Beispiel #1
0
/**
 * If we fail to compile a fragment shader (because it uses too many
 * registers, for example) we'll use a dummy/fallback shader that
 * simply emits a constant color (red for debug, black for release).
 * We hit this with the Unigine/Heaven demo when Shaders = High.
 * With black, the demo still looks good.
 */
static const struct tgsi_token *
get_dummy_fragment_shader(void)
{
#ifdef DEBUG
   static const float color[4] = { 1.0, 0.0, 0.0, 0.0 }; /* red */
#else
   static const float color[4] = { 0.0, 0.0, 0.0, 0.0 }; /* black */
#endif
   struct ureg_program *ureg;
   const struct tgsi_token *tokens;
   struct ureg_src src;
   struct ureg_dst dst;
   unsigned num_tokens;

   ureg = ureg_create(TGSI_PROCESSOR_FRAGMENT);
   if (!ureg)
      return NULL;

   dst = ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 0);
   src = ureg_DECL_immediate(ureg, color, 4);
   ureg_MOV(ureg, dst, src);
   ureg_END(ureg);

   tokens = ureg_get_tokens(ureg, &num_tokens);

   ureg_destroy(ureg);

   return tokens;
}
Beispiel #2
0
/**
 * If we fail to compile a vertex shader we'll use a dummy/fallback shader
 * that simply emits a (0,0,0,1) vertex position.
 */
static const struct tgsi_token *
get_dummy_vertex_shader(void)
{
   static const float zero[4] = { 0.0, 0.0, 0.0, 1.0 };
   struct ureg_program *ureg;
   const struct tgsi_token *tokens;
   struct ureg_src src;
   struct ureg_dst dst;
   unsigned num_tokens;

   ureg = ureg_create(TGSI_PROCESSOR_VERTEX);
   if (!ureg)
      return NULL;

   dst = ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0);
   src = ureg_DECL_immediate(ureg, zero, 4);
   ureg_MOV(ureg, dst, src);
   ureg_END(ureg);

   tokens = ureg_get_tokens(ureg, &num_tokens);

   ureg_destroy(ureg);

   return tokens;
}
Beispiel #3
0
static void r300_dummy_vertex_shader(
    struct r300_context* r300,
    struct r300_vertex_shader* shader)
{
    struct ureg_program *ureg;
    struct ureg_dst dst;
    struct ureg_src imm;

    /* Make a simple vertex shader which outputs (0, 0, 0, 1),
     * effectively rendering nothing. */
    ureg = ureg_create(TGSI_PROCESSOR_VERTEX);
    dst = ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0);
    imm = ureg_imm4f(ureg, 0, 0, 0, 1);

    ureg_MOV(ureg, dst, imm);
    ureg_END(ureg);

    shader->state.tokens = tgsi_dup_tokens(ureg_finalize(ureg));
    ureg_destroy(ureg);

    shader->dummy = TRUE;
    r300_init_vs_outputs(r300, shader);
    r300_translate_vertex_shader(r300, shader);
}
Beispiel #4
0
static void r300_dummy_fragment_shader(
    struct r300_context* r300,
    struct r300_fragment_shader_code* shader)
{
    struct pipe_shader_state state;
    struct ureg_program *ureg;
    struct ureg_dst out;
    struct ureg_src imm;

    /* Make a simple fragment shader which outputs (0, 0, 0, 1) */
    ureg = ureg_create(TGSI_PROCESSOR_FRAGMENT);
    out = ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 0);
    imm = ureg_imm4f(ureg, 0, 0, 0, 1);

    ureg_MOV(ureg, out, imm);
    ureg_END(ureg);

    state.tokens = ureg_finalize(ureg);

    shader->dummy = TRUE;
    r300_translate_fragment_shader(r300, shader, state.tokens);

    ureg_destroy(ureg);
}
Beispiel #5
0
/**
 * Translate a geometry program to create a new variant.
 */
static struct st_gp_variant *
st_translate_geometry_program(struct st_context *st,
                              struct st_geometry_program *stgp,
                              const struct st_gp_variant_key *key)
{
   GLuint inputMapping[VARYING_SLOT_MAX];
   GLuint outputMapping[VARYING_SLOT_MAX];
   struct pipe_context *pipe = st->pipe;
   GLuint attr;

   uint gs_num_inputs = 0;

   ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
   ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];

   ubyte gs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
   ubyte gs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
   uint gs_num_outputs = 0;

   GLint i;
   struct ureg_program *ureg;
   struct pipe_shader_state state = {0};
   struct st_gp_variant *gpv;

   gpv = CALLOC_STRUCT(st_gp_variant);
   if (!gpv)
      return NULL;

   ureg = ureg_create(TGSI_PROCESSOR_GEOMETRY);
   if (ureg == NULL) {
      free(gpv);
      return NULL;
   }

   memset(inputMapping, 0, sizeof(inputMapping));
   memset(outputMapping, 0, sizeof(outputMapping));

   /*
    * Convert Mesa program inputs to TGSI input register semantics.
    */
   for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
      if ((stgp->Base.Base.InputsRead & BITFIELD64_BIT(attr)) != 0) {
         const GLuint slot = gs_num_inputs++;

         inputMapping[attr] = slot;

         switch (attr) {
         case VARYING_SLOT_PRIMITIVE_ID:
            input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_POS:
            input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL0:
            input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL1:
            input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            input_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_FOGC:
            input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_VERTEX:
            input_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST0:
            input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST1:
            input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            input_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_PSIZ:
            input_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_TEX0:
         case VARYING_SLOT_TEX1:
         case VARYING_SLOT_TEX2:
         case VARYING_SLOT_TEX3:
         case VARYING_SLOT_TEX4:
         case VARYING_SLOT_TEX5:
         case VARYING_SLOT_TEX6:
         case VARYING_SLOT_TEX7:
            if (st->needs_texcoord_semantic) {
               input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
               input_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
               break;
            }
            /* fall through */
         case VARYING_SLOT_VAR0:
         default:
            assert(attr >= VARYING_SLOT_VAR0 && attr < VARYING_SLOT_MAX);
            input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
            input_semantic_index[slot] =
               st_get_generic_varying_index(st, attr);
         break;
         }
      }
   }

   /* initialize output semantics to defaults */
   for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
      gs_output_semantic_name[i] = TGSI_SEMANTIC_GENERIC;
      gs_output_semantic_index[i] = 0;
   }

   /*
    * Determine number of outputs, the (default) output register
    * mapping and the semantic information for each output.
    */
   for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
      if (stgp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) {
         GLuint slot = gs_num_outputs++;

         outputMapping[attr] = slot;

         switch (attr) {
         case VARYING_SLOT_POS:
            assert(slot == 0);
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL0:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL1:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            gs_output_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_BFC0:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_BFC1:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
            gs_output_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_FOGC:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_PSIZ:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_VERTEX:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST0:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST1:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            gs_output_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_LAYER:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_PRIMITIVE_ID:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_VIEWPORT:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_TEX0:
         case VARYING_SLOT_TEX1:
         case VARYING_SLOT_TEX2:
         case VARYING_SLOT_TEX3:
         case VARYING_SLOT_TEX4:
         case VARYING_SLOT_TEX5:
         case VARYING_SLOT_TEX6:
         case VARYING_SLOT_TEX7:
            if (st->needs_texcoord_semantic) {
               gs_output_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
               gs_output_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
               break;
            }
            /* fall through */
         case VARYING_SLOT_VAR0:
         default:
            assert(slot < ARRAY_SIZE(gs_output_semantic_name));
            assert(attr >= VARYING_SLOT_VAR0);
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
            gs_output_semantic_index[slot] =
               st_get_generic_varying_index(st, attr);
         break;
         }
      }
   }

   ureg_property(ureg, TGSI_PROPERTY_GS_INPUT_PRIM, stgp->Base.InputType);
   ureg_property(ureg, TGSI_PROPERTY_GS_OUTPUT_PRIM, stgp->Base.OutputType);
   ureg_property(ureg, TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES,
                 stgp->Base.VerticesOut);
   ureg_property(ureg, TGSI_PROPERTY_GS_INVOCATIONS, stgp->Base.Invocations);

   st_translate_program(st->ctx,
                        TGSI_PROCESSOR_GEOMETRY,
                        ureg,
                        stgp->glsl_to_tgsi,
                        &stgp->Base.Base,
                        /* inputs */
                        gs_num_inputs,
                        inputMapping,
                        input_semantic_name,
                        input_semantic_index,
                        NULL,
                        NULL,
                        /* outputs */
                        gs_num_outputs,
                        outputMapping,
                        gs_output_semantic_name,
                        gs_output_semantic_index,
                        FALSE,
                        FALSE);

   state.tokens = ureg_get_tokens(ureg, NULL);
   ureg_destroy(ureg);

   st_translate_stream_output_info(stgp->glsl_to_tgsi,
                                   outputMapping,
                                   &state.stream_output);

   if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) {
      _mesa_print_program(&stgp->Base.Base);
      debug_printf("\n");
   }

   if (ST_DEBUG & DEBUG_TGSI) {
      tgsi_dump(state.tokens, 0);
      debug_printf("\n");
   }

   /* fill in new variant */
   gpv->driver_shader = pipe->create_gs_state(pipe, &state);
   gpv->key = *key;

   ureg_free_tokens(state.tokens);
   return gpv;
}
Beispiel #6
0
/**
 * Translate a Mesa fragment shader into a TGSI shader using extra info in
 * the key.
 * \return  new fragment program variant
 */
static struct st_fp_variant *
st_translate_fragment_program(struct st_context *st,
                              struct st_fragment_program *stfp,
                              const struct st_fp_variant_key *key)
{
   struct pipe_context *pipe = st->pipe;
   struct st_fp_variant *variant = CALLOC_STRUCT(st_fp_variant);
   GLboolean deleteFP = GL_FALSE;

   GLuint outputMapping[FRAG_RESULT_MAX];
   GLuint inputMapping[VARYING_SLOT_MAX];
   GLuint interpMode[PIPE_MAX_SHADER_INPUTS];  /* XXX size? */
   GLuint interpLocation[PIPE_MAX_SHADER_INPUTS];
   GLuint attr;
   GLbitfield64 inputsRead;
   struct ureg_program *ureg;

   GLboolean write_all = GL_FALSE;

   ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
   ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];
   uint fs_num_inputs = 0;

   ubyte fs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
   ubyte fs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
   uint fs_num_outputs = 0;

   if (!variant)
      return NULL;

   assert(!(key->bitmap && key->drawpixels));

   if (key->bitmap) {
      /* glBitmap drawing */
      struct gl_fragment_program *fp; /* we free this temp program below */

      st_make_bitmap_fragment_program(st, &stfp->Base,
                                      &fp, &variant->bitmap_sampler);

      variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
      stfp = st_fragment_program(fp);
      deleteFP = GL_TRUE;
   }
   else if (key->drawpixels) {
      /* glDrawPixels drawing */
      struct gl_fragment_program *fp; /* we free this temp program below */

      if (key->drawpixels_z || key->drawpixels_stencil) {
         fp = st_make_drawpix_z_stencil_program(st, key->drawpixels_z,
                                                key->drawpixels_stencil);
      }
      else {
         /* RGBA */
         st_make_drawpix_fragment_program(st, &stfp->Base, &fp);
         variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
         deleteFP = GL_TRUE;
      }
      stfp = st_fragment_program(fp);
   }

   if (!stfp->glsl_to_tgsi)
      _mesa_remove_output_reads(&stfp->Base.Base, PROGRAM_OUTPUT);

   /*
    * Convert Mesa program inputs to TGSI input register semantics.
    */
   inputsRead = stfp->Base.Base.InputsRead;
   for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
      if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
         const GLuint slot = fs_num_inputs++;

         inputMapping[attr] = slot;
         if (stfp->Base.IsCentroid & BITFIELD64_BIT(attr))
            interpLocation[slot] = TGSI_INTERPOLATE_LOC_CENTROID;
         else if (stfp->Base.IsSample & BITFIELD64_BIT(attr))
            interpLocation[slot] = TGSI_INTERPOLATE_LOC_SAMPLE;
         else
            interpLocation[slot] = TGSI_INTERPOLATE_LOC_CENTER;

         if (key->persample_shading)
            interpLocation[slot] = TGSI_INTERPOLATE_LOC_SAMPLE;

         switch (attr) {
         case VARYING_SLOT_POS:
            input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
            input_semantic_index[slot] = 0;
            interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
            break;
         case VARYING_SLOT_COL0:
            input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            input_semantic_index[slot] = 0;
            interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
                                                   TRUE);
            break;
         case VARYING_SLOT_COL1:
            input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            input_semantic_index[slot] = 1;
            interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
                                                   TRUE);
            break;
         case VARYING_SLOT_FOGC:
            input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
            input_semantic_index[slot] = 0;
            interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
            break;
         case VARYING_SLOT_FACE:
            input_semantic_name[slot] = TGSI_SEMANTIC_FACE;
            input_semantic_index[slot] = 0;
            interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
            break;
         case VARYING_SLOT_PRIMITIVE_ID:
            input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
            input_semantic_index[slot] = 0;
            interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
            break;
         case VARYING_SLOT_LAYER:
            input_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
            input_semantic_index[slot] = 0;
            interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
            break;
         case VARYING_SLOT_VIEWPORT:
            input_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
            input_semantic_index[slot] = 0;
            interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
            break;
         case VARYING_SLOT_CLIP_DIST0:
            input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            input_semantic_index[slot] = 0;
            interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
            break;
         case VARYING_SLOT_CLIP_DIST1:
            input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            input_semantic_index[slot] = 1;
            interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
            break;
            /* In most cases, there is nothing special about these
             * inputs, so adopt a convention to use the generic
             * semantic name and the mesa VARYING_SLOT_ number as the
             * index.
             *
             * All that is required is that the vertex shader labels
             * its own outputs similarly, and that the vertex shader
             * generates at least every output required by the
             * fragment shader plus fixed-function hardware (such as
             * BFC).
             *
             * However, some drivers may need us to identify the PNTC and TEXi
             * varyings if, for example, their capability to replace them with
             * sprite coordinates is limited.
             */
         case VARYING_SLOT_PNTC:
            if (st->needs_texcoord_semantic) {
               input_semantic_name[slot] = TGSI_SEMANTIC_PCOORD;
               input_semantic_index[slot] = 0;
               interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
               break;
            }
            /* fall through */
         case VARYING_SLOT_TEX0:
         case VARYING_SLOT_TEX1:
         case VARYING_SLOT_TEX2:
         case VARYING_SLOT_TEX3:
         case VARYING_SLOT_TEX4:
         case VARYING_SLOT_TEX5:
         case VARYING_SLOT_TEX6:
         case VARYING_SLOT_TEX7:
            if (st->needs_texcoord_semantic) {
               input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
               input_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
               interpMode[slot] =
                  st_translate_interp(stfp->Base.InterpQualifier[attr], FALSE);
               break;
            }
            /* fall through */
         case VARYING_SLOT_VAR0:
         default:
            /* Semantic indices should be zero-based because drivers may choose
             * to assign a fixed slot determined by that index.
             * This is useful because ARB_separate_shader_objects uses location
             * qualifiers for linkage, and if the semantic index corresponds to
             * these locations, linkage passes in the driver become unecessary.
             *
             * If needs_texcoord_semantic is true, no semantic indices will be
             * consumed for the TEXi varyings, and we can base the locations of
             * the user varyings on VAR0.  Otherwise, we use TEX0 as base index.
             */
            assert(attr >= VARYING_SLOT_TEX0);
            input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
            input_semantic_index[slot] = st_get_generic_varying_index(st, attr);
            if (attr == VARYING_SLOT_PNTC)
               interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
            else
               interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
                                                      FALSE);
            break;
         }
      }
      else {
         inputMapping[attr] = -1;
      }
   }

   /*
    * Semantics and mapping for outputs
    */
   {
      uint numColors = 0;
      GLbitfield64 outputsWritten = stfp->Base.Base.OutputsWritten;

      /* if z is written, emit that first */
      if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
         fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_POSITION;
         fs_output_semantic_index[fs_num_outputs] = 0;
         outputMapping[FRAG_RESULT_DEPTH] = fs_num_outputs;
         fs_num_outputs++;
         outputsWritten &= ~(1 << FRAG_RESULT_DEPTH);
      }

      if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
         fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_STENCIL;
         fs_output_semantic_index[fs_num_outputs] = 0;
         outputMapping[FRAG_RESULT_STENCIL] = fs_num_outputs;
         fs_num_outputs++;
         outputsWritten &= ~(1 << FRAG_RESULT_STENCIL);
      }

      if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)) {
         fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_SAMPLEMASK;
         fs_output_semantic_index[fs_num_outputs] = 0;
         outputMapping[FRAG_RESULT_SAMPLE_MASK] = fs_num_outputs;
         fs_num_outputs++;
         outputsWritten &= ~(1 << FRAG_RESULT_SAMPLE_MASK);
      }

      /* handle remaining outputs (color) */
      for (attr = 0; attr < FRAG_RESULT_MAX; attr++) {
         if (outputsWritten & BITFIELD64_BIT(attr)) {
            switch (attr) {
            case FRAG_RESULT_DEPTH:
            case FRAG_RESULT_STENCIL:
            case FRAG_RESULT_SAMPLE_MASK:
               /* handled above */
               assert(0);
               break;
            case FRAG_RESULT_COLOR:
               write_all = GL_TRUE; /* fallthrough */
            default:
               assert(attr == FRAG_RESULT_COLOR ||
                      (FRAG_RESULT_DATA0 <= attr && attr < FRAG_RESULT_MAX));
               fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_COLOR;
               fs_output_semantic_index[fs_num_outputs] = numColors;
               outputMapping[attr] = fs_num_outputs;
               numColors++;
               break;
            }

            fs_num_outputs++;
         }
      }
   }

   ureg = ureg_create( TGSI_PROCESSOR_FRAGMENT );
   if (ureg == NULL) {
      free(variant);
      return NULL;
   }

   if (ST_DEBUG & DEBUG_MESA) {
      _mesa_print_program(&stfp->Base.Base);
      _mesa_print_program_parameters(st->ctx, &stfp->Base.Base);
      debug_printf("\n");
   }
   if (write_all == GL_TRUE)
      ureg_property(ureg, TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS, 1);

   if (stfp->Base.FragDepthLayout != FRAG_DEPTH_LAYOUT_NONE) {
      switch (stfp->Base.FragDepthLayout) {
      case FRAG_DEPTH_LAYOUT_ANY:
         ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
                       TGSI_FS_DEPTH_LAYOUT_ANY);
         break;
      case FRAG_DEPTH_LAYOUT_GREATER:
         ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
                       TGSI_FS_DEPTH_LAYOUT_GREATER);
         break;
      case FRAG_DEPTH_LAYOUT_LESS:
         ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
                       TGSI_FS_DEPTH_LAYOUT_LESS);
         break;
      case FRAG_DEPTH_LAYOUT_UNCHANGED:
         ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
                       TGSI_FS_DEPTH_LAYOUT_UNCHANGED);
         break;
      default:
         assert(0);
      }
   }

   if (stfp->glsl_to_tgsi)
      st_translate_program(st->ctx,
                           TGSI_PROCESSOR_FRAGMENT,
                           ureg,
                           stfp->glsl_to_tgsi,
                           &stfp->Base.Base,
                           /* inputs */
                           fs_num_inputs,
                           inputMapping,
                           input_semantic_name,
                           input_semantic_index,
                           interpMode,
                           interpLocation,
                           /* outputs */
                           fs_num_outputs,
                           outputMapping,
                           fs_output_semantic_name,
                           fs_output_semantic_index, FALSE,
                           key->clamp_color );
   else
      st_translate_mesa_program(st->ctx,
                                TGSI_PROCESSOR_FRAGMENT,
                                ureg,
                                &stfp->Base.Base,
                                /* inputs */
                                fs_num_inputs,
                                inputMapping,
                                input_semantic_name,
                                input_semantic_index,
                                interpMode,
                                /* outputs */
                                fs_num_outputs,
                                outputMapping,
                                fs_output_semantic_name,
                                fs_output_semantic_index, FALSE,
                                key->clamp_color);

   variant->tgsi.tokens = ureg_get_tokens( ureg, NULL );
   ureg_destroy( ureg );

   if (ST_DEBUG & DEBUG_TGSI) {
      tgsi_dump(variant->tgsi.tokens, 0/*TGSI_DUMP_VERBOSE*/);
      debug_printf("\n");
   }

   /* fill in variant */
   variant->driver_shader = pipe->create_fs_state(pipe, &variant->tgsi);
   variant->key = *key;

   if (deleteFP) {
      /* Free the temporary program made above */
      struct gl_fragment_program *fp = &stfp->Base;
      _mesa_reference_fragprog(st->ctx, &fp, NULL);
   }

   return variant;
}
Beispiel #7
0
/**
 * Translate a vertex program to create a new variant.
 */
static struct st_vp_variant *
st_translate_vertex_program(struct st_context *st,
                            struct st_vertex_program *stvp,
                            const struct st_vp_variant_key *key)
{
   struct st_vp_variant *vpv = CALLOC_STRUCT(st_vp_variant);
   struct pipe_context *pipe = st->pipe;
   struct ureg_program *ureg;
   enum pipe_error error;
   unsigned num_outputs;

   st_prepare_vertex_program(st->ctx, stvp);

   if (!stvp->glsl_to_tgsi)
   {
      _mesa_remove_output_reads(&stvp->Base.Base, PROGRAM_OUTPUT);
   }

   ureg = ureg_create( TGSI_PROCESSOR_VERTEX );
   if (ureg == NULL) {
      free(vpv);
      return NULL;
   }

   vpv->key = *key;

   vpv->num_inputs = stvp->num_inputs;
   num_outputs = stvp->num_outputs;
   if (key->passthrough_edgeflags) {
      vpv->num_inputs++;
      num_outputs++;
   }

   if (ST_DEBUG & DEBUG_MESA) {
      _mesa_print_program(&stvp->Base.Base);
      _mesa_print_program_parameters(st->ctx, &stvp->Base.Base);
      debug_printf("\n");
   }

   if (stvp->glsl_to_tgsi)
      error = st_translate_program(st->ctx,
                                   TGSI_PROCESSOR_VERTEX,
                                   ureg,
                                   stvp->glsl_to_tgsi,
                                   &stvp->Base.Base,
                                   /* inputs */
                                   vpv->num_inputs,
                                   stvp->input_to_index,
                                   NULL, /* input semantic name */
                                   NULL, /* input semantic index */
                                   NULL, /* interp mode */
                                   NULL, /* interp location */
                                   /* outputs */
                                   num_outputs,
                                   stvp->result_to_output,
                                   stvp->output_semantic_name,
                                   stvp->output_semantic_index,
                                   key->passthrough_edgeflags,
                                   key->clamp_color);
   else
      error = st_translate_mesa_program(st->ctx,
                                        TGSI_PROCESSOR_VERTEX,
                                        ureg,
                                        &stvp->Base.Base,
                                        /* inputs */
                                        vpv->num_inputs,
                                        stvp->input_to_index,
                                        NULL, /* input semantic name */
                                        NULL, /* input semantic index */
                                        NULL,
                                        /* outputs */
                                        num_outputs,
                                        stvp->result_to_output,
                                        stvp->output_semantic_name,
                                        stvp->output_semantic_index,
                                        key->passthrough_edgeflags,
                                        key->clamp_color);

   if (error)
      goto fail;

   vpv->tgsi.tokens = ureg_get_tokens( ureg, NULL );
   if (!vpv->tgsi.tokens)
      goto fail;

   ureg_destroy( ureg );

   if (stvp->glsl_to_tgsi) {
      st_translate_stream_output_info(stvp->glsl_to_tgsi,
                                      stvp->result_to_output,
                                      &vpv->tgsi.stream_output);
   }

   if (ST_DEBUG & DEBUG_TGSI) {
      tgsi_dump(vpv->tgsi.tokens, 0);
      debug_printf("\n");
   }

   vpv->driver_shader = pipe->create_vs_state(pipe, &vpv->tgsi);
   return vpv;

fail:
   debug_printf("%s: failed to translate Mesa program:\n", __func__);
   _mesa_print_program(&stvp->Base.Base);
   debug_assert(0);

   ureg_destroy( ureg );
   return NULL;
}
Beispiel #8
0
/* Create a compute shader implementing clear_buffer or copy_buffer. */
void *si_create_dma_compute_shader(struct pipe_context *ctx,
				   unsigned num_dwords_per_thread,
				   bool dst_stream_cache_policy, bool is_copy)
{
	assert(util_is_power_of_two_nonzero(num_dwords_per_thread));

	unsigned store_qualifier = TGSI_MEMORY_COHERENT | TGSI_MEMORY_RESTRICT;
	if (dst_stream_cache_policy)
		store_qualifier |= TGSI_MEMORY_STREAM_CACHE_POLICY;

	/* Don't cache loads, because there is no reuse. */
	unsigned load_qualifier = store_qualifier | TGSI_MEMORY_STREAM_CACHE_POLICY;

	unsigned num_mem_ops = MAX2(1, num_dwords_per_thread / 4);
	unsigned *inst_dwords = alloca(num_mem_ops * sizeof(unsigned));

	for (unsigned i = 0; i < num_mem_ops; i++) {
		if (i*4 < num_dwords_per_thread)
			inst_dwords[i] = MIN2(4, num_dwords_per_thread - i*4);
	}

	struct ureg_program *ureg = ureg_create(PIPE_SHADER_COMPUTE);
	if (!ureg)
		return NULL;

	ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH, 64);
	ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT, 1);
	ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH, 1);

	struct ureg_src value;
	if (!is_copy) {
		ureg_property(ureg, TGSI_PROPERTY_CS_USER_DATA_DWORDS, inst_dwords[0]);
		value = ureg_DECL_system_value(ureg, TGSI_SEMANTIC_CS_USER_DATA, 0);
	}

	struct ureg_src tid = ureg_DECL_system_value(ureg, TGSI_SEMANTIC_THREAD_ID, 0);
	struct ureg_src blk = ureg_DECL_system_value(ureg, TGSI_SEMANTIC_BLOCK_ID, 0);
	struct ureg_dst store_addr = ureg_writemask(ureg_DECL_temporary(ureg), TGSI_WRITEMASK_X);
	struct ureg_dst load_addr = ureg_writemask(ureg_DECL_temporary(ureg), TGSI_WRITEMASK_X);
	struct ureg_dst dstbuf = ureg_dst(ureg_DECL_buffer(ureg, 0, false));
	struct ureg_src srcbuf;
	struct ureg_src *values = NULL;

	if (is_copy) {
		srcbuf = ureg_DECL_buffer(ureg, 1, false);
		values = malloc(num_mem_ops * sizeof(struct ureg_src));
	}

	/* If there are multiple stores, the first store writes into 0+tid,
	 * the 2nd store writes into 64+tid, the 3rd store writes into 128+tid, etc.
	 */
	ureg_UMAD(ureg, store_addr, blk, ureg_imm1u(ureg, 64 * num_mem_ops), tid);
	/* Convert from a "store size unit" into bytes. */
	ureg_UMUL(ureg, store_addr, ureg_src(store_addr),
		  ureg_imm1u(ureg, 4 * inst_dwords[0]));
	ureg_MOV(ureg, load_addr, ureg_src(store_addr));

	/* Distance between a load and a store for latency hiding. */
	unsigned load_store_distance = is_copy ? 8 : 0;

	for (unsigned i = 0; i < num_mem_ops + load_store_distance; i++) {
		int d = i - load_store_distance;

		if (is_copy && i < num_mem_ops) {
			if (i) {
				ureg_UADD(ureg, load_addr, ureg_src(load_addr),
					  ureg_imm1u(ureg, 4 * inst_dwords[i] * 64));
			}

			values[i] = ureg_src(ureg_DECL_temporary(ureg));
			struct ureg_dst dst =
				ureg_writemask(ureg_dst(values[i]),
					       u_bit_consecutive(0, inst_dwords[i]));
			struct ureg_src srcs[] = {srcbuf, ureg_src(load_addr)};
			ureg_memory_insn(ureg, TGSI_OPCODE_LOAD, &dst, 1, srcs, 2,
					 load_qualifier, TGSI_TEXTURE_BUFFER, 0);
		}

		if (d >= 0) {
			if (d) {
				ureg_UADD(ureg, store_addr, ureg_src(store_addr),
					  ureg_imm1u(ureg, 4 * inst_dwords[d] * 64));
			}

			struct ureg_dst dst =
				ureg_writemask(dstbuf, u_bit_consecutive(0, inst_dwords[d]));
			struct ureg_src srcs[] =
				{ureg_src(store_addr), is_copy ? values[d] : value};
			ureg_memory_insn(ureg, TGSI_OPCODE_STORE, &dst, 1, srcs, 2,
					 store_qualifier, TGSI_TEXTURE_BUFFER, 0);
		}
	}
	ureg_END(ureg);

	struct pipe_compute_state state = {};
	state.ir_type = PIPE_SHADER_IR_TGSI;
	state.prog = ureg_get_tokens(ureg, NULL);

	void *cs = ctx->create_compute_state(ctx, &state);
	ureg_destroy(ureg);
	free(values);
	return cs;
}
Beispiel #9
0
/**
 * Translate a geometry program to create a new variant.
 */
static struct st_gp_variant *
st_translate_geometry_program(struct st_context *st,
                              struct st_geometry_program *stgp,
                              const struct st_gp_variant_key *key)
{
   GLuint inputMapping[GEOM_ATTRIB_MAX];
   GLuint outputMapping[GEOM_RESULT_MAX];
   struct pipe_context *pipe = st->pipe;
   enum pipe_error error;
   GLuint attr;
   const GLbitfield inputsRead = stgp->Base.Base.InputsRead;
   GLuint vslot = 0;
   GLuint num_generic = 0;

   uint gs_num_inputs = 0;
   uint gs_builtin_inputs = 0;
   uint gs_array_offset = 0;

   ubyte gs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
   ubyte gs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
   uint gs_num_outputs = 0;

   GLint i;
   GLuint maxSlot = 0;
   struct ureg_program *ureg;

   struct st_gp_variant *gpv;

   gpv = CALLOC_STRUCT(st_gp_variant);
   if (!gpv)
      return NULL;

   _mesa_remove_output_reads(&stgp->Base.Base, PROGRAM_OUTPUT);
   _mesa_remove_output_reads(&stgp->Base.Base, PROGRAM_VARYING);

   ureg = ureg_create( TGSI_PROCESSOR_GEOMETRY );
   if (ureg == NULL) {
      FREE(gpv);
      return NULL;
   }

   /* which vertex output goes to the first geometry input */
   vslot = 0;

   memset(inputMapping, 0, sizeof(inputMapping));
   memset(outputMapping, 0, sizeof(outputMapping));

   /*
    * Convert Mesa program inputs to TGSI input register semantics.
    */
   for (attr = 0; attr < GEOM_ATTRIB_MAX; attr++) {
      if (inputsRead & (1 << attr)) {
         const GLuint slot = gs_num_inputs;

         gs_num_inputs++;

         inputMapping[attr] = slot;

         stgp->input_map[slot + gs_array_offset] = vslot - gs_builtin_inputs;
         stgp->input_to_index[attr] = vslot;
         stgp->index_to_input[vslot] = attr;
         ++vslot;

         if (attr != GEOM_ATTRIB_PRIMITIVE_ID) {
            gs_array_offset += 2;
         } else
            ++gs_builtin_inputs;

#if 0
         debug_printf("input map at %d = %d\n",
                      slot + gs_array_offset, stgp->input_map[slot + gs_array_offset]);
#endif

         switch (attr) {
         case GEOM_ATTRIB_PRIMITIVE_ID:
            stgp->input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
            stgp->input_semantic_index[slot] = 0;
            break;
         case GEOM_ATTRIB_POSITION:
            stgp->input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
            stgp->input_semantic_index[slot] = 0;
            break;
         case GEOM_ATTRIB_COLOR0:
            stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            stgp->input_semantic_index[slot] = 0;
            break;
         case GEOM_ATTRIB_COLOR1:
            stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            stgp->input_semantic_index[slot] = 1;
            break;
         case GEOM_ATTRIB_FOG_FRAG_COORD:
            stgp->input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
            stgp->input_semantic_index[slot] = 0;
            break;
         case GEOM_ATTRIB_TEX_COORD:
            stgp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
            stgp->input_semantic_index[slot] = num_generic++;
            break;
         case GEOM_ATTRIB_VAR0:
            /* fall-through */
         default:
            stgp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
            stgp->input_semantic_index[slot] = num_generic++;
         }
      }
   }

   /* initialize output semantics to defaults */
   for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
      gs_output_semantic_name[i] = TGSI_SEMANTIC_GENERIC;
      gs_output_semantic_index[i] = 0;
   }

   num_generic = 0;
   /*
    * Determine number of outputs, the (default) output register
    * mapping and the semantic information for each output.
    */
   for (attr = 0; attr < GEOM_RESULT_MAX; attr++) {
      if (stgp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) {
         GLuint slot;

         slot = gs_num_outputs;
         gs_num_outputs++;
         outputMapping[attr] = slot;

         switch (attr) {
         case GEOM_RESULT_POS:
            assert(slot == 0);
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
            gs_output_semantic_index[slot] = 0;
            break;
         case GEOM_RESULT_COL0:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            gs_output_semantic_index[slot] = 0;
            break;
         case GEOM_RESULT_COL1:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            gs_output_semantic_index[slot] = 1;
            break;
         case GEOM_RESULT_SCOL0:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
            gs_output_semantic_index[slot] = 0;
            break;
         case GEOM_RESULT_SCOL1:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
            gs_output_semantic_index[slot] = 1;
            break;
         case GEOM_RESULT_FOGC:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
            gs_output_semantic_index[slot] = 0;
            break;
         case GEOM_RESULT_PSIZ:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
            gs_output_semantic_index[slot] = 0;
            break;
         case GEOM_RESULT_TEX0:
         case GEOM_RESULT_TEX1:
         case GEOM_RESULT_TEX2:
         case GEOM_RESULT_TEX3:
         case GEOM_RESULT_TEX4:
         case GEOM_RESULT_TEX5:
         case GEOM_RESULT_TEX6:
         case GEOM_RESULT_TEX7:
            /* fall-through */
         case GEOM_RESULT_VAR0:
            /* fall-through */
         default:
            assert(slot < Elements(gs_output_semantic_name));
            /* use default semantic info */
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
            gs_output_semantic_index[slot] = num_generic++;
         }
      }
   }

   assert(gs_output_semantic_name[0] == TGSI_SEMANTIC_POSITION);

   /* find max output slot referenced to compute gs_num_outputs */
   for (attr = 0; attr < GEOM_RESULT_MAX; attr++) {
      if (outputMapping[attr] != ~0 && outputMapping[attr] > maxSlot)
         maxSlot = outputMapping[attr];
   }
   gs_num_outputs = maxSlot + 1;

#if 0 /* debug */
   {
      GLuint i;
      printf("outputMapping? %d\n", outputMapping ? 1 : 0);
      if (outputMapping) {
         printf("attr -> slot\n");
         for (i = 0; i < 16;  i++) {
            printf(" %2d       %3d\n", i, outputMapping[i]);
         }
      }
      printf("slot    sem_name  sem_index\n");
      for (i = 0; i < gs_num_outputs; i++) {
         printf(" %2d         %d         %d\n",
                i,
                gs_output_semantic_name[i],
                gs_output_semantic_index[i]);
      }
   }
#endif

   /* free old shader state, if any */
   if (stgp->tgsi.tokens) {
      st_free_tokens(stgp->tgsi.tokens);
      stgp->tgsi.tokens = NULL;
   }

   ureg_property_gs_input_prim(ureg, stgp->Base.InputType);
   ureg_property_gs_output_prim(ureg, stgp->Base.OutputType);
   ureg_property_gs_max_vertices(ureg, stgp->Base.VerticesOut);

   error = st_translate_mesa_program(st->ctx,
                                     TGSI_PROCESSOR_GEOMETRY,
                                     ureg,
                                     &stgp->Base.Base,
                                     /* inputs */
                                     gs_num_inputs,
                                     inputMapping,
                                     stgp->input_semantic_name,
                                     stgp->input_semantic_index,
                                     NULL,
                                     /* outputs */
                                     gs_num_outputs,
                                     outputMapping,
                                     gs_output_semantic_name,
                                     gs_output_semantic_index,
                                     FALSE);

   stgp->num_inputs = gs_num_inputs;
   stgp->tgsi.tokens = ureg_get_tokens( ureg, NULL );
   ureg_destroy( ureg );

   /* fill in new variant */
   gpv->driver_shader = pipe->create_gs_state(pipe, &stgp->tgsi);
   gpv->key = *key;

   if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) {
      _mesa_print_program(&stgp->Base.Base);
      debug_printf("\n");
   }

   if (ST_DEBUG & DEBUG_TGSI) {
      tgsi_dump(stgp->tgsi.tokens, 0);
      debug_printf("\n");
   }

   return gpv;
}
Beispiel #10
0
/**
 * Translate a Mesa fragment shader into a TGSI shader using extra info in
 * the key.
 * \return  new fragment program variant
 */
static struct st_fp_variant *
st_translate_fragment_program(struct st_context *st,
                              struct st_fragment_program *stfp,
                              const struct st_fp_variant_key *key)
{
   struct pipe_context *pipe = st->pipe;
   struct st_fp_variant *variant = CALLOC_STRUCT(st_fp_variant);
   GLboolean deleteFP = GL_FALSE;

   if (!variant)
      return NULL;

   assert(!(key->bitmap && key->drawpixels));

#if FEATURE_drawpix
   if (key->bitmap) {
      /* glBitmap drawing */
      struct gl_fragment_program *fp; /* we free this temp program below */

      st_make_bitmap_fragment_program(st, &stfp->Base,
                                      &fp, &variant->bitmap_sampler);

      variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
      stfp = st_fragment_program(fp);
      deleteFP = GL_TRUE;
   }
   else if (key->drawpixels) {
      /* glDrawPixels drawing */
      struct gl_fragment_program *fp; /* we free this temp program below */

      if (key->drawpixels_z || key->drawpixels_stencil) {
         fp = st_make_drawpix_z_stencil_program(st, key->drawpixels_z,
                                                key->drawpixels_stencil);
      }
      else {
         /* RGBA */
         st_make_drawpix_fragment_program(st, &stfp->Base, &fp);
         variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
         deleteFP = GL_TRUE;
      }
      stfp = st_fragment_program(fp);
   }
#endif

   if (!stfp->tgsi.tokens) {
      /* need to translate Mesa instructions to TGSI now */
      GLuint outputMapping[FRAG_RESULT_MAX];
      GLuint inputMapping[FRAG_ATTRIB_MAX];
      GLuint interpMode[PIPE_MAX_SHADER_INPUTS];  /* XXX size? */
      GLuint attr;
      enum pipe_error error;
      const GLbitfield inputsRead = stfp->Base.Base.InputsRead;
      struct ureg_program *ureg;
      GLboolean write_all = GL_FALSE;

      ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
      ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];
      uint fs_num_inputs = 0;

      ubyte fs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
      ubyte fs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
      uint fs_num_outputs = 0;


      _mesa_remove_output_reads(&stfp->Base.Base, PROGRAM_OUTPUT);

      /*
       * Convert Mesa program inputs to TGSI input register semantics.
       */
      for (attr = 0; attr < FRAG_ATTRIB_MAX; attr++) {
         if (inputsRead & (1 << attr)) {
            const GLuint slot = fs_num_inputs++;

            inputMapping[attr] = slot;

            switch (attr) {
            case FRAG_ATTRIB_WPOS:
               input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
               input_semantic_index[slot] = 0;
               interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
               break;
            case FRAG_ATTRIB_COL0:
               input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
               input_semantic_index[slot] = 0;
               interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
               break;
            case FRAG_ATTRIB_COL1:
               input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
               input_semantic_index[slot] = 1;
               interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
               break;
            case FRAG_ATTRIB_FOGC:
               input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
               input_semantic_index[slot] = 0;
               interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
               break;
            case FRAG_ATTRIB_FACE:
               input_semantic_name[slot] = TGSI_SEMANTIC_FACE;
               input_semantic_index[slot] = 0;
               interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
               break;
               /* In most cases, there is nothing special about these
                * inputs, so adopt a convention to use the generic
                * semantic name and the mesa FRAG_ATTRIB_ number as the
                * index. 
                * 
                * All that is required is that the vertex shader labels
                * its own outputs similarly, and that the vertex shader
                * generates at least every output required by the
                * fragment shader plus fixed-function hardware (such as
                * BFC).
                * 
                * There is no requirement that semantic indexes start at
                * zero or be restricted to a particular range -- nobody
                * should be building tables based on semantic index.
                */
            case FRAG_ATTRIB_PNTC:
            case FRAG_ATTRIB_TEX0:
            case FRAG_ATTRIB_TEX1:
            case FRAG_ATTRIB_TEX2:
            case FRAG_ATTRIB_TEX3:
            case FRAG_ATTRIB_TEX4:
            case FRAG_ATTRIB_TEX5:
            case FRAG_ATTRIB_TEX6:
            case FRAG_ATTRIB_TEX7:
            case FRAG_ATTRIB_VAR0:
            default:
               /* Actually, let's try and zero-base this just for
                * readability of the generated TGSI.
                */
               assert(attr >= FRAG_ATTRIB_TEX0);
               input_semantic_index[slot] = (attr - FRAG_ATTRIB_TEX0);
               input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
               if (attr == FRAG_ATTRIB_PNTC)
                  interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
               else
                  interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
               break;
            }
         }
         else {
            inputMapping[attr] = -1;
         }
      }

      /*
       * Semantics and mapping for outputs
       */
      {
         uint numColors = 0;
         GLbitfield64 outputsWritten = stfp->Base.Base.OutputsWritten;

         /* if z is written, emit that first */
         if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
            fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_POSITION;
            fs_output_semantic_index[fs_num_outputs] = 0;
            outputMapping[FRAG_RESULT_DEPTH] = fs_num_outputs;
            fs_num_outputs++;
            outputsWritten &= ~(1 << FRAG_RESULT_DEPTH);
         }

         if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
            fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_STENCIL;
            fs_output_semantic_index[fs_num_outputs] = 0;
            outputMapping[FRAG_RESULT_STENCIL] = fs_num_outputs;
            fs_num_outputs++;
            outputsWritten &= ~(1 << FRAG_RESULT_STENCIL);
         }

         /* handle remaning outputs (color) */
         for (attr = 0; attr < FRAG_RESULT_MAX; attr++) {
            if (outputsWritten & BITFIELD64_BIT(attr)) {
               switch (attr) {
               case FRAG_RESULT_DEPTH:
               case FRAG_RESULT_STENCIL:
                  /* handled above */
                  assert(0);
                  break;
               case FRAG_RESULT_COLOR:
                  write_all = GL_TRUE; /* fallthrough */
               default:
                  assert(attr == FRAG_RESULT_COLOR ||
                         (FRAG_RESULT_DATA0 <= attr && attr < FRAG_RESULT_MAX));
                  fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_COLOR;
                  fs_output_semantic_index[fs_num_outputs] = numColors;
                  outputMapping[attr] = fs_num_outputs;
                  numColors++;
                  break;
               }

               fs_num_outputs++;
            }
         }
      }

      ureg = ureg_create( TGSI_PROCESSOR_FRAGMENT );
      if (ureg == NULL)
         return NULL;

      if (ST_DEBUG & DEBUG_MESA) {
         _mesa_print_program(&stfp->Base.Base);
         _mesa_print_program_parameters(st->ctx, &stfp->Base.Base);
         debug_printf("\n");
      }
      if (write_all == GL_TRUE)
         ureg_property_fs_color0_writes_all_cbufs(ureg, 1);

      error = st_translate_mesa_program(st->ctx,
                                        TGSI_PROCESSOR_FRAGMENT,
                                        ureg,
                                        &stfp->Base.Base,
                                        /* inputs */
                                        fs_num_inputs,
                                        inputMapping,
                                        input_semantic_name,
                                        input_semantic_index,
                                        interpMode,
                                        /* outputs */
                                        fs_num_outputs,
                                        outputMapping,
                                        fs_output_semantic_name,
                                        fs_output_semantic_index, FALSE );

      stfp->tgsi.tokens = ureg_get_tokens( ureg, NULL );
      ureg_destroy( ureg );
   }

   /* fill in variant */
   variant->driver_shader = pipe->create_fs_state(pipe, &stfp->tgsi);
   variant->key = *key;

   if (ST_DEBUG & DEBUG_TGSI) {
      tgsi_dump( stfp->tgsi.tokens, 0/*TGSI_DUMP_VERBOSE*/ );
      debug_printf("\n");
   }

   if (deleteFP) {
      /* Free the temporary program made above */
      struct gl_fragment_program *fp = &stfp->Base;
      _mesa_reference_fragprog(st->ctx, &fp, NULL);
   }

   return variant;
}
Beispiel #11
0
/**
 * The current vertex shader is already executed by the 'draw'
 * module, so we just need to generate a simple vertex shader
 * to pass through all those VS outputs that will
 * be consumed by the fragment shader.
 * Used when we employ the 'draw' module.
 */
static enum pipe_error
compile_passthrough_vs(struct svga_context *svga,
                       struct svga_vertex_shader *vs,
                       struct svga_fragment_shader *fs,
                       struct svga_shader_variant **out_variant)
{
   struct svga_shader_variant *variant = NULL;
   unsigned num_inputs;
   unsigned i;
   unsigned num_elements;
   struct svga_vertex_shader new_vs;
   struct ureg_src src[PIPE_MAX_SHADER_INPUTS];
   struct ureg_dst dst[PIPE_MAX_SHADER_OUTPUTS];
   struct ureg_program *ureg;
   unsigned num_tokens;
   struct svga_compile_key key;
   enum pipe_error ret;

   assert(svga_have_vgpu10(svga));
   assert(fs);

   num_inputs = fs->base.info.num_inputs;

   ureg = ureg_create(TGSI_PROCESSOR_VERTEX);
   if (!ureg)
      return PIPE_ERROR_OUT_OF_MEMORY;

   /* draw will always add position */
   dst[0] = ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0);
   src[0] = ureg_DECL_vs_input(ureg, 0);
   num_elements = 1;

   /**
    * swtnl backend redefines the input layout based on the
    * fragment shader's inputs. So we only need to passthrough
    * those inputs that will be consumed by the fragment shader.
    * Note: DX10 requires the number of vertex elements
    * specified in the input layout to be no less than the
    * number of inputs to the vertex shader.
    */
   for (i = 0; i < num_inputs; i++) {
      switch (fs->base.info.input_semantic_name[i]) {
      case TGSI_SEMANTIC_COLOR:
      case TGSI_SEMANTIC_GENERIC:
      case TGSI_SEMANTIC_FOG:
         dst[num_elements] = ureg_DECL_output(ureg,
                                fs->base.info.input_semantic_name[i],
                                fs->base.info.input_semantic_index[i]);
         src[num_elements] = ureg_DECL_vs_input(ureg, num_elements);
         num_elements++;
         break;
      default:
         break;
      }
   }

   for (i = 0; i < num_elements; i++) {
      ureg_MOV(ureg, dst[i], src[i]);
   }

   ureg_END(ureg);

   memset(&new_vs, 0, sizeof(new_vs));
   new_vs.base.tokens = ureg_get_tokens(ureg, &num_tokens);
   tgsi_scan_shader(new_vs.base.tokens, &new_vs.base.info);

   memset(&key, 0, sizeof(key));
   key.vs.undo_viewport = 1;

   ret = compile_vs(svga, &new_vs, &key, &variant);
   if (ret != PIPE_OK)
      return ret;

   ureg_free_tokens(new_vs.base.tokens);
   ureg_destroy(ureg);

   /* Overwrite the variant key to indicate it's a pass-through VS */
   memset(&variant->key, 0, sizeof(variant->key));
   variant->key.vs.passthrough = 1;
   variant->key.vs.undo_viewport = 1;

   *out_variant = variant;

   return PIPE_OK;
}
static void *
combine_shaders(const struct shader_asm_info *shaders[SHADER_STAGES], int num_shaders,
                struct pipe_context *pipe,
                struct pipe_shader_state *shader)
{
   VGboolean declare_input = VG_FALSE;
   VGint start_const   = -1, end_const   = 0;
   VGint start_temp    = -1, end_temp    = 0;
   VGint start_sampler = -1, end_sampler = 0;
   VGint i, current_shader = 0;
   VGint num_consts, num_temps, num_samplers;
   struct ureg_program *ureg;
   struct ureg_src in[2];
   struct ureg_src *sampler = NULL;
   struct ureg_src *constant = NULL;
   struct ureg_dst out, *temp = NULL;
   void *p = NULL;

   for (i = 0; i < num_shaders; ++i) {
      if (shaders[i]->num_consts)
         start_const = range_min(start_const, shaders[i]->start_const);
      if (shaders[i]->num_temps)
         start_temp = range_min(start_temp, shaders[i]->start_temp);
      if (shaders[i]->num_samplers)
         start_sampler = range_min(start_sampler, shaders[i]->start_sampler);

      end_const = range_max(end_const, shaders[i]->start_const +
                            shaders[i]->num_consts);
      end_temp = range_max(end_temp, shaders[i]->start_temp +
                            shaders[i]->num_temps);
      end_sampler = range_max(end_sampler, shaders[i]->start_sampler +
                            shaders[i]->num_samplers);
      if (shaders[i]->needs_position)
         declare_input = VG_TRUE;
   }
   /* if they're still unitialized, initialize them */
   if (start_const < 0)
      start_const = 0;
   if (start_temp < 0)
      start_temp = 0;
   if (start_sampler < 0)
       start_sampler = 0;

   num_consts   = end_const   - start_const;
   num_temps    = end_temp    - start_temp;
   num_samplers = end_sampler - start_sampler;

   ureg = ureg_create(TGSI_PROCESSOR_FRAGMENT);
   if (!ureg)
       return NULL;

   if (declare_input) {
      in[0] = ureg_DECL_fs_input(ureg,
                                 TGSI_SEMANTIC_POSITION,
                                 0,
                                 TGSI_INTERPOLATE_LINEAR);
      in[1] = ureg_DECL_fs_input(ureg,
                                 TGSI_SEMANTIC_GENERIC,
                                 0,
                                 TGSI_INTERPOLATE_PERSPECTIVE);
   }

   /* we always have a color output */
   out = ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 0);

   if (num_consts >= 1) {
      constant = (struct ureg_src *) malloc(sizeof(struct ureg_src) * end_const);
      for (i = start_const; i < end_const; i++) {
         constant[i] = ureg_DECL_constant(ureg, i);
      }

   }

   if (num_temps >= 1) {
      temp = (struct ureg_dst *) malloc(sizeof(struct ureg_dst) * end_temp);
      for (i = start_temp; i < end_temp; i++) {
         temp[i] = ureg_DECL_temporary(ureg);
      }
   }

   if (num_samplers >= 1) {
      sampler = (struct ureg_src *) malloc(sizeof(struct ureg_src) * end_sampler);
      for (i = start_sampler; i < end_sampler; i++) {
         sampler[i] = ureg_DECL_sampler(ureg, i);
      }
   }

   while (current_shader < num_shaders) {
      if ((current_shader + 1) == num_shaders) {
         shaders[current_shader]->func(ureg,
                                       &out,
                                       in,
                                       sampler,
                                       temp,
                                       constant);
      } else {
         shaders[current_shader]->func(ureg,
                                      &temp[0],
                                      in,
                                      sampler,
                                      temp,
                                      constant);
      }
      current_shader++;
   }

   ureg_END(ureg);

   shader->tokens = ureg_finalize(ureg);
   if(!shader->tokens)
      return NULL;

   p = pipe->create_fs_state(pipe, shader);
   ureg_destroy(ureg);

   if (num_temps >= 1) {
      for (i = start_temp; i < end_temp; i++) {
         ureg_release_temporary(ureg, temp[i]);
      }
   }

   if (temp)
      free(temp);
   if (constant)
      free(constant);
   if (sampler)
      free(sampler);

   return p;
}