy_with_convertor_2datatypes( pdt, 1, pdt, 1, 6000 ); local_copy_with_convertor( pdt, 1, 36000 ); local_copy_with_convertor_2datatypes( pdt, 1, pdt, 1, 36000 ); } printf( ">>--------------------------------------------<<\n" ); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( ">>--------------------------------------------<<\n" ); pdt = test_struct_char_double(); if( outputFlags & CHECK_PACK_UNPACK ) { local_copy_ddt_count(pdt, 4500); local_copy_with_convertor( pdt, 4500, 12 ); local_copy_with_convertor_2datatypes( pdt, 4500, pdt, 4500, 12 ); } printf( ">>--------------------------------------------<<\n" ); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( ">>--------------------------------------------<<\n" ); pdt = test_create_twice_two_doubles(); if( outputFlags & CHECK_PACK_UNPACK ) { local_copy_ddt_count(pdt, 4500); local_copy_with_convertor( pdt, 4500, 12 ); local_copy_with_convertor_2datatypes( pdt, 4500, pdt, 4500, 12 ); } printf( ">>--------------------------------------------<<\n" ); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( ">>--------------------------------------------<<\n" ); pdt = test_create_blacs_type(); if( outputFlags & CHECK_PACK_UNPACK ) { opal_datatype_dump( pdt ); local_copy_ddt_count(pdt, 4500); local_copy_with_convertor( pdt, 4500, 956 ); local_copy_with_convertor_2datatypes( pdt, 4500, pdt, 4500, 956 ); local_copy_with_convertor( pdt, 4500, 16*1024 ); local_copy_with_convertor_2datatypes( pdt, 4500, pdt, 4500, 16*1024 ); local_copy_with_convertor( pdt, 4500, 64*1024 ); local_copy_with_convertor_2datatypes( pdt, 4500, pdt, 4500, 64*1024 ); } printf( ">>--------------------------------------------<<\n" ); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( ">>--------------------------------------------<<\n" ); pdt1 = test_create_blacs_type1( &opal_datatype_int4 ); pdt2 = test_create_blacs_type2( &opal_datatype_int4 ); if( outputFlags & CHECK_PACK_UNPACK ) { local_copy_with_convertor_2datatypes( pdt1, 1, pdt2, 1, 100 ); } printf( ">>--------------------------------------------<<\n" ); OBJ_RELEASE( pdt1 ); assert( pdt1 == NULL ); OBJ_RELEASE( pdt2 ); assert( pdt2 == NULL ); /* clean-ups all data allocations */ opal_datatype_finalize(); return OPAL_SUCCESS; }
/** * Main function. Call several tests and print-out the results. It try to stress the convertor * using difficult data-type constructions as well as strange segment sizes for the conversion. * Usually, it is able to detect most of the data-type and convertor problems. Any modifications * on the data-type engine should first pass all the tests from this file, before going into other * tests. */ int main( int argc, char* argv[] ) { ompi_datatype_t *pdt, *pdt1, *pdt2, *pdt3; int rc, length = 500, iov_num = 5; ompi_datatype_init(); /** * By default simulate homogeneous architectures. */ remote_arch = opal_local_arch; printf( "\n\n#\n * TEST INVERSED VECTOR\n #\n\n" ); pdt = create_inversed_vector( &ompi_mpi_int.dt, 10 ); if( outputFlags & CHECK_PACK_UNPACK ) { local_copy_ddt_raw(pdt, 100, iov_num); } OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "\n\n#\n * TEST STRANGE DATATYPE\n #\n\n" ); pdt = create_strange_dt(); if( outputFlags & CHECK_PACK_UNPACK ) { local_copy_ddt_raw(pdt, 1, iov_num); } OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "\n\n#\n * TEST UPPER TRIANGULAR MATRIX (size 100)\n #\n\n" ); pdt = upper_matrix(100); if( outputFlags & CHECK_PACK_UNPACK ) { local_copy_ddt_raw(pdt, 1, iov_num); } OBJ_RELEASE( pdt ); assert( pdt == NULL ); mpich_typeub(); mpich_typeub2(); mpich_typeub3(); printf( "\n\n#\n * TEST UPPER MATRIX\n #\n\n" ); rc = test_upper( length ); if( rc == 0 ) printf( "decode [PASSED]\n" ); else printf( "decode [NOT PASSED]\n" ); printf( "\n\n#\n * TEST MATRIX BORDERS\n #\n\n" ); pdt = test_matrix_borders( length, 100 ); if( outputFlags & DUMP_DATA_AFTER_COMMIT ) { ompi_datatype_dump( pdt ); } OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "\n\n#\n * TEST CONTIGUOUS\n #\n\n" ); pdt = test_contiguous(); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "\n\n#\n * TEST STRUCT\n #\n\n" ); pdt = test_struct(); OBJ_RELEASE( pdt ); assert( pdt == NULL ); ompi_datatype_create_contiguous(0, &ompi_mpi_datatype_null.dt, &pdt1); ompi_datatype_create_contiguous(0, &ompi_mpi_datatype_null.dt, &pdt2); ompi_datatype_create_contiguous(0, &ompi_mpi_datatype_null.dt, &pdt3); ompi_datatype_add( pdt3, &ompi_mpi_int.dt, 10, 0, -1 ); ompi_datatype_add( pdt3, &ompi_mpi_float.dt, 5, 10 * sizeof(int), -1 ); ompi_datatype_add( pdt2, &ompi_mpi_float.dt, 1, 0, -1 ); ompi_datatype_add( pdt2, pdt3, 3, sizeof(int) * 1, -1 ); ompi_datatype_add( pdt1, &ompi_mpi_long_long_int.dt, 5, 0, -1 ); ompi_datatype_add( pdt1, &ompi_mpi_long_double.dt, 2, sizeof(long long) * 5, -1 ); printf( ">>--------------------------------------------<<\n" ); if( outputFlags & DUMP_DATA_AFTER_COMMIT ) { ompi_datatype_dump( pdt1 ); } printf( ">>--------------------------------------------<<\n" ); if( outputFlags & DUMP_DATA_AFTER_COMMIT ) { ompi_datatype_dump( pdt2 ); } printf( ">>--------------------------------------------<<\n" ); if( outputFlags & DUMP_DATA_AFTER_COMMIT ) { ompi_datatype_dump( pdt3 ); } OBJ_RELEASE( pdt1 ); assert( pdt1 == NULL ); OBJ_RELEASE( pdt2 ); assert( pdt2 == NULL ); OBJ_RELEASE( pdt3 ); assert( pdt3 == NULL ); printf( ">>--------------------------------------------<<\n" ); printf( " Contiguous data-type (MPI_DOUBLE)\n" ); pdt = MPI_DOUBLE; if( outputFlags & CHECK_PACK_UNPACK ) { local_copy_ddt_raw(pdt, 4500, iov_num); } printf( ">>--------------------------------------------<<\n" ); printf( ">>--------------------------------------------<<\n" ); if( outputFlags & CHECK_PACK_UNPACK ) { printf( "Contiguous multiple data-type (4500*1)\n" ); pdt = create_contiguous_type( MPI_DOUBLE, 4500 ); local_copy_ddt_raw(pdt, 1, iov_num); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "Contiguous multiple data-type (450*10)\n" ); pdt = create_contiguous_type( MPI_DOUBLE, 450 ); local_copy_ddt_raw(pdt, 10, iov_num); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "Contiguous multiple data-type (45*100)\n" ); pdt = create_contiguous_type( MPI_DOUBLE, 45 ); local_copy_ddt_raw(pdt, 100, iov_num); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "Contiguous multiple data-type (100*45)\n" ); pdt = create_contiguous_type( MPI_DOUBLE, 100 ); local_copy_ddt_raw(pdt, 45, iov_num); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "Contiguous multiple data-type (10*450)\n" ); pdt = create_contiguous_type( MPI_DOUBLE, 10 ); local_copy_ddt_raw(pdt, 450, iov_num); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( "Contiguous multiple data-type (1*4500)\n" ); pdt = create_contiguous_type( MPI_DOUBLE, 1 ); local_copy_ddt_raw(pdt, 4500, iov_num); OBJ_RELEASE( pdt ); assert( pdt == NULL ); } printf( ">>--------------------------------------------<<\n" ); printf( ">>--------------------------------------------<<\n" ); printf( "Vector data-type (450 times 10 double stride 11)\n" ); pdt = create_vector_type( MPI_DOUBLE, 450, 10, 11 ); if( outputFlags & DUMP_DATA_AFTER_COMMIT ) { ompi_datatype_dump( pdt ); } if( outputFlags & CHECK_PACK_UNPACK ) { local_copy_ddt_raw(pdt, 1, iov_num); } printf( ">>--------------------------------------------<<\n" ); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( ">>--------------------------------------------<<\n" ); pdt = test_struct_char_double(); if( outputFlags & CHECK_PACK_UNPACK ) { local_copy_ddt_raw(pdt, 4500, iov_num); } printf( ">>--------------------------------------------<<\n" ); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( ">>--------------------------------------------<<\n" ); pdt = test_create_twice_two_doubles(); if( outputFlags & CHECK_PACK_UNPACK ) { local_copy_ddt_raw(pdt, 4500, iov_num); } printf( ">>--------------------------------------------<<\n" ); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( ">>--------------------------------------------<<\n" ); pdt = test_create_blacs_type(); if( outputFlags & CHECK_PACK_UNPACK ) { if( outputFlags & DUMP_DATA_AFTER_COMMIT ) { ompi_datatype_dump( pdt ); } local_copy_ddt_raw(pdt, 4500, iov_num); } printf( ">>--------------------------------------------<<\n" ); OBJ_RELEASE( pdt ); assert( pdt == NULL ); printf( ">>--------------------------------------------<<\n" ); pdt1 = test_create_blacs_type1( &ompi_mpi_int.dt ); if( outputFlags & CHECK_PACK_UNPACK ) { local_copy_ddt_raw( pdt1, 1, iov_num ); } printf( ">>--------------------------------------------<<\n" ); OBJ_RELEASE( pdt1 ); assert( pdt1 == NULL ); /* clean-ups all data allocations */ ompi_datatype_finalize(); return OMPI_SUCCESS; }