/** * If we fail to compile a fragment shader (because it uses too many * registers, for example) we'll use a dummy/fallback shader that * simply emits a constant color (red for debug, black for release). * We hit this with the Unigine/Heaven demo when Shaders = High. * With black, the demo still looks good. */ static const struct tgsi_token * get_dummy_fragment_shader(void) { #ifdef DEBUG static const float color[4] = { 1.0, 0.0, 0.0, 0.0 }; /* red */ #else static const float color[4] = { 0.0, 0.0, 0.0, 0.0 }; /* black */ #endif struct ureg_program *ureg; const struct tgsi_token *tokens; struct ureg_src src; struct ureg_dst dst; unsigned num_tokens; ureg = ureg_create(TGSI_PROCESSOR_FRAGMENT); if (!ureg) return NULL; dst = ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 0); src = ureg_DECL_immediate(ureg, color, 4); ureg_MOV(ureg, dst, src); ureg_END(ureg); tokens = ureg_get_tokens(ureg, &num_tokens); ureg_destroy(ureg); return tokens; }
/** * If we fail to compile a vertex shader we'll use a dummy/fallback shader * that simply emits a (0,0,0,1) vertex position. */ static const struct tgsi_token * get_dummy_vertex_shader(void) { static const float zero[4] = { 0.0, 0.0, 0.0, 1.0 }; struct ureg_program *ureg; const struct tgsi_token *tokens; struct ureg_src src; struct ureg_dst dst; unsigned num_tokens; ureg = ureg_create(TGSI_PROCESSOR_VERTEX); if (!ureg) return NULL; dst = ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0); src = ureg_DECL_immediate(ureg, zero, 4); ureg_MOV(ureg, dst, src); ureg_END(ureg); tokens = ureg_get_tokens(ureg, &num_tokens); ureg_destroy(ureg); return tokens; }
static void r300_dummy_vertex_shader( struct r300_context* r300, struct r300_vertex_shader* shader) { struct ureg_program *ureg; struct ureg_dst dst; struct ureg_src imm; /* Make a simple vertex shader which outputs (0, 0, 0, 1), * effectively rendering nothing. */ ureg = ureg_create(TGSI_PROCESSOR_VERTEX); dst = ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0); imm = ureg_imm4f(ureg, 0, 0, 0, 1); ureg_MOV(ureg, dst, imm); ureg_END(ureg); shader->state.tokens = tgsi_dup_tokens(ureg_finalize(ureg)); ureg_destroy(ureg); shader->dummy = TRUE; r300_init_vs_outputs(r300, shader); r300_translate_vertex_shader(r300, shader); }
static void r300_dummy_fragment_shader( struct r300_context* r300, struct r300_fragment_shader_code* shader) { struct pipe_shader_state state; struct ureg_program *ureg; struct ureg_dst out; struct ureg_src imm; /* Make a simple fragment shader which outputs (0, 0, 0, 1) */ ureg = ureg_create(TGSI_PROCESSOR_FRAGMENT); out = ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 0); imm = ureg_imm4f(ureg, 0, 0, 0, 1); ureg_MOV(ureg, out, imm); ureg_END(ureg); state.tokens = ureg_finalize(ureg); shader->dummy = TRUE; r300_translate_fragment_shader(r300, shader, state.tokens); ureg_destroy(ureg); }
/** * Translate a geometry program to create a new variant. */ static struct st_gp_variant * st_translate_geometry_program(struct st_context *st, struct st_geometry_program *stgp, const struct st_gp_variant_key *key) { GLuint inputMapping[VARYING_SLOT_MAX]; GLuint outputMapping[VARYING_SLOT_MAX]; struct pipe_context *pipe = st->pipe; GLuint attr; uint gs_num_inputs = 0; ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS]; ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS]; ubyte gs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS]; ubyte gs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS]; uint gs_num_outputs = 0; GLint i; struct ureg_program *ureg; struct pipe_shader_state state = {0}; struct st_gp_variant *gpv; gpv = CALLOC_STRUCT(st_gp_variant); if (!gpv) return NULL; ureg = ureg_create(TGSI_PROCESSOR_GEOMETRY); if (ureg == NULL) { free(gpv); return NULL; } memset(inputMapping, 0, sizeof(inputMapping)); memset(outputMapping, 0, sizeof(outputMapping)); /* * Convert Mesa program inputs to TGSI input register semantics. */ for (attr = 0; attr < VARYING_SLOT_MAX; attr++) { if ((stgp->Base.Base.InputsRead & BITFIELD64_BIT(attr)) != 0) { const GLuint slot = gs_num_inputs++; inputMapping[attr] = slot; switch (attr) { case VARYING_SLOT_PRIMITIVE_ID: input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID; input_semantic_index[slot] = 0; break; case VARYING_SLOT_POS: input_semantic_name[slot] = TGSI_SEMANTIC_POSITION; input_semantic_index[slot] = 0; break; case VARYING_SLOT_COL0: input_semantic_name[slot] = TGSI_SEMANTIC_COLOR; input_semantic_index[slot] = 0; break; case VARYING_SLOT_COL1: input_semantic_name[slot] = TGSI_SEMANTIC_COLOR; input_semantic_index[slot] = 1; break; case VARYING_SLOT_FOGC: input_semantic_name[slot] = TGSI_SEMANTIC_FOG; input_semantic_index[slot] = 0; break; case VARYING_SLOT_CLIP_VERTEX: input_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX; input_semantic_index[slot] = 0; break; case VARYING_SLOT_CLIP_DIST0: input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST; input_semantic_index[slot] = 0; break; case VARYING_SLOT_CLIP_DIST1: input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST; input_semantic_index[slot] = 1; break; case VARYING_SLOT_PSIZ: input_semantic_name[slot] = TGSI_SEMANTIC_PSIZE; input_semantic_index[slot] = 0; break; case VARYING_SLOT_TEX0: case VARYING_SLOT_TEX1: case VARYING_SLOT_TEX2: case VARYING_SLOT_TEX3: case VARYING_SLOT_TEX4: case VARYING_SLOT_TEX5: case VARYING_SLOT_TEX6: case VARYING_SLOT_TEX7: if (st->needs_texcoord_semantic) { input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD; input_semantic_index[slot] = attr - VARYING_SLOT_TEX0; break; } /* fall through */ case VARYING_SLOT_VAR0: default: assert(attr >= VARYING_SLOT_VAR0 && attr < VARYING_SLOT_MAX); input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC; input_semantic_index[slot] = st_get_generic_varying_index(st, attr); break; } } } /* initialize output semantics to defaults */ for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) { gs_output_semantic_name[i] = TGSI_SEMANTIC_GENERIC; gs_output_semantic_index[i] = 0; } /* * Determine number of outputs, the (default) output register * mapping and the semantic information for each output. */ for (attr = 0; attr < VARYING_SLOT_MAX; attr++) { if (stgp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) { GLuint slot = gs_num_outputs++; outputMapping[attr] = slot; switch (attr) { case VARYING_SLOT_POS: assert(slot == 0); gs_output_semantic_name[slot] = TGSI_SEMANTIC_POSITION; gs_output_semantic_index[slot] = 0; break; case VARYING_SLOT_COL0: gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR; gs_output_semantic_index[slot] = 0; break; case VARYING_SLOT_COL1: gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR; gs_output_semantic_index[slot] = 1; break; case VARYING_SLOT_BFC0: gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR; gs_output_semantic_index[slot] = 0; break; case VARYING_SLOT_BFC1: gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR; gs_output_semantic_index[slot] = 1; break; case VARYING_SLOT_FOGC: gs_output_semantic_name[slot] = TGSI_SEMANTIC_FOG; gs_output_semantic_index[slot] = 0; break; case VARYING_SLOT_PSIZ: gs_output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE; gs_output_semantic_index[slot] = 0; break; case VARYING_SLOT_CLIP_VERTEX: gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX; gs_output_semantic_index[slot] = 0; break; case VARYING_SLOT_CLIP_DIST0: gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST; gs_output_semantic_index[slot] = 0; break; case VARYING_SLOT_CLIP_DIST1: gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST; gs_output_semantic_index[slot] = 1; break; case VARYING_SLOT_LAYER: gs_output_semantic_name[slot] = TGSI_SEMANTIC_LAYER; gs_output_semantic_index[slot] = 0; break; case VARYING_SLOT_PRIMITIVE_ID: gs_output_semantic_name[slot] = TGSI_SEMANTIC_PRIMID; gs_output_semantic_index[slot] = 0; break; case VARYING_SLOT_VIEWPORT: gs_output_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX; gs_output_semantic_index[slot] = 0; break; case VARYING_SLOT_TEX0: case VARYING_SLOT_TEX1: case VARYING_SLOT_TEX2: case VARYING_SLOT_TEX3: case VARYING_SLOT_TEX4: case VARYING_SLOT_TEX5: case VARYING_SLOT_TEX6: case VARYING_SLOT_TEX7: if (st->needs_texcoord_semantic) { gs_output_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD; gs_output_semantic_index[slot] = attr - VARYING_SLOT_TEX0; break; } /* fall through */ case VARYING_SLOT_VAR0: default: assert(slot < ARRAY_SIZE(gs_output_semantic_name)); assert(attr >= VARYING_SLOT_VAR0); gs_output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC; gs_output_semantic_index[slot] = st_get_generic_varying_index(st, attr); break; } } } ureg_property(ureg, TGSI_PROPERTY_GS_INPUT_PRIM, stgp->Base.InputType); ureg_property(ureg, TGSI_PROPERTY_GS_OUTPUT_PRIM, stgp->Base.OutputType); ureg_property(ureg, TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES, stgp->Base.VerticesOut); ureg_property(ureg, TGSI_PROPERTY_GS_INVOCATIONS, stgp->Base.Invocations); st_translate_program(st->ctx, TGSI_PROCESSOR_GEOMETRY, ureg, stgp->glsl_to_tgsi, &stgp->Base.Base, /* inputs */ gs_num_inputs, inputMapping, input_semantic_name, input_semantic_index, NULL, NULL, /* outputs */ gs_num_outputs, outputMapping, gs_output_semantic_name, gs_output_semantic_index, FALSE, FALSE); state.tokens = ureg_get_tokens(ureg, NULL); ureg_destroy(ureg); st_translate_stream_output_info(stgp->glsl_to_tgsi, outputMapping, &state.stream_output); if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) { _mesa_print_program(&stgp->Base.Base); debug_printf("\n"); } if (ST_DEBUG & DEBUG_TGSI) { tgsi_dump(state.tokens, 0); debug_printf("\n"); } /* fill in new variant */ gpv->driver_shader = pipe->create_gs_state(pipe, &state); gpv->key = *key; ureg_free_tokens(state.tokens); return gpv; }
/** * Translate a Mesa fragment shader into a TGSI shader using extra info in * the key. * \return new fragment program variant */ static struct st_fp_variant * st_translate_fragment_program(struct st_context *st, struct st_fragment_program *stfp, const struct st_fp_variant_key *key) { struct pipe_context *pipe = st->pipe; struct st_fp_variant *variant = CALLOC_STRUCT(st_fp_variant); GLboolean deleteFP = GL_FALSE; GLuint outputMapping[FRAG_RESULT_MAX]; GLuint inputMapping[VARYING_SLOT_MAX]; GLuint interpMode[PIPE_MAX_SHADER_INPUTS]; /* XXX size? */ GLuint interpLocation[PIPE_MAX_SHADER_INPUTS]; GLuint attr; GLbitfield64 inputsRead; struct ureg_program *ureg; GLboolean write_all = GL_FALSE; ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS]; ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS]; uint fs_num_inputs = 0; ubyte fs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS]; ubyte fs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS]; uint fs_num_outputs = 0; if (!variant) return NULL; assert(!(key->bitmap && key->drawpixels)); if (key->bitmap) { /* glBitmap drawing */ struct gl_fragment_program *fp; /* we free this temp program below */ st_make_bitmap_fragment_program(st, &stfp->Base, &fp, &variant->bitmap_sampler); variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters); stfp = st_fragment_program(fp); deleteFP = GL_TRUE; } else if (key->drawpixels) { /* glDrawPixels drawing */ struct gl_fragment_program *fp; /* we free this temp program below */ if (key->drawpixels_z || key->drawpixels_stencil) { fp = st_make_drawpix_z_stencil_program(st, key->drawpixels_z, key->drawpixels_stencil); } else { /* RGBA */ st_make_drawpix_fragment_program(st, &stfp->Base, &fp); variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters); deleteFP = GL_TRUE; } stfp = st_fragment_program(fp); } if (!stfp->glsl_to_tgsi) _mesa_remove_output_reads(&stfp->Base.Base, PROGRAM_OUTPUT); /* * Convert Mesa program inputs to TGSI input register semantics. */ inputsRead = stfp->Base.Base.InputsRead; for (attr = 0; attr < VARYING_SLOT_MAX; attr++) { if ((inputsRead & BITFIELD64_BIT(attr)) != 0) { const GLuint slot = fs_num_inputs++; inputMapping[attr] = slot; if (stfp->Base.IsCentroid & BITFIELD64_BIT(attr)) interpLocation[slot] = TGSI_INTERPOLATE_LOC_CENTROID; else if (stfp->Base.IsSample & BITFIELD64_BIT(attr)) interpLocation[slot] = TGSI_INTERPOLATE_LOC_SAMPLE; else interpLocation[slot] = TGSI_INTERPOLATE_LOC_CENTER; if (key->persample_shading) interpLocation[slot] = TGSI_INTERPOLATE_LOC_SAMPLE; switch (attr) { case VARYING_SLOT_POS: input_semantic_name[slot] = TGSI_SEMANTIC_POSITION; input_semantic_index[slot] = 0; interpMode[slot] = TGSI_INTERPOLATE_LINEAR; break; case VARYING_SLOT_COL0: input_semantic_name[slot] = TGSI_SEMANTIC_COLOR; input_semantic_index[slot] = 0; interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr], TRUE); break; case VARYING_SLOT_COL1: input_semantic_name[slot] = TGSI_SEMANTIC_COLOR; input_semantic_index[slot] = 1; interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr], TRUE); break; case VARYING_SLOT_FOGC: input_semantic_name[slot] = TGSI_SEMANTIC_FOG; input_semantic_index[slot] = 0; interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE; break; case VARYING_SLOT_FACE: input_semantic_name[slot] = TGSI_SEMANTIC_FACE; input_semantic_index[slot] = 0; interpMode[slot] = TGSI_INTERPOLATE_CONSTANT; break; case VARYING_SLOT_PRIMITIVE_ID: input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID; input_semantic_index[slot] = 0; interpMode[slot] = TGSI_INTERPOLATE_CONSTANT; break; case VARYING_SLOT_LAYER: input_semantic_name[slot] = TGSI_SEMANTIC_LAYER; input_semantic_index[slot] = 0; interpMode[slot] = TGSI_INTERPOLATE_CONSTANT; break; case VARYING_SLOT_VIEWPORT: input_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX; input_semantic_index[slot] = 0; interpMode[slot] = TGSI_INTERPOLATE_CONSTANT; break; case VARYING_SLOT_CLIP_DIST0: input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST; input_semantic_index[slot] = 0; interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE; break; case VARYING_SLOT_CLIP_DIST1: input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST; input_semantic_index[slot] = 1; interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE; break; /* In most cases, there is nothing special about these * inputs, so adopt a convention to use the generic * semantic name and the mesa VARYING_SLOT_ number as the * index. * * All that is required is that the vertex shader labels * its own outputs similarly, and that the vertex shader * generates at least every output required by the * fragment shader plus fixed-function hardware (such as * BFC). * * However, some drivers may need us to identify the PNTC and TEXi * varyings if, for example, their capability to replace them with * sprite coordinates is limited. */ case VARYING_SLOT_PNTC: if (st->needs_texcoord_semantic) { input_semantic_name[slot] = TGSI_SEMANTIC_PCOORD; input_semantic_index[slot] = 0; interpMode[slot] = TGSI_INTERPOLATE_LINEAR; break; } /* fall through */ case VARYING_SLOT_TEX0: case VARYING_SLOT_TEX1: case VARYING_SLOT_TEX2: case VARYING_SLOT_TEX3: case VARYING_SLOT_TEX4: case VARYING_SLOT_TEX5: case VARYING_SLOT_TEX6: case VARYING_SLOT_TEX7: if (st->needs_texcoord_semantic) { input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD; input_semantic_index[slot] = attr - VARYING_SLOT_TEX0; interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr], FALSE); break; } /* fall through */ case VARYING_SLOT_VAR0: default: /* Semantic indices should be zero-based because drivers may choose * to assign a fixed slot determined by that index. * This is useful because ARB_separate_shader_objects uses location * qualifiers for linkage, and if the semantic index corresponds to * these locations, linkage passes in the driver become unecessary. * * If needs_texcoord_semantic is true, no semantic indices will be * consumed for the TEXi varyings, and we can base the locations of * the user varyings on VAR0. Otherwise, we use TEX0 as base index. */ assert(attr >= VARYING_SLOT_TEX0); input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC; input_semantic_index[slot] = st_get_generic_varying_index(st, attr); if (attr == VARYING_SLOT_PNTC) interpMode[slot] = TGSI_INTERPOLATE_LINEAR; else interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr], FALSE); break; } } else { inputMapping[attr] = -1; } } /* * Semantics and mapping for outputs */ { uint numColors = 0; GLbitfield64 outputsWritten = stfp->Base.Base.OutputsWritten; /* if z is written, emit that first */ if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) { fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_POSITION; fs_output_semantic_index[fs_num_outputs] = 0; outputMapping[FRAG_RESULT_DEPTH] = fs_num_outputs; fs_num_outputs++; outputsWritten &= ~(1 << FRAG_RESULT_DEPTH); } if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) { fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_STENCIL; fs_output_semantic_index[fs_num_outputs] = 0; outputMapping[FRAG_RESULT_STENCIL] = fs_num_outputs; fs_num_outputs++; outputsWritten &= ~(1 << FRAG_RESULT_STENCIL); } if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)) { fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_SAMPLEMASK; fs_output_semantic_index[fs_num_outputs] = 0; outputMapping[FRAG_RESULT_SAMPLE_MASK] = fs_num_outputs; fs_num_outputs++; outputsWritten &= ~(1 << FRAG_RESULT_SAMPLE_MASK); } /* handle remaining outputs (color) */ for (attr = 0; attr < FRAG_RESULT_MAX; attr++) { if (outputsWritten & BITFIELD64_BIT(attr)) { switch (attr) { case FRAG_RESULT_DEPTH: case FRAG_RESULT_STENCIL: case FRAG_RESULT_SAMPLE_MASK: /* handled above */ assert(0); break; case FRAG_RESULT_COLOR: write_all = GL_TRUE; /* fallthrough */ default: assert(attr == FRAG_RESULT_COLOR || (FRAG_RESULT_DATA0 <= attr && attr < FRAG_RESULT_MAX)); fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_COLOR; fs_output_semantic_index[fs_num_outputs] = numColors; outputMapping[attr] = fs_num_outputs; numColors++; break; } fs_num_outputs++; } } } ureg = ureg_create( TGSI_PROCESSOR_FRAGMENT ); if (ureg == NULL) { free(variant); return NULL; } if (ST_DEBUG & DEBUG_MESA) { _mesa_print_program(&stfp->Base.Base); _mesa_print_program_parameters(st->ctx, &stfp->Base.Base); debug_printf("\n"); } if (write_all == GL_TRUE) ureg_property(ureg, TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS, 1); if (stfp->Base.FragDepthLayout != FRAG_DEPTH_LAYOUT_NONE) { switch (stfp->Base.FragDepthLayout) { case FRAG_DEPTH_LAYOUT_ANY: ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT, TGSI_FS_DEPTH_LAYOUT_ANY); break; case FRAG_DEPTH_LAYOUT_GREATER: ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT, TGSI_FS_DEPTH_LAYOUT_GREATER); break; case FRAG_DEPTH_LAYOUT_LESS: ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT, TGSI_FS_DEPTH_LAYOUT_LESS); break; case FRAG_DEPTH_LAYOUT_UNCHANGED: ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT, TGSI_FS_DEPTH_LAYOUT_UNCHANGED); break; default: assert(0); } } if (stfp->glsl_to_tgsi) st_translate_program(st->ctx, TGSI_PROCESSOR_FRAGMENT, ureg, stfp->glsl_to_tgsi, &stfp->Base.Base, /* inputs */ fs_num_inputs, inputMapping, input_semantic_name, input_semantic_index, interpMode, interpLocation, /* outputs */ fs_num_outputs, outputMapping, fs_output_semantic_name, fs_output_semantic_index, FALSE, key->clamp_color ); else st_translate_mesa_program(st->ctx, TGSI_PROCESSOR_FRAGMENT, ureg, &stfp->Base.Base, /* inputs */ fs_num_inputs, inputMapping, input_semantic_name, input_semantic_index, interpMode, /* outputs */ fs_num_outputs, outputMapping, fs_output_semantic_name, fs_output_semantic_index, FALSE, key->clamp_color); variant->tgsi.tokens = ureg_get_tokens( ureg, NULL ); ureg_destroy( ureg ); if (ST_DEBUG & DEBUG_TGSI) { tgsi_dump(variant->tgsi.tokens, 0/*TGSI_DUMP_VERBOSE*/); debug_printf("\n"); } /* fill in variant */ variant->driver_shader = pipe->create_fs_state(pipe, &variant->tgsi); variant->key = *key; if (deleteFP) { /* Free the temporary program made above */ struct gl_fragment_program *fp = &stfp->Base; _mesa_reference_fragprog(st->ctx, &fp, NULL); } return variant; }
/** * Translate a vertex program to create a new variant. */ static struct st_vp_variant * st_translate_vertex_program(struct st_context *st, struct st_vertex_program *stvp, const struct st_vp_variant_key *key) { struct st_vp_variant *vpv = CALLOC_STRUCT(st_vp_variant); struct pipe_context *pipe = st->pipe; struct ureg_program *ureg; enum pipe_error error; unsigned num_outputs; st_prepare_vertex_program(st->ctx, stvp); if (!stvp->glsl_to_tgsi) { _mesa_remove_output_reads(&stvp->Base.Base, PROGRAM_OUTPUT); } ureg = ureg_create( TGSI_PROCESSOR_VERTEX ); if (ureg == NULL) { free(vpv); return NULL; } vpv->key = *key; vpv->num_inputs = stvp->num_inputs; num_outputs = stvp->num_outputs; if (key->passthrough_edgeflags) { vpv->num_inputs++; num_outputs++; } if (ST_DEBUG & DEBUG_MESA) { _mesa_print_program(&stvp->Base.Base); _mesa_print_program_parameters(st->ctx, &stvp->Base.Base); debug_printf("\n"); } if (stvp->glsl_to_tgsi) error = st_translate_program(st->ctx, TGSI_PROCESSOR_VERTEX, ureg, stvp->glsl_to_tgsi, &stvp->Base.Base, /* inputs */ vpv->num_inputs, stvp->input_to_index, NULL, /* input semantic name */ NULL, /* input semantic index */ NULL, /* interp mode */ NULL, /* interp location */ /* outputs */ num_outputs, stvp->result_to_output, stvp->output_semantic_name, stvp->output_semantic_index, key->passthrough_edgeflags, key->clamp_color); else error = st_translate_mesa_program(st->ctx, TGSI_PROCESSOR_VERTEX, ureg, &stvp->Base.Base, /* inputs */ vpv->num_inputs, stvp->input_to_index, NULL, /* input semantic name */ NULL, /* input semantic index */ NULL, /* outputs */ num_outputs, stvp->result_to_output, stvp->output_semantic_name, stvp->output_semantic_index, key->passthrough_edgeflags, key->clamp_color); if (error) goto fail; vpv->tgsi.tokens = ureg_get_tokens( ureg, NULL ); if (!vpv->tgsi.tokens) goto fail; ureg_destroy( ureg ); if (stvp->glsl_to_tgsi) { st_translate_stream_output_info(stvp->glsl_to_tgsi, stvp->result_to_output, &vpv->tgsi.stream_output); } if (ST_DEBUG & DEBUG_TGSI) { tgsi_dump(vpv->tgsi.tokens, 0); debug_printf("\n"); } vpv->driver_shader = pipe->create_vs_state(pipe, &vpv->tgsi); return vpv; fail: debug_printf("%s: failed to translate Mesa program:\n", __func__); _mesa_print_program(&stvp->Base.Base); debug_assert(0); ureg_destroy( ureg ); return NULL; }
/* Create a compute shader implementing clear_buffer or copy_buffer. */ void *si_create_dma_compute_shader(struct pipe_context *ctx, unsigned num_dwords_per_thread, bool dst_stream_cache_policy, bool is_copy) { assert(util_is_power_of_two_nonzero(num_dwords_per_thread)); unsigned store_qualifier = TGSI_MEMORY_COHERENT | TGSI_MEMORY_RESTRICT; if (dst_stream_cache_policy) store_qualifier |= TGSI_MEMORY_STREAM_CACHE_POLICY; /* Don't cache loads, because there is no reuse. */ unsigned load_qualifier = store_qualifier | TGSI_MEMORY_STREAM_CACHE_POLICY; unsigned num_mem_ops = MAX2(1, num_dwords_per_thread / 4); unsigned *inst_dwords = alloca(num_mem_ops * sizeof(unsigned)); for (unsigned i = 0; i < num_mem_ops; i++) { if (i*4 < num_dwords_per_thread) inst_dwords[i] = MIN2(4, num_dwords_per_thread - i*4); } struct ureg_program *ureg = ureg_create(PIPE_SHADER_COMPUTE); if (!ureg) return NULL; ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH, 64); ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT, 1); ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH, 1); struct ureg_src value; if (!is_copy) { ureg_property(ureg, TGSI_PROPERTY_CS_USER_DATA_DWORDS, inst_dwords[0]); value = ureg_DECL_system_value(ureg, TGSI_SEMANTIC_CS_USER_DATA, 0); } struct ureg_src tid = ureg_DECL_system_value(ureg, TGSI_SEMANTIC_THREAD_ID, 0); struct ureg_src blk = ureg_DECL_system_value(ureg, TGSI_SEMANTIC_BLOCK_ID, 0); struct ureg_dst store_addr = ureg_writemask(ureg_DECL_temporary(ureg), TGSI_WRITEMASK_X); struct ureg_dst load_addr = ureg_writemask(ureg_DECL_temporary(ureg), TGSI_WRITEMASK_X); struct ureg_dst dstbuf = ureg_dst(ureg_DECL_buffer(ureg, 0, false)); struct ureg_src srcbuf; struct ureg_src *values = NULL; if (is_copy) { srcbuf = ureg_DECL_buffer(ureg, 1, false); values = malloc(num_mem_ops * sizeof(struct ureg_src)); } /* If there are multiple stores, the first store writes into 0+tid, * the 2nd store writes into 64+tid, the 3rd store writes into 128+tid, etc. */ ureg_UMAD(ureg, store_addr, blk, ureg_imm1u(ureg, 64 * num_mem_ops), tid); /* Convert from a "store size unit" into bytes. */ ureg_UMUL(ureg, store_addr, ureg_src(store_addr), ureg_imm1u(ureg, 4 * inst_dwords[0])); ureg_MOV(ureg, load_addr, ureg_src(store_addr)); /* Distance between a load and a store for latency hiding. */ unsigned load_store_distance = is_copy ? 8 : 0; for (unsigned i = 0; i < num_mem_ops + load_store_distance; i++) { int d = i - load_store_distance; if (is_copy && i < num_mem_ops) { if (i) { ureg_UADD(ureg, load_addr, ureg_src(load_addr), ureg_imm1u(ureg, 4 * inst_dwords[i] * 64)); } values[i] = ureg_src(ureg_DECL_temporary(ureg)); struct ureg_dst dst = ureg_writemask(ureg_dst(values[i]), u_bit_consecutive(0, inst_dwords[i])); struct ureg_src srcs[] = {srcbuf, ureg_src(load_addr)}; ureg_memory_insn(ureg, TGSI_OPCODE_LOAD, &dst, 1, srcs, 2, load_qualifier, TGSI_TEXTURE_BUFFER, 0); } if (d >= 0) { if (d) { ureg_UADD(ureg, store_addr, ureg_src(store_addr), ureg_imm1u(ureg, 4 * inst_dwords[d] * 64)); } struct ureg_dst dst = ureg_writemask(dstbuf, u_bit_consecutive(0, inst_dwords[d])); struct ureg_src srcs[] = {ureg_src(store_addr), is_copy ? values[d] : value}; ureg_memory_insn(ureg, TGSI_OPCODE_STORE, &dst, 1, srcs, 2, store_qualifier, TGSI_TEXTURE_BUFFER, 0); } } ureg_END(ureg); struct pipe_compute_state state = {}; state.ir_type = PIPE_SHADER_IR_TGSI; state.prog = ureg_get_tokens(ureg, NULL); void *cs = ctx->create_compute_state(ctx, &state); ureg_destroy(ureg); free(values); return cs; }
/** * Translate a geometry program to create a new variant. */ static struct st_gp_variant * st_translate_geometry_program(struct st_context *st, struct st_geometry_program *stgp, const struct st_gp_variant_key *key) { GLuint inputMapping[GEOM_ATTRIB_MAX]; GLuint outputMapping[GEOM_RESULT_MAX]; struct pipe_context *pipe = st->pipe; enum pipe_error error; GLuint attr; const GLbitfield inputsRead = stgp->Base.Base.InputsRead; GLuint vslot = 0; GLuint num_generic = 0; uint gs_num_inputs = 0; uint gs_builtin_inputs = 0; uint gs_array_offset = 0; ubyte gs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS]; ubyte gs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS]; uint gs_num_outputs = 0; GLint i; GLuint maxSlot = 0; struct ureg_program *ureg; struct st_gp_variant *gpv; gpv = CALLOC_STRUCT(st_gp_variant); if (!gpv) return NULL; _mesa_remove_output_reads(&stgp->Base.Base, PROGRAM_OUTPUT); _mesa_remove_output_reads(&stgp->Base.Base, PROGRAM_VARYING); ureg = ureg_create( TGSI_PROCESSOR_GEOMETRY ); if (ureg == NULL) { FREE(gpv); return NULL; } /* which vertex output goes to the first geometry input */ vslot = 0; memset(inputMapping, 0, sizeof(inputMapping)); memset(outputMapping, 0, sizeof(outputMapping)); /* * Convert Mesa program inputs to TGSI input register semantics. */ for (attr = 0; attr < GEOM_ATTRIB_MAX; attr++) { if (inputsRead & (1 << attr)) { const GLuint slot = gs_num_inputs; gs_num_inputs++; inputMapping[attr] = slot; stgp->input_map[slot + gs_array_offset] = vslot - gs_builtin_inputs; stgp->input_to_index[attr] = vslot; stgp->index_to_input[vslot] = attr; ++vslot; if (attr != GEOM_ATTRIB_PRIMITIVE_ID) { gs_array_offset += 2; } else ++gs_builtin_inputs; #if 0 debug_printf("input map at %d = %d\n", slot + gs_array_offset, stgp->input_map[slot + gs_array_offset]); #endif switch (attr) { case GEOM_ATTRIB_PRIMITIVE_ID: stgp->input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID; stgp->input_semantic_index[slot] = 0; break; case GEOM_ATTRIB_POSITION: stgp->input_semantic_name[slot] = TGSI_SEMANTIC_POSITION; stgp->input_semantic_index[slot] = 0; break; case GEOM_ATTRIB_COLOR0: stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR; stgp->input_semantic_index[slot] = 0; break; case GEOM_ATTRIB_COLOR1: stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR; stgp->input_semantic_index[slot] = 1; break; case GEOM_ATTRIB_FOG_FRAG_COORD: stgp->input_semantic_name[slot] = TGSI_SEMANTIC_FOG; stgp->input_semantic_index[slot] = 0; break; case GEOM_ATTRIB_TEX_COORD: stgp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC; stgp->input_semantic_index[slot] = num_generic++; break; case GEOM_ATTRIB_VAR0: /* fall-through */ default: stgp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC; stgp->input_semantic_index[slot] = num_generic++; } } } /* initialize output semantics to defaults */ for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) { gs_output_semantic_name[i] = TGSI_SEMANTIC_GENERIC; gs_output_semantic_index[i] = 0; } num_generic = 0; /* * Determine number of outputs, the (default) output register * mapping and the semantic information for each output. */ for (attr = 0; attr < GEOM_RESULT_MAX; attr++) { if (stgp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) { GLuint slot; slot = gs_num_outputs; gs_num_outputs++; outputMapping[attr] = slot; switch (attr) { case GEOM_RESULT_POS: assert(slot == 0); gs_output_semantic_name[slot] = TGSI_SEMANTIC_POSITION; gs_output_semantic_index[slot] = 0; break; case GEOM_RESULT_COL0: gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR; gs_output_semantic_index[slot] = 0; break; case GEOM_RESULT_COL1: gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR; gs_output_semantic_index[slot] = 1; break; case GEOM_RESULT_SCOL0: gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR; gs_output_semantic_index[slot] = 0; break; case GEOM_RESULT_SCOL1: gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR; gs_output_semantic_index[slot] = 1; break; case GEOM_RESULT_FOGC: gs_output_semantic_name[slot] = TGSI_SEMANTIC_FOG; gs_output_semantic_index[slot] = 0; break; case GEOM_RESULT_PSIZ: gs_output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE; gs_output_semantic_index[slot] = 0; break; case GEOM_RESULT_TEX0: case GEOM_RESULT_TEX1: case GEOM_RESULT_TEX2: case GEOM_RESULT_TEX3: case GEOM_RESULT_TEX4: case GEOM_RESULT_TEX5: case GEOM_RESULT_TEX6: case GEOM_RESULT_TEX7: /* fall-through */ case GEOM_RESULT_VAR0: /* fall-through */ default: assert(slot < Elements(gs_output_semantic_name)); /* use default semantic info */ gs_output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC; gs_output_semantic_index[slot] = num_generic++; } } } assert(gs_output_semantic_name[0] == TGSI_SEMANTIC_POSITION); /* find max output slot referenced to compute gs_num_outputs */ for (attr = 0; attr < GEOM_RESULT_MAX; attr++) { if (outputMapping[attr] != ~0 && outputMapping[attr] > maxSlot) maxSlot = outputMapping[attr]; } gs_num_outputs = maxSlot + 1; #if 0 /* debug */ { GLuint i; printf("outputMapping? %d\n", outputMapping ? 1 : 0); if (outputMapping) { printf("attr -> slot\n"); for (i = 0; i < 16; i++) { printf(" %2d %3d\n", i, outputMapping[i]); } } printf("slot sem_name sem_index\n"); for (i = 0; i < gs_num_outputs; i++) { printf(" %2d %d %d\n", i, gs_output_semantic_name[i], gs_output_semantic_index[i]); } } #endif /* free old shader state, if any */ if (stgp->tgsi.tokens) { st_free_tokens(stgp->tgsi.tokens); stgp->tgsi.tokens = NULL; } ureg_property_gs_input_prim(ureg, stgp->Base.InputType); ureg_property_gs_output_prim(ureg, stgp->Base.OutputType); ureg_property_gs_max_vertices(ureg, stgp->Base.VerticesOut); error = st_translate_mesa_program(st->ctx, TGSI_PROCESSOR_GEOMETRY, ureg, &stgp->Base.Base, /* inputs */ gs_num_inputs, inputMapping, stgp->input_semantic_name, stgp->input_semantic_index, NULL, /* outputs */ gs_num_outputs, outputMapping, gs_output_semantic_name, gs_output_semantic_index, FALSE); stgp->num_inputs = gs_num_inputs; stgp->tgsi.tokens = ureg_get_tokens( ureg, NULL ); ureg_destroy( ureg ); /* fill in new variant */ gpv->driver_shader = pipe->create_gs_state(pipe, &stgp->tgsi); gpv->key = *key; if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) { _mesa_print_program(&stgp->Base.Base); debug_printf("\n"); } if (ST_DEBUG & DEBUG_TGSI) { tgsi_dump(stgp->tgsi.tokens, 0); debug_printf("\n"); } return gpv; }
/** * Translate a Mesa fragment shader into a TGSI shader using extra info in * the key. * \return new fragment program variant */ static struct st_fp_variant * st_translate_fragment_program(struct st_context *st, struct st_fragment_program *stfp, const struct st_fp_variant_key *key) { struct pipe_context *pipe = st->pipe; struct st_fp_variant *variant = CALLOC_STRUCT(st_fp_variant); GLboolean deleteFP = GL_FALSE; if (!variant) return NULL; assert(!(key->bitmap && key->drawpixels)); #if FEATURE_drawpix if (key->bitmap) { /* glBitmap drawing */ struct gl_fragment_program *fp; /* we free this temp program below */ st_make_bitmap_fragment_program(st, &stfp->Base, &fp, &variant->bitmap_sampler); variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters); stfp = st_fragment_program(fp); deleteFP = GL_TRUE; } else if (key->drawpixels) { /* glDrawPixels drawing */ struct gl_fragment_program *fp; /* we free this temp program below */ if (key->drawpixels_z || key->drawpixels_stencil) { fp = st_make_drawpix_z_stencil_program(st, key->drawpixels_z, key->drawpixels_stencil); } else { /* RGBA */ st_make_drawpix_fragment_program(st, &stfp->Base, &fp); variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters); deleteFP = GL_TRUE; } stfp = st_fragment_program(fp); } #endif if (!stfp->tgsi.tokens) { /* need to translate Mesa instructions to TGSI now */ GLuint outputMapping[FRAG_RESULT_MAX]; GLuint inputMapping[FRAG_ATTRIB_MAX]; GLuint interpMode[PIPE_MAX_SHADER_INPUTS]; /* XXX size? */ GLuint attr; enum pipe_error error; const GLbitfield inputsRead = stfp->Base.Base.InputsRead; struct ureg_program *ureg; GLboolean write_all = GL_FALSE; ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS]; ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS]; uint fs_num_inputs = 0; ubyte fs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS]; ubyte fs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS]; uint fs_num_outputs = 0; _mesa_remove_output_reads(&stfp->Base.Base, PROGRAM_OUTPUT); /* * Convert Mesa program inputs to TGSI input register semantics. */ for (attr = 0; attr < FRAG_ATTRIB_MAX; attr++) { if (inputsRead & (1 << attr)) { const GLuint slot = fs_num_inputs++; inputMapping[attr] = slot; switch (attr) { case FRAG_ATTRIB_WPOS: input_semantic_name[slot] = TGSI_SEMANTIC_POSITION; input_semantic_index[slot] = 0; interpMode[slot] = TGSI_INTERPOLATE_LINEAR; break; case FRAG_ATTRIB_COL0: input_semantic_name[slot] = TGSI_SEMANTIC_COLOR; input_semantic_index[slot] = 0; interpMode[slot] = TGSI_INTERPOLATE_LINEAR; break; case FRAG_ATTRIB_COL1: input_semantic_name[slot] = TGSI_SEMANTIC_COLOR; input_semantic_index[slot] = 1; interpMode[slot] = TGSI_INTERPOLATE_LINEAR; break; case FRAG_ATTRIB_FOGC: input_semantic_name[slot] = TGSI_SEMANTIC_FOG; input_semantic_index[slot] = 0; interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE; break; case FRAG_ATTRIB_FACE: input_semantic_name[slot] = TGSI_SEMANTIC_FACE; input_semantic_index[slot] = 0; interpMode[slot] = TGSI_INTERPOLATE_CONSTANT; break; /* In most cases, there is nothing special about these * inputs, so adopt a convention to use the generic * semantic name and the mesa FRAG_ATTRIB_ number as the * index. * * All that is required is that the vertex shader labels * its own outputs similarly, and that the vertex shader * generates at least every output required by the * fragment shader plus fixed-function hardware (such as * BFC). * * There is no requirement that semantic indexes start at * zero or be restricted to a particular range -- nobody * should be building tables based on semantic index. */ case FRAG_ATTRIB_PNTC: case FRAG_ATTRIB_TEX0: case FRAG_ATTRIB_TEX1: case FRAG_ATTRIB_TEX2: case FRAG_ATTRIB_TEX3: case FRAG_ATTRIB_TEX4: case FRAG_ATTRIB_TEX5: case FRAG_ATTRIB_TEX6: case FRAG_ATTRIB_TEX7: case FRAG_ATTRIB_VAR0: default: /* Actually, let's try and zero-base this just for * readability of the generated TGSI. */ assert(attr >= FRAG_ATTRIB_TEX0); input_semantic_index[slot] = (attr - FRAG_ATTRIB_TEX0); input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC; if (attr == FRAG_ATTRIB_PNTC) interpMode[slot] = TGSI_INTERPOLATE_LINEAR; else interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE; break; } } else { inputMapping[attr] = -1; } } /* * Semantics and mapping for outputs */ { uint numColors = 0; GLbitfield64 outputsWritten = stfp->Base.Base.OutputsWritten; /* if z is written, emit that first */ if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) { fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_POSITION; fs_output_semantic_index[fs_num_outputs] = 0; outputMapping[FRAG_RESULT_DEPTH] = fs_num_outputs; fs_num_outputs++; outputsWritten &= ~(1 << FRAG_RESULT_DEPTH); } if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) { fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_STENCIL; fs_output_semantic_index[fs_num_outputs] = 0; outputMapping[FRAG_RESULT_STENCIL] = fs_num_outputs; fs_num_outputs++; outputsWritten &= ~(1 << FRAG_RESULT_STENCIL); } /* handle remaning outputs (color) */ for (attr = 0; attr < FRAG_RESULT_MAX; attr++) { if (outputsWritten & BITFIELD64_BIT(attr)) { switch (attr) { case FRAG_RESULT_DEPTH: case FRAG_RESULT_STENCIL: /* handled above */ assert(0); break; case FRAG_RESULT_COLOR: write_all = GL_TRUE; /* fallthrough */ default: assert(attr == FRAG_RESULT_COLOR || (FRAG_RESULT_DATA0 <= attr && attr < FRAG_RESULT_MAX)); fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_COLOR; fs_output_semantic_index[fs_num_outputs] = numColors; outputMapping[attr] = fs_num_outputs; numColors++; break; } fs_num_outputs++; } } } ureg = ureg_create( TGSI_PROCESSOR_FRAGMENT ); if (ureg == NULL) return NULL; if (ST_DEBUG & DEBUG_MESA) { _mesa_print_program(&stfp->Base.Base); _mesa_print_program_parameters(st->ctx, &stfp->Base.Base); debug_printf("\n"); } if (write_all == GL_TRUE) ureg_property_fs_color0_writes_all_cbufs(ureg, 1); error = st_translate_mesa_program(st->ctx, TGSI_PROCESSOR_FRAGMENT, ureg, &stfp->Base.Base, /* inputs */ fs_num_inputs, inputMapping, input_semantic_name, input_semantic_index, interpMode, /* outputs */ fs_num_outputs, outputMapping, fs_output_semantic_name, fs_output_semantic_index, FALSE ); stfp->tgsi.tokens = ureg_get_tokens( ureg, NULL ); ureg_destroy( ureg ); } /* fill in variant */ variant->driver_shader = pipe->create_fs_state(pipe, &stfp->tgsi); variant->key = *key; if (ST_DEBUG & DEBUG_TGSI) { tgsi_dump( stfp->tgsi.tokens, 0/*TGSI_DUMP_VERBOSE*/ ); debug_printf("\n"); } if (deleteFP) { /* Free the temporary program made above */ struct gl_fragment_program *fp = &stfp->Base; _mesa_reference_fragprog(st->ctx, &fp, NULL); } return variant; }
/** * The current vertex shader is already executed by the 'draw' * module, so we just need to generate a simple vertex shader * to pass through all those VS outputs that will * be consumed by the fragment shader. * Used when we employ the 'draw' module. */ static enum pipe_error compile_passthrough_vs(struct svga_context *svga, struct svga_vertex_shader *vs, struct svga_fragment_shader *fs, struct svga_shader_variant **out_variant) { struct svga_shader_variant *variant = NULL; unsigned num_inputs; unsigned i; unsigned num_elements; struct svga_vertex_shader new_vs; struct ureg_src src[PIPE_MAX_SHADER_INPUTS]; struct ureg_dst dst[PIPE_MAX_SHADER_OUTPUTS]; struct ureg_program *ureg; unsigned num_tokens; struct svga_compile_key key; enum pipe_error ret; assert(svga_have_vgpu10(svga)); assert(fs); num_inputs = fs->base.info.num_inputs; ureg = ureg_create(TGSI_PROCESSOR_VERTEX); if (!ureg) return PIPE_ERROR_OUT_OF_MEMORY; /* draw will always add position */ dst[0] = ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0); src[0] = ureg_DECL_vs_input(ureg, 0); num_elements = 1; /** * swtnl backend redefines the input layout based on the * fragment shader's inputs. So we only need to passthrough * those inputs that will be consumed by the fragment shader. * Note: DX10 requires the number of vertex elements * specified in the input layout to be no less than the * number of inputs to the vertex shader. */ for (i = 0; i < num_inputs; i++) { switch (fs->base.info.input_semantic_name[i]) { case TGSI_SEMANTIC_COLOR: case TGSI_SEMANTIC_GENERIC: case TGSI_SEMANTIC_FOG: dst[num_elements] = ureg_DECL_output(ureg, fs->base.info.input_semantic_name[i], fs->base.info.input_semantic_index[i]); src[num_elements] = ureg_DECL_vs_input(ureg, num_elements); num_elements++; break; default: break; } } for (i = 0; i < num_elements; i++) { ureg_MOV(ureg, dst[i], src[i]); } ureg_END(ureg); memset(&new_vs, 0, sizeof(new_vs)); new_vs.base.tokens = ureg_get_tokens(ureg, &num_tokens); tgsi_scan_shader(new_vs.base.tokens, &new_vs.base.info); memset(&key, 0, sizeof(key)); key.vs.undo_viewport = 1; ret = compile_vs(svga, &new_vs, &key, &variant); if (ret != PIPE_OK) return ret; ureg_free_tokens(new_vs.base.tokens); ureg_destroy(ureg); /* Overwrite the variant key to indicate it's a pass-through VS */ memset(&variant->key, 0, sizeof(variant->key)); variant->key.vs.passthrough = 1; variant->key.vs.undo_viewport = 1; *out_variant = variant; return PIPE_OK; }
static void * combine_shaders(const struct shader_asm_info *shaders[SHADER_STAGES], int num_shaders, struct pipe_context *pipe, struct pipe_shader_state *shader) { VGboolean declare_input = VG_FALSE; VGint start_const = -1, end_const = 0; VGint start_temp = -1, end_temp = 0; VGint start_sampler = -1, end_sampler = 0; VGint i, current_shader = 0; VGint num_consts, num_temps, num_samplers; struct ureg_program *ureg; struct ureg_src in[2]; struct ureg_src *sampler = NULL; struct ureg_src *constant = NULL; struct ureg_dst out, *temp = NULL; void *p = NULL; for (i = 0; i < num_shaders; ++i) { if (shaders[i]->num_consts) start_const = range_min(start_const, shaders[i]->start_const); if (shaders[i]->num_temps) start_temp = range_min(start_temp, shaders[i]->start_temp); if (shaders[i]->num_samplers) start_sampler = range_min(start_sampler, shaders[i]->start_sampler); end_const = range_max(end_const, shaders[i]->start_const + shaders[i]->num_consts); end_temp = range_max(end_temp, shaders[i]->start_temp + shaders[i]->num_temps); end_sampler = range_max(end_sampler, shaders[i]->start_sampler + shaders[i]->num_samplers); if (shaders[i]->needs_position) declare_input = VG_TRUE; } /* if they're still unitialized, initialize them */ if (start_const < 0) start_const = 0; if (start_temp < 0) start_temp = 0; if (start_sampler < 0) start_sampler = 0; num_consts = end_const - start_const; num_temps = end_temp - start_temp; num_samplers = end_sampler - start_sampler; ureg = ureg_create(TGSI_PROCESSOR_FRAGMENT); if (!ureg) return NULL; if (declare_input) { in[0] = ureg_DECL_fs_input(ureg, TGSI_SEMANTIC_POSITION, 0, TGSI_INTERPOLATE_LINEAR); in[1] = ureg_DECL_fs_input(ureg, TGSI_SEMANTIC_GENERIC, 0, TGSI_INTERPOLATE_PERSPECTIVE); } /* we always have a color output */ out = ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 0); if (num_consts >= 1) { constant = (struct ureg_src *) malloc(sizeof(struct ureg_src) * end_const); for (i = start_const; i < end_const; i++) { constant[i] = ureg_DECL_constant(ureg, i); } } if (num_temps >= 1) { temp = (struct ureg_dst *) malloc(sizeof(struct ureg_dst) * end_temp); for (i = start_temp; i < end_temp; i++) { temp[i] = ureg_DECL_temporary(ureg); } } if (num_samplers >= 1) { sampler = (struct ureg_src *) malloc(sizeof(struct ureg_src) * end_sampler); for (i = start_sampler; i < end_sampler; i++) { sampler[i] = ureg_DECL_sampler(ureg, i); } } while (current_shader < num_shaders) { if ((current_shader + 1) == num_shaders) { shaders[current_shader]->func(ureg, &out, in, sampler, temp, constant); } else { shaders[current_shader]->func(ureg, &temp[0], in, sampler, temp, constant); } current_shader++; } ureg_END(ureg); shader->tokens = ureg_finalize(ureg); if(!shader->tokens) return NULL; p = pipe->create_fs_state(pipe, shader); ureg_destroy(ureg); if (num_temps >= 1) { for (i = start_temp; i < end_temp; i++) { ureg_release_temporary(ureg, temp[i]); } } if (temp) free(temp); if (constant) free(constant); if (sampler) free(sampler); return p; }