Beispiel #1
0
void
st_destroy_drawpix(struct st_context *st)
{
   GLuint i;

   for (i = 0; i < Elements(st->drawpix.shaders); i++) {
      if (st->drawpix.shaders[i])
         _mesa_reference_fragprog(st->ctx, &st->drawpix.shaders[i], NULL);
   }

   st_reference_fragprog(st, &st->pixel_xfer.combined_prog, NULL);
   if (st->drawpix.vert_shaders[0])
      ureg_free_tokens(st->drawpix.vert_shaders[0]);
   if (st->drawpix.vert_shaders[1])
      ureg_free_tokens(st->drawpix.vert_shaders[1]);
}
Beispiel #2
0
/**
 * Delete a fragment program variant.  Note the caller must unlink
 * the variant from the linked list.
 */
static void
delete_fp_variant(struct st_context *st, struct st_fp_variant *fpv)
{
   if (fpv->driver_shader) 
      cso_delete_fragment_shader(st->cso_context, fpv->driver_shader);
   if (fpv->parameters)
      _mesa_free_parameter_list(fpv->parameters);
   if (fpv->tgsi.tokens)
      ureg_free_tokens(fpv->tgsi.tokens);
   free(fpv);
}
Beispiel #3
0
/**
 * Delete a vertex program variant.  Note the caller must unlink
 * the variant from the linked list.
 */
static void
delete_vp_variant(struct st_context *st, struct st_vp_variant *vpv)
{
   if (vpv->driver_shader) 
      cso_delete_vertex_shader(st->cso_context, vpv->driver_shader);
      
   if (vpv->draw_shader)
      draw_delete_vertex_shader( st->draw, vpv->draw_shader );
      
   if (vpv->tgsi.tokens)
      ureg_free_tokens(vpv->tgsi.tokens);
      
   free( vpv );
}
Beispiel #4
0
/**
 * Tokens cannot be free with free otherwise the builtin gallium
 * malloc debugging will get confused.
 */
void
st_free_tokens(const struct tgsi_token *tokens)
{
   ureg_free_tokens(tokens);
}
Beispiel #5
0
/**
 * Translate a geometry program to create a new variant.
 */
static struct st_gp_variant *
st_translate_geometry_program(struct st_context *st,
                              struct st_geometry_program *stgp,
                              const struct st_gp_variant_key *key)
{
   GLuint inputMapping[VARYING_SLOT_MAX];
   GLuint outputMapping[VARYING_SLOT_MAX];
   struct pipe_context *pipe = st->pipe;
   GLuint attr;

   uint gs_num_inputs = 0;

   ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
   ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];

   ubyte gs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
   ubyte gs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
   uint gs_num_outputs = 0;

   GLint i;
   struct ureg_program *ureg;
   struct pipe_shader_state state = {0};
   struct st_gp_variant *gpv;

   gpv = CALLOC_STRUCT(st_gp_variant);
   if (!gpv)
      return NULL;

   ureg = ureg_create(TGSI_PROCESSOR_GEOMETRY);
   if (ureg == NULL) {
      free(gpv);
      return NULL;
   }

   memset(inputMapping, 0, sizeof(inputMapping));
   memset(outputMapping, 0, sizeof(outputMapping));

   /*
    * Convert Mesa program inputs to TGSI input register semantics.
    */
   for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
      if ((stgp->Base.Base.InputsRead & BITFIELD64_BIT(attr)) != 0) {
         const GLuint slot = gs_num_inputs++;

         inputMapping[attr] = slot;

         switch (attr) {
         case VARYING_SLOT_PRIMITIVE_ID:
            input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_POS:
            input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL0:
            input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL1:
            input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            input_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_FOGC:
            input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_VERTEX:
            input_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST0:
            input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST1:
            input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            input_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_PSIZ:
            input_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_TEX0:
         case VARYING_SLOT_TEX1:
         case VARYING_SLOT_TEX2:
         case VARYING_SLOT_TEX3:
         case VARYING_SLOT_TEX4:
         case VARYING_SLOT_TEX5:
         case VARYING_SLOT_TEX6:
         case VARYING_SLOT_TEX7:
            if (st->needs_texcoord_semantic) {
               input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
               input_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
               break;
            }
            /* fall through */
         case VARYING_SLOT_VAR0:
         default:
            assert(attr >= VARYING_SLOT_VAR0 && attr < VARYING_SLOT_MAX);
            input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
            input_semantic_index[slot] =
               st_get_generic_varying_index(st, attr);
         break;
         }
      }
   }

   /* initialize output semantics to defaults */
   for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
      gs_output_semantic_name[i] = TGSI_SEMANTIC_GENERIC;
      gs_output_semantic_index[i] = 0;
   }

   /*
    * Determine number of outputs, the (default) output register
    * mapping and the semantic information for each output.
    */
   for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
      if (stgp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) {
         GLuint slot = gs_num_outputs++;

         outputMapping[attr] = slot;

         switch (attr) {
         case VARYING_SLOT_POS:
            assert(slot == 0);
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL0:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL1:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            gs_output_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_BFC0:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_BFC1:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
            gs_output_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_FOGC:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_PSIZ:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_VERTEX:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST0:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST1:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            gs_output_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_LAYER:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_PRIMITIVE_ID:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_VIEWPORT:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_TEX0:
         case VARYING_SLOT_TEX1:
         case VARYING_SLOT_TEX2:
         case VARYING_SLOT_TEX3:
         case VARYING_SLOT_TEX4:
         case VARYING_SLOT_TEX5:
         case VARYING_SLOT_TEX6:
         case VARYING_SLOT_TEX7:
            if (st->needs_texcoord_semantic) {
               gs_output_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
               gs_output_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
               break;
            }
            /* fall through */
         case VARYING_SLOT_VAR0:
         default:
            assert(slot < ARRAY_SIZE(gs_output_semantic_name));
            assert(attr >= VARYING_SLOT_VAR0);
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
            gs_output_semantic_index[slot] =
               st_get_generic_varying_index(st, attr);
         break;
         }
      }
   }

   ureg_property(ureg, TGSI_PROPERTY_GS_INPUT_PRIM, stgp->Base.InputType);
   ureg_property(ureg, TGSI_PROPERTY_GS_OUTPUT_PRIM, stgp->Base.OutputType);
   ureg_property(ureg, TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES,
                 stgp->Base.VerticesOut);
   ureg_property(ureg, TGSI_PROPERTY_GS_INVOCATIONS, stgp->Base.Invocations);

   st_translate_program(st->ctx,
                        TGSI_PROCESSOR_GEOMETRY,
                        ureg,
                        stgp->glsl_to_tgsi,
                        &stgp->Base.Base,
                        /* inputs */
                        gs_num_inputs,
                        inputMapping,
                        input_semantic_name,
                        input_semantic_index,
                        NULL,
                        NULL,
                        /* outputs */
                        gs_num_outputs,
                        outputMapping,
                        gs_output_semantic_name,
                        gs_output_semantic_index,
                        FALSE,
                        FALSE);

   state.tokens = ureg_get_tokens(ureg, NULL);
   ureg_destroy(ureg);

   st_translate_stream_output_info(stgp->glsl_to_tgsi,
                                   outputMapping,
                                   &state.stream_output);

   if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) {
      _mesa_print_program(&stgp->Base.Base);
      debug_printf("\n");
   }

   if (ST_DEBUG & DEBUG_TGSI) {
      tgsi_dump(state.tokens, 0);
      debug_printf("\n");
   }

   /* fill in new variant */
   gpv->driver_shader = pipe->create_gs_state(pipe, &state);
   gpv->key = *key;

   ureg_free_tokens(state.tokens);
   return gpv;
}
Beispiel #6
0
/**
 * The current vertex shader is already executed by the 'draw'
 * module, so we just need to generate a simple vertex shader
 * to pass through all those VS outputs that will
 * be consumed by the fragment shader.
 * Used when we employ the 'draw' module.
 */
static enum pipe_error
compile_passthrough_vs(struct svga_context *svga,
                       struct svga_vertex_shader *vs,
                       struct svga_fragment_shader *fs,
                       struct svga_shader_variant **out_variant)
{
   struct svga_shader_variant *variant = NULL;
   unsigned num_inputs;
   unsigned i;
   unsigned num_elements;
   struct svga_vertex_shader new_vs;
   struct ureg_src src[PIPE_MAX_SHADER_INPUTS];
   struct ureg_dst dst[PIPE_MAX_SHADER_OUTPUTS];
   struct ureg_program *ureg;
   unsigned num_tokens;
   struct svga_compile_key key;
   enum pipe_error ret;

   assert(svga_have_vgpu10(svga));
   assert(fs);

   num_inputs = fs->base.info.num_inputs;

   ureg = ureg_create(TGSI_PROCESSOR_VERTEX);
   if (!ureg)
      return PIPE_ERROR_OUT_OF_MEMORY;

   /* draw will always add position */
   dst[0] = ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0);
   src[0] = ureg_DECL_vs_input(ureg, 0);
   num_elements = 1;

   /**
    * swtnl backend redefines the input layout based on the
    * fragment shader's inputs. So we only need to passthrough
    * those inputs that will be consumed by the fragment shader.
    * Note: DX10 requires the number of vertex elements
    * specified in the input layout to be no less than the
    * number of inputs to the vertex shader.
    */
   for (i = 0; i < num_inputs; i++) {
      switch (fs->base.info.input_semantic_name[i]) {
      case TGSI_SEMANTIC_COLOR:
      case TGSI_SEMANTIC_GENERIC:
      case TGSI_SEMANTIC_FOG:
         dst[num_elements] = ureg_DECL_output(ureg,
                                fs->base.info.input_semantic_name[i],
                                fs->base.info.input_semantic_index[i]);
         src[num_elements] = ureg_DECL_vs_input(ureg, num_elements);
         num_elements++;
         break;
      default:
         break;
      }
   }

   for (i = 0; i < num_elements; i++) {
      ureg_MOV(ureg, dst[i], src[i]);
   }

   ureg_END(ureg);

   memset(&new_vs, 0, sizeof(new_vs));
   new_vs.base.tokens = ureg_get_tokens(ureg, &num_tokens);
   tgsi_scan_shader(new_vs.base.tokens, &new_vs.base.info);

   memset(&key, 0, sizeof(key));
   key.vs.undo_viewport = 1;

   ret = compile_vs(svga, &new_vs, &key, &variant);
   if (ret != PIPE_OK)
      return ret;

   ureg_free_tokens(new_vs.base.tokens);
   ureg_destroy(ureg);

   /* Overwrite the variant key to indicate it's a pass-through VS */
   memset(&variant->key, 0, sizeof(variant->key));
   variant->key.vs.passthrough = 1;
   variant->key.vs.undo_viewport = 1;

   *out_variant = variant;

   return PIPE_OK;
}