Beispiel #1
0
/*
 * General page fault handler.
 */
void
do_fault(struct trapframe *tf, struct proc *p,
    struct vm_map *map, vaddr_t va, vm_prot_t atype)
{
	int error;
	struct pcb *curpcb;

	if (pmap_fault(map->pmap, va, atype))
		return;

	KASSERT(current_intr_depth == 0);

	for (;;) {
		error = uvm_fault(map, va, 0, atype);
		if (error != ENOMEM)
			break;
		log(LOG_WARNING, "pid %d: VM shortage, sleeping\n", p->p_pid);
		tsleep(&lbolt, PVM, "abtretry", 0);
	}

	if (error != 0) {
		curpcb = &p->p_addr->u_pcb;
		if (curpcb->pcb_onfault != NULL) {
			tf->tf_r0 = error;
			tf->tf_r15 = (tf->tf_r15 & ~R15_PC) |
			    (register_t)curpcb->pcb_onfault;
			return;
		}
		trapsignal(p, SIGSEGV, va);
	}
}
Beispiel #2
0
/*
 * Handle a single exception.
 */
void
itsa(struct trap_frame *trapframe, struct cpu_info *ci, struct proc *p,
    int type)
{
	int i;
	unsigned ucode = 0;
	vm_prot_t ftype;
	extern vaddr_t onfault_table[];
	int onfault;
	int typ = 0;
	union sigval sv;
	struct pcb *pcb;

	switch (type) {
	case T_TLB_MOD:
		/* check for kernel address */
		if (trapframe->badvaddr < 0) {
			pt_entry_t *pte, entry;
			paddr_t pa;
			vm_page_t pg;

			pte = kvtopte(trapframe->badvaddr);
			entry = *pte;
#ifdef DIAGNOSTIC
			if (!(entry & PG_V) || (entry & PG_M))
				panic("trap: ktlbmod: invalid pte");
#endif
			if (pmap_is_page_ro(pmap_kernel(),
			    trunc_page(trapframe->badvaddr), entry)) {
				/* write to read only page in the kernel */
				ftype = VM_PROT_WRITE;
				pcb = &p->p_addr->u_pcb;
				goto kernel_fault;
			}
			entry |= PG_M;
			*pte = entry;
			KERNEL_LOCK();
			pmap_update_kernel_page(trapframe->badvaddr & ~PGOFSET,
			    entry);
			pa = pfn_to_pad(entry);
			pg = PHYS_TO_VM_PAGE(pa);
			if (pg == NULL)
				panic("trap: ktlbmod: unmanaged page");
			pmap_set_modify(pg);
			KERNEL_UNLOCK();
			return;
		}
		/* FALLTHROUGH */

	case T_TLB_MOD+T_USER:
	    {
		pt_entry_t *pte, entry;
		paddr_t pa;
		vm_page_t pg;
		pmap_t pmap = p->p_vmspace->vm_map.pmap;

		if (!(pte = pmap_segmap(pmap, trapframe->badvaddr)))
			panic("trap: utlbmod: invalid segmap");
		pte += uvtopte(trapframe->badvaddr);
		entry = *pte;
#ifdef DIAGNOSTIC
		if (!(entry & PG_V) || (entry & PG_M))
			panic("trap: utlbmod: invalid pte");
#endif
		if (pmap_is_page_ro(pmap,
		    trunc_page(trapframe->badvaddr), entry)) {
			/* write to read only page */
			ftype = VM_PROT_WRITE;
			pcb = &p->p_addr->u_pcb;
			goto fault_common_no_miss;
		}
		entry |= PG_M;
		*pte = entry;
		KERNEL_LOCK();
		pmap_update_user_page(pmap, (trapframe->badvaddr & ~PGOFSET), 
		    entry);
		pa = pfn_to_pad(entry);
		pg = PHYS_TO_VM_PAGE(pa);
		if (pg == NULL)
			panic("trap: utlbmod: unmanaged page");
		pmap_set_modify(pg);
		KERNEL_UNLOCK();
		return;
	    }

	case T_TLB_LD_MISS:
	case T_TLB_ST_MISS:
		ftype = (type == T_TLB_ST_MISS) ? VM_PROT_WRITE : VM_PROT_READ;
		pcb = &p->p_addr->u_pcb;
		/* check for kernel address */
		if (trapframe->badvaddr < 0) {
			vaddr_t va;
			int rv;

	kernel_fault:
			va = trunc_page((vaddr_t)trapframe->badvaddr);
			onfault = pcb->pcb_onfault;
			pcb->pcb_onfault = 0;
			KERNEL_LOCK();
			rv = uvm_fault(kernel_map, trunc_page(va), 0, ftype);
			KERNEL_UNLOCK();
			pcb->pcb_onfault = onfault;
			if (rv == 0)
				return;
			if (onfault != 0) {
				pcb->pcb_onfault = 0;
				trapframe->pc = onfault_table[onfault];
				return;
			}
			goto err;
		}
		/*
		 * It is an error for the kernel to access user space except
		 * through the copyin/copyout routines.
		 */
		if (pcb->pcb_onfault != 0) {
			/*
			 * We want to resolve the TLB fault before invoking
			 * pcb_onfault if necessary.
			 */
			goto fault_common;
		} else {
			goto err;
		}

	case T_TLB_LD_MISS+T_USER:
		ftype = VM_PROT_READ;
		pcb = &p->p_addr->u_pcb;
		goto fault_common;

	case T_TLB_ST_MISS+T_USER:
		ftype = VM_PROT_WRITE;
		pcb = &p->p_addr->u_pcb;
fault_common:

#ifdef CPU_R4000
		if (r4000_errata != 0) {
			if (eop_tlb_miss_handler(trapframe, ci, p) != 0)
				return;
		}
#endif

fault_common_no_miss:

#ifdef CPU_R4000
		if (r4000_errata != 0) {
			eop_cleanup(trapframe, p);
		}
#endif

	    {
		vaddr_t va;
		struct vmspace *vm;
		vm_map_t map;
		int rv;

		vm = p->p_vmspace;
		map = &vm->vm_map;
		va = trunc_page((vaddr_t)trapframe->badvaddr);

		onfault = pcb->pcb_onfault;
		pcb->pcb_onfault = 0;
		KERNEL_LOCK();

		rv = uvm_fault(map, va, 0, ftype);
		pcb->pcb_onfault = onfault;

		/*
		 * If this was a stack access we keep track of the maximum
		 * accessed stack size.  Also, if vm_fault gets a protection
		 * failure it is due to accessing the stack region outside
		 * the current limit and we need to reflect that as an access
		 * error.
		 */
		if ((caddr_t)va >= vm->vm_maxsaddr) {
			if (rv == 0)
				uvm_grow(p, va);
			else if (rv == EACCES)
				rv = EFAULT;
		}
		KERNEL_UNLOCK();
		if (rv == 0)
			return;
		if (!USERMODE(trapframe->sr)) {
			if (onfault != 0) {
				pcb->pcb_onfault = 0;
				trapframe->pc =  onfault_table[onfault];
				return;
			}
			goto err;
		}

		ucode = ftype;
		i = SIGSEGV;
		typ = SEGV_MAPERR;
		break;
	    }

	case T_ADDR_ERR_LD+T_USER:	/* misaligned or kseg access */
	case T_ADDR_ERR_ST+T_USER:	/* misaligned or kseg access */
		ucode = 0;		/* XXX should be VM_PROT_something */
		i = SIGBUS;
		typ = BUS_ADRALN;
		break;
	case T_BUS_ERR_IFETCH+T_USER:	/* BERR asserted to cpu */
	case T_BUS_ERR_LD_ST+T_USER:	/* BERR asserted to cpu */
		ucode = 0;		/* XXX should be VM_PROT_something */
		i = SIGBUS;
		typ = BUS_OBJERR;
		break;

	case T_SYSCALL+T_USER:
	    {
		struct trap_frame *locr0 = p->p_md.md_regs;
		struct sysent *callp;
		unsigned int code;
		register_t tpc;
		int numsys, error;
		struct args {
			register_t i[8];
		} args;
		register_t rval[2];

		atomic_add_int(&uvmexp.syscalls, 1);

		/* compute next PC after syscall instruction */
		tpc = trapframe->pc; /* Remember if restart */
		if (trapframe->cause & CR_BR_DELAY)
			locr0->pc = MipsEmulateBranch(locr0,
			    trapframe->pc, 0, 0);
		else
			locr0->pc += 4;
		callp = p->p_p->ps_emul->e_sysent;
		numsys = p->p_p->ps_emul->e_nsysent;
		code = locr0->v0;
		switch (code) {
		case SYS_syscall:
		case SYS___syscall:
			/*
			 * Code is first argument, followed by actual args.
			 * __syscall provides the code as a quad to maintain
			 * proper alignment of 64-bit arguments on 32-bit
			 * platforms, which doesn't change anything here.
			 */
			code = locr0->a0;
			if (code >= numsys)
				callp += p->p_p->ps_emul->e_nosys; /* (illegal) */
			else
				callp += code;
			i = callp->sy_argsize / sizeof(register_t);
			args.i[0] = locr0->a1;
			args.i[1] = locr0->a2;
			args.i[2] = locr0->a3;
			if (i > 3) {
				args.i[3] = locr0->a4;
				args.i[4] = locr0->a5;
				args.i[5] = locr0->a6;
				args.i[6] = locr0->a7;
				if (i > 7)
					if ((error = copyin((void *)locr0->sp,
					    &args.i[7], sizeof(register_t))))
						goto bad;
			}
			break;
		default:
			if (code >= numsys)
				callp += p->p_p->ps_emul->e_nosys; /* (illegal) */
			else
				callp += code;

			i = callp->sy_narg;
			args.i[0] = locr0->a0;
			args.i[1] = locr0->a1;
			args.i[2] = locr0->a2;
			args.i[3] = locr0->a3;
			if (i > 4) {
				args.i[4] = locr0->a4;
				args.i[5] = locr0->a5;
				args.i[6] = locr0->a6;
				args.i[7] = locr0->a7;
			}
		}

		rval[0] = 0;
		rval[1] = locr0->v1;

#if defined(DDB) || defined(DEBUG)
		trapdebug[TRAPSIZE * ci->ci_cpuid + (trppos[ci->ci_cpuid] == 0 ?
		    TRAPSIZE : trppos[ci->ci_cpuid]) - 1].code = code;
#endif

		error = mi_syscall(p, code, callp, args.i, rval);

		switch (error) {
		case 0:
			locr0->v0 = rval[0];
			locr0->v1 = rval[1];
			locr0->a3 = 0;
			break;

		case ERESTART:
			locr0->pc = tpc;
			break;

		case EJUSTRETURN:
			break;	/* nothing to do */

		default:
		bad:
			locr0->v0 = error;
			locr0->a3 = 1;
		}

		mi_syscall_return(p, code, error, rval);

		return;
	    }

	case T_BREAK:
#ifdef DDB
		kdb_trap(type, trapframe);
#endif
		/* Reenable interrupts if necessary */
		if (trapframe->sr & SR_INT_ENAB) {
			enableintr();
		}
		return;

	case T_BREAK+T_USER:
	    {
		caddr_t va;
		u_int32_t instr;
		struct trap_frame *locr0 = p->p_md.md_regs;

		/* compute address of break instruction */
		va = (caddr_t)trapframe->pc;
		if (trapframe->cause & CR_BR_DELAY)
			va += 4;

		/* read break instruction */
		copyin(va, &instr, sizeof(int32_t));

		switch ((instr & BREAK_VAL_MASK) >> BREAK_VAL_SHIFT) {
		case 6:	/* gcc range error */
			i = SIGFPE;
			typ = FPE_FLTSUB;
			/* skip instruction */
			if (trapframe->cause & CR_BR_DELAY)
				locr0->pc = MipsEmulateBranch(locr0,
				    trapframe->pc, 0, 0);
			else
				locr0->pc += 4;
			break;
		case 7:	/* gcc3 divide by zero */
			i = SIGFPE;
			typ = FPE_INTDIV;
			/* skip instruction */
			if (trapframe->cause & CR_BR_DELAY)
				locr0->pc = MipsEmulateBranch(locr0,
				    trapframe->pc, 0, 0);
			else
				locr0->pc += 4;
			break;
#ifdef PTRACE
		case BREAK_SSTEP_VAL:
			if (p->p_md.md_ss_addr == (long)va) {
#ifdef DEBUG
				printf("trap: %s (%d): breakpoint at %p "
				    "(insn %08x)\n",
				    p->p_comm, p->p_pid,
				    (void *)p->p_md.md_ss_addr,
				    p->p_md.md_ss_instr);
#endif

				/* Restore original instruction and clear BP */
				process_sstep(p, 0);
				typ = TRAP_BRKPT;
			} else {
				typ = TRAP_TRACE;
			}
			i = SIGTRAP;
			break;
#endif
#ifdef FPUEMUL
		case BREAK_FPUEMUL_VAL:
			/*
			 * If this is a genuine FP emulation break,
			 * resume execution to our branch destination.
			 */
			if ((p->p_md.md_flags & MDP_FPUSED) != 0 &&
			    p->p_md.md_fppgva + 4 == (vaddr_t)va) {
				struct vm_map *map = &p->p_vmspace->vm_map;

				p->p_md.md_flags &= ~MDP_FPUSED;
				locr0->pc = p->p_md.md_fpbranchva;

				/*
				 * Prevent access to the relocation page.
				 * XXX needs to be fixed to work with rthreads
				 */
				uvm_fault_unwire(map, p->p_md.md_fppgva,
				    p->p_md.md_fppgva + PAGE_SIZE);
				(void)uvm_map_protect(map, p->p_md.md_fppgva,
				    p->p_md.md_fppgva + PAGE_SIZE,
				    UVM_PROT_NONE, FALSE);
				return;
			}
			/* FALLTHROUGH */
#endif
		default:
			typ = TRAP_TRACE;
			i = SIGTRAP;
			break;
		}
		break;
	    }

	case T_IWATCH+T_USER:
	case T_DWATCH+T_USER:
	    {
		caddr_t va;
		/* compute address of trapped instruction */
		va = (caddr_t)trapframe->pc;
		if (trapframe->cause & CR_BR_DELAY)
			va += 4;
		printf("watch exception @ %p\n", va);
#ifdef RM7K_PERFCNTR
		if (rm7k_watchintr(trapframe)) {
			/* Return to user, don't add any more overhead */
			return;
		}
#endif
		i = SIGTRAP;
		typ = TRAP_BRKPT;
		break;
	    }

	case T_TRAP+T_USER:
	    {
		caddr_t va;
		u_int32_t instr;
		struct trap_frame *locr0 = p->p_md.md_regs;

		/* compute address of trap instruction */
		va = (caddr_t)trapframe->pc;
		if (trapframe->cause & CR_BR_DELAY)
			va += 4;
		/* read break instruction */
		copyin(va, &instr, sizeof(int32_t));

		if (trapframe->cause & CR_BR_DELAY)
			locr0->pc = MipsEmulateBranch(locr0,
			    trapframe->pc, 0, 0);
		else
			locr0->pc += 4;
#ifdef RM7K_PERFCNTR
		if (instr == 0x040c0000) { /* Performance cntr trap */
			int result;

			result = rm7k_perfcntr(trapframe->a0, trapframe->a1,
						trapframe->a2, trapframe->a3);
			locr0->v0 = -result;
			/* Return to user, don't add any more overhead */
			return;
		} else
#endif
		/*
		 * GCC 4 uses teq with code 7 to signal divide by
	 	 * zero at runtime. This is one instruction shorter
		 * than the BEQ + BREAK combination used by gcc 3.
		 */
		if ((instr & 0xfc00003f) == 0x00000034 /* teq */ &&
		    (instr & 0x001fffc0) == ((ZERO << 16) | (7 << 6))) {
			i = SIGFPE;
			typ = FPE_INTDIV;
		} else {
			i = SIGEMT;	/* Stuff it with something for now */
			typ = 0;
		}
		break;
	    }

	case T_RES_INST+T_USER:
		i = SIGILL;
		typ = ILL_ILLOPC;
		break;

	case T_COP_UNUSABLE+T_USER:
		/*
		 * Note MIPS IV COP1X instructions issued with FPU
		 * disabled correctly report coprocessor 1 as the
		 * unusable coprocessor number.
		 */
		if ((trapframe->cause & CR_COP_ERR) != CR_COP1_ERR) {
			i = SIGILL;	/* only FPU instructions allowed */
			typ = ILL_ILLOPC;
			break;
		}
#ifdef FPUEMUL
		MipsFPTrap(trapframe);
#else
		enable_fpu(p);
#endif
		return;

	case T_FPE:
		printf("FPU Trap: PC %lx CR %lx SR %lx\n",
			trapframe->pc, trapframe->cause, trapframe->sr);
		goto err;

	case T_FPE+T_USER:
		MipsFPTrap(trapframe);
		return;

	case T_OVFLOW+T_USER:
		i = SIGFPE;
		typ = FPE_FLTOVF;
		break;

	case T_ADDR_ERR_LD:	/* misaligned access */
	case T_ADDR_ERR_ST:	/* misaligned access */
	case T_BUS_ERR_LD_ST:	/* BERR asserted to cpu */
		pcb = &p->p_addr->u_pcb;
		if ((onfault = pcb->pcb_onfault) != 0) {
			pcb->pcb_onfault = 0;
			trapframe->pc = onfault_table[onfault];
			return;
		}
		goto err;

	default:
	err:
		disableintr();
#if !defined(DDB) && defined(DEBUG)
		trapDump("trap", printf);
#endif
		printf("\nTrap cause = %d Frame %p\n", type, trapframe);
		printf("Trap PC %p RA %p fault %p\n",
		    (void *)trapframe->pc, (void *)trapframe->ra,
		    (void *)trapframe->badvaddr);
#ifdef DDB
		stacktrace(!USERMODE(trapframe->sr) ? trapframe : p->p_md.md_regs);
		kdb_trap(type, trapframe);
#endif
		panic("trap");
	}

#ifdef FPUEMUL
	/*
	 * If a relocated delay slot causes an exception, blame the
	 * original delay slot address - userland is not supposed to
	 * know anything about emulation bowels.
	 */
	if ((p->p_md.md_flags & MDP_FPUSED) != 0 &&
	    trapframe->badvaddr == p->p_md.md_fppgva)
		trapframe->badvaddr = p->p_md.md_fpslotva;
#endif
	p->p_md.md_regs->pc = trapframe->pc;
	p->p_md.md_regs->cause = trapframe->cause;
	p->p_md.md_regs->badvaddr = trapframe->badvaddr;
	sv.sival_ptr = (void *)trapframe->badvaddr;
	KERNEL_LOCK();
	trapsignal(p, i, ucode, typ, sv);
	KERNEL_UNLOCK();
}
Beispiel #3
0
/*
 * trap(frame): exception, fault, and trap interface to BSD kernel.
 *
 * This common code is called from assembly language IDT gate entry routines
 * that prepare a suitable stack frame, and restore this frame after the
 * exception has been processed. Note that the effect is as if the arguments
 * were passed call by reference.
 */
void
trap(struct trapframe *frame)
{
	struct lwp *l = curlwp;
	struct proc *p;
	struct pcb *pcb;
	extern char fusubail[], kcopy_fault[], return_address_fault[],
	    IDTVEC(osyscall)[];
	struct trapframe *vframe;
	ksiginfo_t ksi;
	void *onfault;
	int type, error;
	uint32_t cr2;
	bool pfail;

	if (__predict_true(l != NULL)) {
		pcb = lwp_getpcb(l);
		p = l->l_proc;
	} else {
		/*
		 * this can happen eg. on break points in early on boot.
		 */
		pcb = NULL;
		p = NULL;
	}
	type = frame->tf_trapno;

#ifdef DEBUG
	if (trapdebug) {
		trap_print(frame, l);
	}
#endif
	if (type != T_NMI &&
	    !KERNELMODE(frame->tf_cs, frame->tf_eflags)) {
		type |= T_USER;
		l->l_md.md_regs = frame;
		pcb->pcb_cr2 = 0;
		LWP_CACHE_CREDS(l, p);
	}

#ifdef KDTRACE_HOOKS
	/*
	 * A trap can occur while DTrace executes a probe. Before
	 * executing the probe, DTrace blocks re-scheduling and sets
	 * a flag in its per-cpu flags to indicate that it doesn't
	 * want to fault. On returning from the the probe, the no-fault
	 * flag is cleared and finally re-scheduling is enabled.
	 *
	 * If the DTrace kernel module has registered a trap handler,
	 * call it and if it returns non-zero, assume that it has
	 * handled the trap and modified the trap frame so that this
	 * function can return normally.
	 */
	if ((type == T_PROTFLT || type == T_PAGEFLT) &&
	    dtrace_trap_func != NULL) {
		if ((*dtrace_trap_func)(frame, type)) {
			return;
		}
	}
#endif

	switch (type) {

	case T_ASTFLT:
		/*FALLTHROUGH*/

	default:
	we_re_toast:
		if (type == T_TRCTRAP)
			check_dr0();
		else
			trap_print(frame, l);

		if (kdb_trap(type, 0, frame))
			return;
		if (kgdb_trap(type, frame))
			return;
		/*
		 * If this is a breakpoint, don't panic if we're not connected.
		 */
		if (type == T_BPTFLT && kgdb_disconnected()) {
			printf("kgdb: ignored %s\n", trap_type[type]);
			return;
		}
		panic("trap");
		/*NOTREACHED*/

	case T_PROTFLT:
	case T_SEGNPFLT:
	case T_ALIGNFLT:
	case T_TSSFLT:
		if (p == NULL)
			goto we_re_toast;
		/* Check for copyin/copyout fault. */
		onfault = onfault_handler(pcb, frame);
		if (onfault != NULL) {
copyefault:
			error = EFAULT;
copyfault:
			frame->tf_eip = (uintptr_t)onfault;
			frame->tf_eax = error;
			return;
		}

		/*
		 * Check for failure during return to user mode.
		 * This can happen loading invalid values into the segment
		 * registers, or during the 'iret' itself.
		 *
		 * We do this by looking at the instruction we faulted on.
		 * The specific instructions we recognize only happen when
		 * returning from a trap, syscall, or interrupt.
		 */

kernelfault:
		KSI_INIT_TRAP(&ksi);
		ksi.ksi_signo = SIGSEGV;
		ksi.ksi_code = SEGV_ACCERR;
		ksi.ksi_trap = type;

		switch (*(u_char *)frame->tf_eip) {
		case 0xcf:	/* iret */
			/*
			 * The 'iret' instruction faulted, so we have the
			 * 'user' registers saved after the kernel %eip:%cs:%fl
			 * of the 'iret' and below that the user %eip:%cs:%fl
			 * the 'iret' was processing.
			 * We must delete the 3 words of kernel return address
			 * from the stack to generate a normal stack frame
			 * (eg for sending a SIGSEGV).
			 */
			vframe = (void *)((int *)frame + 3);
			if (KERNELMODE(vframe->tf_cs, vframe->tf_eflags))
				goto we_re_toast;
			memmove(vframe, frame,
			    offsetof(struct trapframe, tf_eip));
			/* Set the faulting address to the user %eip */
			ksi.ksi_addr = (void *)vframe->tf_eip;
			break;
		case 0x8e:
			switch (*(uint32_t *)frame->tf_eip) {
			case 0x8e242c8e:	/* mov (%esp,%gs), then */
			case 0x0424648e:	/* mov 0x4(%esp),%fs */
			case 0x0824448e:	/* mov 0x8(%esp),%es */
			case 0x0c245c8e:	/* mov 0xc(%esp),%ds */
				break;
			default:
				goto we_re_toast;
			}
			/*
			 * We faulted loading one if the user segment registers.
			 * The stack frame containing the user registers is
			 * still valid and is just below the %eip:%cs:%fl of
			 * the kernel fault frame.
			 */
			vframe = (void *)(&frame->tf_eflags + 1);
			if (KERNELMODE(vframe->tf_cs, vframe->tf_eflags))
				goto we_re_toast;
			/* There is no valid address for the fault */
			break;
		default:
			goto we_re_toast;
		}
		/*
		 * We might have faulted trying to execute the
		 * trampoline for a local (nested) signal handler.
		 * Only generate SIGSEGV if the user %cs isn't changed.
		 * (This is only strictly necessary in the 'iret' case.)
		 */
		if (!pmap_exec_fixup(&p->p_vmspace->vm_map, vframe, pcb)) {
			/* Save outer frame for any signal return */
			l->l_md.md_regs = vframe;
			(*p->p_emul->e_trapsignal)(l, &ksi);
		}
		/* Return to user by reloading the user frame */
		trap_return_fault_return(vframe);
		/* NOTREACHED */

	case T_PROTFLT|T_USER:		/* protection fault */
	case T_TSSFLT|T_USER:
	case T_SEGNPFLT|T_USER:
	case T_STKFLT|T_USER:
	case T_ALIGNFLT|T_USER:
		KSI_INIT_TRAP(&ksi);

		ksi.ksi_addr = (void *)rcr2();
		switch (type) {
		case T_SEGNPFLT|T_USER:
		case T_STKFLT|T_USER:
			ksi.ksi_signo = SIGBUS;
			ksi.ksi_code = BUS_ADRERR;
			break;
		case T_TSSFLT|T_USER:
			ksi.ksi_signo = SIGBUS;
			ksi.ksi_code = BUS_OBJERR;
			break;
		case T_ALIGNFLT|T_USER:
			ksi.ksi_signo = SIGBUS;
			ksi.ksi_code = BUS_ADRALN;
			break;
		case T_PROTFLT|T_USER:
#ifdef VM86
			if (frame->tf_eflags & PSL_VM) {
				vm86_gpfault(l, type & ~T_USER);
				goto out;
			}
#endif
			/*
			 * If pmap_exec_fixup does something,
			 * let's retry the trap.
			 */
			if (pmap_exec_fixup(&p->p_vmspace->vm_map, frame, pcb)){
				goto out;
			}
			ksi.ksi_signo = SIGSEGV;
			ksi.ksi_code = SEGV_ACCERR;
			break;
		default:
			KASSERT(0);
			break;
		}
		goto trapsignal;

	case T_PRIVINFLT|T_USER:	/* privileged instruction fault */
	case T_FPOPFLT|T_USER:		/* coprocessor operand fault */
		KSI_INIT_TRAP(&ksi);
		ksi.ksi_signo = SIGILL;
		ksi.ksi_addr = (void *) frame->tf_eip;
		switch (type) {
		case T_PRIVINFLT|T_USER:
			ksi.ksi_code = ILL_PRVOPC;
			break;
		case T_FPOPFLT|T_USER:
			ksi.ksi_code = ILL_COPROC;
			break;
		default:
			ksi.ksi_code = 0;
			break;
		}
		goto trapsignal;

	case T_ASTFLT|T_USER:
		/* Allow process switch. */
		//curcpu()->ci_data.cpu_nast++;
		if (l->l_pflag & LP_OWEUPC) {
			l->l_pflag &= ~LP_OWEUPC;
			ADDUPROF(l);
		}
		/* Allow a forced task switch. */
		if (curcpu()->ci_want_resched) {
			preempt();
		}
		goto out;

	case T_BOUND|T_USER:
	case T_OFLOW|T_USER:
	case T_DIVIDE|T_USER:
		KSI_INIT_TRAP(&ksi);
		ksi.ksi_signo = SIGFPE;
		ksi.ksi_addr = (void *)frame->tf_eip;
		switch (type) {
		case T_BOUND|T_USER:
			ksi.ksi_code = FPE_FLTSUB;
			break;
		case T_OFLOW|T_USER:
			ksi.ksi_code = FPE_INTOVF;
			break;
		case T_DIVIDE|T_USER:
			ksi.ksi_code = FPE_INTDIV;
			break;
		default:
			ksi.ksi_code = 0;
			break;
		}
		goto trapsignal;

	case T_PAGEFLT:
		/* Allow page faults in kernel mode. */
		if (__predict_false(l == NULL))
			goto we_re_toast;

		/*
		 * fusubail is used by [fs]uswintr() to prevent page faulting
		 * from inside the profiling interrupt.
		 */
		onfault = pcb->pcb_onfault;
		if (onfault == fusubail || onfault == return_address_fault) {
			goto copyefault;
		}
		if (cpu_intr_p() || (l->l_pflag & LP_INTR) != 0) {
			goto we_re_toast;
		}

		cr2 = rcr2();
		goto faultcommon;

	case T_PAGEFLT|T_USER: {	/* page fault */
		register vaddr_t va;
		register struct vmspace *vm;
		register struct vm_map *map;
		vm_prot_t ftype;
		extern struct vm_map *kernel_map;

		cr2 = rcr2();
faultcommon:
		vm = p->p_vmspace;
		if (__predict_false(vm == NULL)) {
			goto we_re_toast;
		}
		pcb->pcb_cr2 = cr2;
		va = trunc_page((vaddr_t)cr2);
		/*
		 * It is only a kernel address space fault iff:
		 *	1. (type & T_USER) == 0  and
		 *	2. pcb_onfault not set or
		 *	3. pcb_onfault set but supervisor space fault
		 * The last can occur during an exec() copyin where the
		 * argument space is lazy-allocated.
		 */
		if (type == T_PAGEFLT && va >= KERNBASE)
			map = kernel_map;
		else
			map = &vm->vm_map;
		if (frame->tf_err & PGEX_W)
			ftype = VM_PROT_WRITE;
		else if (frame->tf_err & PGEX_X)
			ftype = VM_PROT_EXECUTE;
		else
			ftype = VM_PROT_READ;

#ifdef DIAGNOSTIC
		if (map == kernel_map && va == 0) {
			printf("trap: bad kernel access at %lx\n", va);
			goto we_re_toast;
		}
#endif
		/* Fault the original page in. */
		onfault = pcb->pcb_onfault;
		pcb->pcb_onfault = NULL;
		error = uvm_fault(map, va, ftype);
		pcb->pcb_onfault = onfault;
		if (error == 0) {
			if (map != kernel_map && (void *)va >= vm->vm_maxsaddr)
				uvm_grow(p, va);

			pfail = false;
			while (type == T_PAGEFLT) {
				/*
				 * we need to switch pmap now if we're in
				 * the middle of copyin/out.
				 *
				 * but we don't need to do so for kcopy as
				 * it never touch userspace.
 				 */
				kpreempt_disable();
				if (curcpu()->ci_want_pmapload) {
					onfault = onfault_handler(pcb, frame);
					if (onfault != kcopy_fault) {
						pmap_load();
					}
				}
				/*
				 * We need to keep the pmap loaded and
				 * so avoid being preempted until back
				 * into the copy functions.  Disable
				 * interrupts at the hardware level before
				 * re-enabling preemption.  Interrupts
				 * will be re-enabled by 'iret' when
				 * returning back out of the trap stub.
				 * They'll only be re-enabled when the
				 * program counter is once again in
				 * the copy functions, and so visible
				 * to cpu_kpreempt_exit().
				 */
#ifndef XEN
				x86_disable_intr();
#endif
				l->l_nopreempt--;
				if (l->l_nopreempt > 0 || !l->l_dopreempt ||
				    pfail) {
					return;
				}
#ifndef XEN
				x86_enable_intr();
#endif
				/*
				 * If preemption fails for some reason,
				 * don't retry it.  The conditions won't
				 * change under our nose.
				 */
				pfail = kpreempt(0);
			}
			goto out;
		}

		if (type == T_PAGEFLT) {
			onfault = onfault_handler(pcb, frame);
			if (onfault != NULL)
				goto copyfault;
			printf("uvm_fault(%p, %#lx, %d) -> %#x\n",
			    map, va, ftype, error);
			goto kernelfault;
		}

		KSI_INIT_TRAP(&ksi);
		ksi.ksi_trap = type & ~T_USER;
		ksi.ksi_addr = (void *)cr2;
		switch (error) {
		case EINVAL:
			ksi.ksi_signo = SIGBUS;
			ksi.ksi_code = BUS_ADRERR;
			break;
		case EACCES:
			ksi.ksi_signo = SIGSEGV;
			ksi.ksi_code = SEGV_ACCERR;
			error = EFAULT;
			break;
		case ENOMEM:
			ksi.ksi_signo = SIGKILL;
			printf("UVM: pid %d.%d (%s), uid %d killed: "
			    "out of swap\n", p->p_pid, l->l_lid, p->p_comm,
			    l->l_cred ?  kauth_cred_geteuid(l->l_cred) : -1);
			break;
		default:
			ksi.ksi_signo = SIGSEGV;
			ksi.ksi_code = SEGV_MAPERR;
			break;
		}

#ifdef TRAP_SIGDEBUG
		printf("pid %d.%d (%s): signal %d at eip %x addr %lx "
		    "error %d\n", p->p_pid, l->l_lid, p->p_comm, ksi.ksi_signo,
		    frame->tf_eip, va, error);
#endif
		(*p->p_emul->e_trapsignal)(l, &ksi);
		break;
	}

	case T_TRCTRAP:
		/* Check whether they single-stepped into a lcall. */
		if (frame->tf_eip == (int)IDTVEC(osyscall))
			return;
		if (frame->tf_eip == (int)IDTVEC(osyscall) + 1) {
			frame->tf_eflags &= ~PSL_T;
			return;
		}
		goto we_re_toast;

	case T_BPTFLT|T_USER:		/* bpt instruction fault */
	case T_TRCTRAP|T_USER:		/* trace trap */
		/*
		 * Don't go single-stepping into a RAS.
		 */
		if (p->p_raslist == NULL ||
		    (ras_lookup(p, (void *)frame->tf_eip) == (void *)-1)) {
			KSI_INIT_TRAP(&ksi);
			ksi.ksi_signo = SIGTRAP;
			ksi.ksi_trap = type & ~T_USER;
			if (type == (T_BPTFLT|T_USER))
				ksi.ksi_code = TRAP_BRKPT;
			else
				ksi.ksi_code = TRAP_TRACE;
			ksi.ksi_addr = (void *)frame->tf_eip;
			(*p->p_emul->e_trapsignal)(l, &ksi);
		}
		break;

	case T_NMI:
		if (nmi_dispatch(frame))
			return;
		/* NMI can be hooked up to a pushbutton for debugging */
		if (kgdb_trap(type, frame))
			return;
		if (kdb_trap(type, 0, frame))
			return;
		/* machine/parity/power fail/"kitchen sink" faults */
#if NMCA > 0
		mca_nmi();
#endif
		x86_nmi();
	}

	if ((type & T_USER) == 0)
		return;
out:
	userret(l);
	return;
trapsignal:
	ksi.ksi_trap = type & ~T_USER;
	(*p->p_emul->e_trapsignal)(l, &ksi);
	userret(l);
}
Beispiel #4
0
void
trap(struct trapframe *tf)
{
	u_int	sig = 0, type = tf->tf_trap, code = 0;
	u_int	rv, addr;
	bool trapsig = true;
	const bool usermode = USERMODE_P(tf);
	struct lwp * const l = curlwp;
	struct proc * const p = l->l_proc;
	struct pcb * const pcb = lwp_getpcb(l);
	u_quad_t oticks = 0;
	struct vmspace *vm;
	struct vm_map *map;
	vm_prot_t ftype;
	void *onfault = pcb->pcb_onfault;

	KASSERT(p != NULL);
	curcpu()->ci_data.cpu_ntrap++;
	if (usermode) {
		type |= T_USER;
		oticks = p->p_sticks;
		l->l_md.md_utf = tf; 
		LWP_CACHE_CREDS(l, p);
	}

	type &= ~(T_WRITE|T_PTEFETCH);


#ifdef TRAPDEBUG
if(tf->tf_trap==7) goto fram;
if(faultdebug)printf("Trap: type %lx, code %lx, pc %lx, psl %lx\n",
		tf->tf_trap, tf->tf_code, tf->tf_pc, tf->tf_psl);
fram:
#endif
	switch (type) {

	default:
#ifdef DDB
		kdb_trap(tf);
#endif
		panic("trap: type %x, code %x, pc %x, psl %x",
		    (u_int)tf->tf_trap, (u_int)tf->tf_code,
		    (u_int)tf->tf_pc, (u_int)tf->tf_psl);

	case T_KSPNOTVAL:
		panic("%d.%d (%s): KSP invalid %#x@%#x pcb %p fp %#x psl %#x)",
		    p->p_pid, l->l_lid, l->l_name ? l->l_name : "??",
		    mfpr(PR_KSP), (u_int)tf->tf_pc, pcb,
		    (u_int)tf->tf_fp, (u_int)tf->tf_psl);

	case T_TRANSFLT|T_USER:
	case T_TRANSFLT:
		/*
		 * BUG! BUG! BUG! BUG! BUG!
		 * Due to a hardware bug (at in least KA65x CPUs) a double
		 * page table fetch trap will cause a translation fault
		 * even if access in the SPT PTE entry specifies 'no access'.
		 * In for example section 6.4.2 in VAX Architecture 
		 * Reference Manual it states that if a page both are invalid
		 * and have no access set, a 'access violation fault' occurs.
		 * Therefore, we must fall through here...
		 */
#ifdef nohwbug
		panic("translation fault");
#endif

	case T_PTELEN|T_USER:	/* Page table length exceeded */
	case T_ACCFLT|T_USER:
		if (tf->tf_code < 0) { /* Check for kernel space */
			sig = SIGSEGV;
			code = SEGV_ACCERR;
			break;
		}

	case T_PTELEN:
#ifndef MULTIPROCESSOR
		/*
		 * If we referred to an address beyond the end of the system
		 * page table, it may be due to a failed CAS
		 * restartable-atomic-sequence.  If it is, restart it at the
		 * beginning and restart.
		 */
		{
			extern const uint8_t cas32_ras_start[], cas32_ras_end[];
			if (tf->tf_code == CASMAGIC
			    && tf->tf_pc >= (uintptr_t) cas32_ras_start
			    && tf->tf_pc < (uintptr_t) cas32_ras_end) {
				tf->tf_pc = (uintptr_t) cas32_ras_start;
				trapsig = false;
				break;
			}
		}
		/* FALLTHROUGH */
#endif
	case T_ACCFLT:
#ifdef TRAPDEBUG
if(faultdebug)printf("trap accflt type %lx, code %lx, pc %lx, psl %lx\n",
			tf->tf_trap, tf->tf_code, tf->tf_pc, tf->tf_psl);
#endif
#ifdef DIAGNOSTIC
		if (p == 0)
			panic("trap: access fault: addr %lx code %lx",
			    tf->tf_pc, tf->tf_code);
		if (tf->tf_psl & PSL_IS)
			panic("trap: pflt on IS");
#endif

		/*
		 * Page tables are allocated in pmap_enter(). We get 
		 * info from below if it is a page table fault, but
		 * UVM may want to map in pages without faults, so
		 * because we must check for PTE pages anyway we don't
		 * bother doing it here.
		 */
		addr = trunc_page(tf->tf_code);
		if (!usermode && (tf->tf_code < 0)) {
			vm = NULL;
			map = kernel_map;

		} else {
			vm = p->p_vmspace;
			map = &vm->vm_map;
		}

		if (tf->tf_trap & T_WRITE)
			ftype = VM_PROT_WRITE;
		else
			ftype = VM_PROT_READ;

		pcb->pcb_onfault = NULL;
		rv = uvm_fault(map, addr, ftype);
		pcb->pcb_onfault = onfault;
		if (rv != 0) {
			if (!usermode) {
				if (onfault) {
					pcb->pcb_onfault = NULL;
					tf->tf_pc = (unsigned)onfault;
					tf->tf_psl &= ~PSL_FPD;
					tf->tf_r0 = rv;
					return;
				}
				printf("r0=%08lx r1=%08lx r2=%08lx r3=%08lx ",
				    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
				printf("r4=%08lx r5=%08lx r6=%08lx r7=%08lx\n",
				    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
				printf(
				    "r8=%08lx r9=%08lx r10=%08lx r11=%08lx\n",
				    tf->tf_r8, tf->tf_r9, tf->tf_r10,
				    tf->tf_r11);
				printf("ap=%08lx fp=%08lx sp=%08lx pc=%08lx\n",
				    tf->tf_ap, tf->tf_fp, tf->tf_sp, tf->tf_pc);
				panic("SEGV in kernel mode: pc %#lx addr %#lx",
				    tf->tf_pc, tf->tf_code);
			}
			switch (rv) {
			case ENOMEM:
				printf("UVM: pid %d (%s), uid %d killed: "
				       "out of swap\n",
				       p->p_pid, p->p_comm,
				       l->l_cred ?
				       kauth_cred_geteuid(l->l_cred) : -1);
				sig = SIGKILL;
				code = SI_NOINFO;
				break;
			case EINVAL:
				code = BUS_ADRERR;
				sig = SIGBUS;
				break;
			case EACCES:
				code = SEGV_ACCERR;
				sig = SIGSEGV;
				break;
			default:
				code = SEGV_MAPERR;
				sig = SIGSEGV;
				break;
			}
		} else {
			trapsig = false;
			if (map != kernel_map && addr > 0
			    && (void *)addr >= vm->vm_maxsaddr)
				uvm_grow(p, addr);
		}
		break;

	case T_BPTFLT|T_USER:
		sig = SIGTRAP;
		code = TRAP_BRKPT;
		break;
	case T_TRCTRAP|T_USER:
		sig = SIGTRAP;
		code = TRAP_TRACE;
		tf->tf_psl &= ~PSL_T;
		break;

	case T_PRIVINFLT|T_USER:
		sig = SIGILL;
		code = ILL_PRVOPC;
		break;
	case T_RESADFLT|T_USER:
		sig = SIGILL;
		code = ILL_ILLADR;
		break;
	case T_RESOPFLT|T_USER:
		sig = SIGILL;
		code = ILL_ILLOPC;
		break;

	case T_XFCFLT|T_USER:
		sig = SIGEMT;
		break;

	case T_ARITHFLT|T_USER:
		sig = SIGFPE;
		switch (tf->tf_code) {
		case ATRP_INTOVF: code = FPE_INTOVF; break;
		case ATRP_INTDIV: code = FPE_INTDIV; break;
		case ATRP_FLTOVF: code = FPE_FLTOVF; break;
		case ATRP_FLTDIV: code = FPE_FLTDIV; break;
		case ATRP_FLTUND: code = FPE_FLTUND; break;
		case ATRP_DECOVF: code = FPE_INTOVF; break;
		case ATRP_FLTSUB: code = FPE_FLTSUB; break;
		case AFLT_FLTDIV: code = FPE_FLTDIV; break;
		case AFLT_FLTUND: code = FPE_FLTUND; break;
		case AFLT_FLTOVF: code = FPE_FLTOVF; break;
		default:	  code = FPE_FLTINV; break;
		}
		break;

	case T_ASTFLT|T_USER:
		mtpr(AST_NO,PR_ASTLVL);
		trapsig = false;
		if (curcpu()->ci_want_resched)
			preempt();
		break;

#ifdef DDB
	case T_BPTFLT: /* Kernel breakpoint */
	case T_KDBTRAP:
	case T_KDBTRAP|T_USER:
	case T_TRCTRAP:
		kdb_trap(tf);
		return;
#endif
	}
	if (trapsig) {
		ksiginfo_t ksi;
		if ((sig == SIGSEGV || sig == SIGILL)
		    && cpu_printfataltraps
		    && (p->p_slflag & PSL_TRACED) == 0
		    && !sigismember(&p->p_sigctx.ps_sigcatch, sig))
			printf("pid %d.%d (%s): sig %d: type %lx, code %lx, pc %lx, psl %lx\n",
			       p->p_pid, l->l_lid, p->p_comm, sig, tf->tf_trap,
			       tf->tf_code, tf->tf_pc, tf->tf_psl);
		KSI_INIT_TRAP(&ksi);
		ksi.ksi_signo = sig;
		ksi.ksi_trap = tf->tf_trap;
		ksi.ksi_addr = (void *)tf->tf_code;
		ksi.ksi_code = code;

		/*
		 * Arithmetic exceptions can be of two kinds:
		 * - traps (codes 1..7), where pc points to the
		 *   next instruction to execute.
		 * - faults (codes 8..10), where pc points to the
		 *   faulting instruction.
		 * In the latter case, we need to advance pc by ourselves
		 * to prevent a signal loop.
		 *
		 * XXX this is gross -- miod
		 */
		if (type == (T_ARITHFLT | T_USER) && (tf->tf_code & 8))
			tf->tf_pc = skip_opcode(tf->tf_pc);

		trapsignal(l, &ksi);
	}

	if (!usermode)
		return;

	userret(l, tf, oticks);
}
Beispiel #5
0
void
m88110_trap(unsigned type, struct trapframe *frame)
{
	struct proc *p;
	u_quad_t sticks = 0;
	struct vm_map *map;
	vaddr_t va, pcb_onfault;
	vm_prot_t ftype;
	int fault_type;
	u_long fault_code;
	unsigned nss, fault_addr;
	struct vmspace *vm;
	union sigval sv;
	int result;
#ifdef DDB
        int s;
#endif
	int sig = 0;
	pt_entry_t *pte;

	extern struct vm_map *kernel_map;
	extern unsigned guarded_access_start;
	extern unsigned guarded_access_end;
	extern unsigned guarded_access_bad;
	extern pt_entry_t *pmap_pte(pmap_t, vaddr_t);

	uvmexp.traps++;
	if ((p = curproc) == NULL)
		p = &proc0;

	if (USERMODE(frame->tf_epsr)) {
		sticks = p->p_sticks;
		type += T_USER;
		p->p_md.md_tf = frame;	/* for ptrace/signals */
	}
	fault_type = 0;
	fault_code = 0;
	fault_addr = frame->tf_exip & XIP_ADDR;

	switch (type) {
	default:
		panictrap(frame->tf_vector, frame);
		break;
		/*NOTREACHED*/

	case T_197_READ+T_USER:
	case T_197_READ:
		printf("DMMU read miss: Hardware Table Searches should be enabled!\n");
		panictrap(frame->tf_vector, frame);
		break;
		/*NOTREACHED*/
	case T_197_WRITE+T_USER:
	case T_197_WRITE:
		printf("DMMU write miss: Hardware Table Searches should be enabled!\n");
		panictrap(frame->tf_vector, frame);
		break;
		/*NOTREACHED*/
	case T_197_INST+T_USER:
	case T_197_INST:
		printf("IMMU miss: Hardware Table Searches should be enabled!\n");
		panictrap(frame->tf_vector, frame);
		break;
		/*NOTREACHED*/
#ifdef DDB
	case T_KDB_TRACE:
		s = splhigh();
		db_enable_interrupt();
		ddb_break_trap(T_KDB_TRACE, (db_regs_t*)frame);
		db_disable_interrupt();
		splx(s);
		return;
	case T_KDB_BREAK:
		s = splhigh();
		db_enable_interrupt();
		ddb_break_trap(T_KDB_BREAK, (db_regs_t*)frame);
		db_disable_interrupt();
		splx(s);
		return;
	case T_KDB_ENTRY:
		s = splhigh();
		db_enable_interrupt();
		ddb_entry_trap(T_KDB_ENTRY, (db_regs_t*)frame);
		db_disable_interrupt();
		/* skip one instruction */
		if (frame->tf_exip & 1)
			frame->tf_exip = frame->tf_enip;
		else
			frame->tf_exip += 4;
		splx(s);
		return;
#if 0
	case T_ILLFLT:
		s = splhigh();
		db_enable_interrupt();
		ddb_error_trap(type == T_ILLFLT ? "unimplemented opcode" :
		       "error fault", (db_regs_t*)frame);
		db_disable_interrupt();
		splx(s);
		return;
#endif /* 0 */
#endif /* DDB */
	case T_ILLFLT:
		printf("Unimplemented opcode!\n");
		panictrap(frame->tf_vector, frame);
		break;
	case T_NON_MASK:
	case T_NON_MASK+T_USER:
		(*md.interrupt_func)(T_NON_MASK, frame);
		return;
	case T_INT:
	case T_INT+T_USER:
		(*md.interrupt_func)(T_INT, frame);
		return;
	case T_MISALGNFLT:
		printf("kernel mode misaligned access exception @ 0x%08x\n",
		    frame->tf_exip);
		panictrap(frame->tf_vector, frame);
		break;
		/*NOTREACHED*/

	case T_INSTFLT:
		/* kernel mode instruction access fault.
		 * Should never, never happen for a non-paged kernel.
		 */
#ifdef TRAPDEBUG
		printf("Kernel Instruction fault exip %x isr %x ilar %x\n",
		    frame->tf_exip, frame->tf_isr, frame->tf_ilar);
#endif
		panictrap(frame->tf_vector, frame);
		break;
		/*NOTREACHED*/

	case T_DATAFLT:
		/* kernel mode data fault */

		/* data fault on the user address? */
		if ((frame->tf_dsr & CMMU_DSR_SU) == 0) {
			type = T_DATAFLT + T_USER;
			goto m88110_user_fault;
		}

#ifdef TRAPDEBUG
		printf("Kernel Data access fault exip %x dsr %x dlar %x\n",
		    frame->tf_exip, frame->tf_dsr, frame->tf_dlar);
#endif

		fault_addr = frame->tf_dlar;
		if (frame->tf_dsr & CMMU_DSR_RW) {
			ftype = VM_PROT_READ;
			fault_code = VM_PROT_READ;
		} else {
			ftype = VM_PROT_READ|VM_PROT_WRITE;
			fault_code = VM_PROT_WRITE;
		}

		va = trunc_page((vaddr_t)fault_addr);
		if (va == 0) {
			panic("trap: bad kernel access at %x", fault_addr);
		}

		vm = p->p_vmspace;
		map = kernel_map;

		if (frame->tf_dsr & CMMU_DSR_BE) {
			/*
			 * If it is a guarded access, bus error is OK.
			 */
			if ((frame->tf_exip & XIP_ADDR) >=
			      (unsigned)&guarded_access_start &&
			    (frame->tf_exip & XIP_ADDR) <=
			      (unsigned)&guarded_access_end) {
				frame->tf_exip = (unsigned)&guarded_access_bad;
				return;
			}
		}
		if (frame->tf_dsr & (CMMU_DSR_SI | CMMU_DSR_PI)) {
			frame->tf_dsr &= ~CMMU_DSR_WE;	/* undefined */
			/*
			 * On a segment or a page fault, call uvm_fault() to
			 * resolve the fault.
			 */
			if ((pcb_onfault = p->p_addr->u_pcb.pcb_onfault) != 0)
				p->p_addr->u_pcb.pcb_onfault = 0;
			result = uvm_fault(map, va, VM_FAULT_INVALID, ftype);
			p->p_addr->u_pcb.pcb_onfault = pcb_onfault;
			if (result == 0)
				return;
		}
		if (frame->tf_dsr & CMMU_DSR_WE) {	/* write fault  */
			/*
			 * This could be a write protection fault or an
			 * exception to set the used and modified bits
			 * in the pte. Basically, if we got a write error,
			 * then we already have a pte entry that faulted
			 * in from a previous seg fault or page fault.
			 * Get the pte and check the status of the
			 * modified and valid bits to determine if this
			 * indeed a real write fault.  XXX smurph
			 */
			pte = pmap_pte(map->pmap, va);
#ifdef DEBUG
			if (pte == PT_ENTRY_NULL)
				panic("NULL pte on write fault??");
#endif
			if (!(*pte & PG_M) && !(*pte & PG_RO)) {
				/* Set modified bit and try the write again. */
#ifdef TRAPDEBUG
				printf("Corrected kernel write fault, map %x pte %x\n",
				    map->pmap, *pte);
#endif
				*pte |= PG_M;
				return;
#if 1	/* shouldn't happen */
			} else {
				/* must be a real wp fault */
#ifdef TRAPDEBUG
				printf("Uncorrected kernel write fault, map %x pte %x\n",
				    map->pmap, *pte);
#endif
				if ((pcb_onfault = p->p_addr->u_pcb.pcb_onfault) != 0)
					p->p_addr->u_pcb.pcb_onfault = 0;
				result = uvm_fault(map, va, VM_FAULT_INVALID, ftype);
				p->p_addr->u_pcb.pcb_onfault = pcb_onfault;
				if (result == 0)
					return;
#endif
			}
		}
		panictrap(frame->tf_vector, frame);
		/* NOTREACHED */
	case T_INSTFLT+T_USER:
		/* User mode instruction access fault */
		/* FALLTHROUGH */
	case T_DATAFLT+T_USER:
m88110_user_fault:
		if (type == T_INSTFLT+T_USER) {
			ftype = VM_PROT_READ;
			fault_code = VM_PROT_READ;
#ifdef TRAPDEBUG
			printf("User Instruction fault exip %x isr %x ilar %x\n",
			    frame->tf_exip, frame->tf_isr, frame->tf_ilar);
#endif
		} else {
			fault_addr = frame->tf_dlar;
			if (frame->tf_dsr & CMMU_DSR_RW) {
				ftype = VM_PROT_READ;
				fault_code = VM_PROT_READ;
			} else {
				ftype = VM_PROT_READ|VM_PROT_WRITE;
				fault_code = VM_PROT_WRITE;
			}
#ifdef TRAPDEBUG
			printf("User Data access fault exip %x dsr %x dlar %x\n",
			    frame->tf_exip, frame->tf_dsr, frame->tf_dlar);
#endif
		}

		va = trunc_page((vaddr_t)fault_addr);

		vm = p->p_vmspace;
		map = &vm->vm_map;
		if ((pcb_onfault = p->p_addr->u_pcb.pcb_onfault) != 0)
			p->p_addr->u_pcb.pcb_onfault = 0;

		/*
		 * Call uvm_fault() to resolve non-bus error faults
		 * whenever possible.
		 */
		if (type == T_DATAFLT+T_USER) {
			/* data faults */
			if (frame->tf_dsr & CMMU_DSR_BE) {
				/* bus error */
				result = EACCES;
			} else
			if (frame->tf_dsr & (CMMU_DSR_SI | CMMU_DSR_PI)) {
				/* segment or page fault */
				result = uvm_fault(map, va, VM_FAULT_INVALID, ftype);
				p->p_addr->u_pcb.pcb_onfault = pcb_onfault;
				if (result == EACCES)
					result = EFAULT;
			} else
			if (frame->tf_dsr & (CMMU_DSR_CP | CMMU_DSR_WA)) {
				/* copyback or write allocate error */
				result = EACCES;
			} else
			if (frame->tf_dsr & CMMU_DSR_WE) {
				/* write fault  */
				/* This could be a write protection fault or an
				 * exception to set the used and modified bits
				 * in the pte. Basically, if we got a write
				 * error, then we already have a pte entry that
				 * faulted in from a previous seg fault or page
				 * fault.
				 * Get the pte and check the status of the
				 * modified and valid bits to determine if this
				 * indeed a real write fault.  XXX smurph
				 */
				pte = pmap_pte(vm_map_pmap(map), va);
#ifdef DEBUG
				if (pte == PT_ENTRY_NULL)
					panic("NULL pte on write fault??");
#endif
				if (!(*pte & PG_M) && !(*pte & PG_RO)) {
					/*
					 * Set modified bit and try the
					 * write again.
					 */
#ifdef TRAPDEBUG
					printf("Corrected userland write fault, map %x pte %x\n",
					    map->pmap, *pte);
#endif
					*pte |= PG_M;
					/*
					 * invalidate ATCs to force
					 * table search
					 */
					set_dcmd(CMMU_DCMD_INV_UATC);
					return;
				} else {
					/* must be a real wp fault */
#ifdef TRAPDEBUG
					printf("Uncorrected userland write fault, map %x pte %x\n",
					    map->pmap, *pte);
#endif
					result = uvm_fault(map, va, VM_FAULT_INVALID, ftype);
					p->p_addr->u_pcb.pcb_onfault = pcb_onfault;
					if (result == EACCES)
						result = EFAULT;
				}
			} else {
#ifdef TRAPDEBUG
				printf("Unexpected Data access fault dsr %x\n",
				    frame->tf_dsr);
#endif
				panictrap(frame->tf_vector, frame);
			}
		} else {
			/* instruction faults */
			if (frame->tf_isr &
			    (CMMU_ISR_BE | CMMU_ISR_SP | CMMU_ISR_TBE)) {
				/* bus error, supervisor protection */
				result = EACCES;
			} else
			if (frame->tf_isr & (CMMU_ISR_SI | CMMU_ISR_PI)) {
				/* segment or page fault */
				result = uvm_fault(map, va, VM_FAULT_INVALID, ftype);
				p->p_addr->u_pcb.pcb_onfault = pcb_onfault;
				if (result == EACCES)
					result = EFAULT;
			} else {
#ifdef TRAPDEBUG
				printf("Unexpected Instruction fault isr %x\n",
				    frame->tf_isr);
#endif
				panictrap(frame->tf_vector, frame);
			}
		}

		if ((caddr_t)va >= vm->vm_maxsaddr) {
			if (result == 0) {
				nss = btoc(USRSTACK - va);/* XXX check this */
				if (nss > vm->vm_ssize)
					vm->vm_ssize = nss;
			}
		}

		/*
		 * This could be a fault caused in copyin*()
		 * while accessing user space.
		 */
		if (result != 0 && pcb_onfault != 0) {
			frame->tf_exip = pcb_onfault;
			/*
			 * Continue as if the fault had been resolved.
			 */
			result = 0;
		}

		if (result != 0) {
			sig = result == EACCES ? SIGBUS : SIGSEGV;
			fault_type = result == EACCES ?
			    BUS_ADRERR : SEGV_MAPERR;
		}
		break;
	case T_MISALGNFLT+T_USER:
		/* Fix any misaligned ld.d or st.d instructions */
		sig = double_reg_fixup(frame);
		fault_type = BUS_ADRALN;
		break;
	case T_PRIVINFLT+T_USER:
	case T_ILLFLT+T_USER:
#ifndef DDB
	case T_KDB_BREAK:
	case T_KDB_ENTRY:
	case T_KDB_TRACE:
#endif
	case T_KDB_BREAK+T_USER:
	case T_KDB_ENTRY+T_USER:
	case T_KDB_TRACE+T_USER:
		sig = SIGILL;
		break;
	case T_BNDFLT+T_USER:
		sig = SIGFPE;
		break;
	case T_ZERODIV+T_USER:
		sig = SIGFPE;
		fault_type = FPE_INTDIV;
		break;
	case T_OVFFLT+T_USER:
		sig = SIGFPE;
		fault_type = FPE_INTOVF;
		break;
	case T_FPEPFLT+T_USER:
	case T_FPEIFLT+T_USER:
		sig = SIGFPE;
		break;
	case T_SIGSYS+T_USER:
		sig = SIGSYS;
		break;
	case T_SIGTRAP+T_USER:
		sig = SIGTRAP;
		fault_type = TRAP_TRACE;
		break;
	case T_STEPBPT+T_USER:
#ifdef PTRACE
		/*
		 * This trap is used by the kernel to support single-step
		 * debugging (although any user could generate this trap
		 * which should probably be handled differently). When a
		 * process is continued by a debugger with the PT_STEP
		 * function of ptrace (single step), the kernel inserts
		 * one or two breakpoints in the user process so that only
		 * one instruction (or two in the case of a delayed branch)
		 * is executed.  When this breakpoint is hit, we get the
		 * T_STEPBPT trap.
		 */
		{
			unsigned instr;
			unsigned pc = PC_REGS(&frame->tf_regs);

			/* read break instruction */
			copyin((caddr_t)pc, &instr, sizeof(unsigned));
#if 0
			printf("trap: %s (%d) breakpoint %x at %x: (adr %x ins %x)\n",
			       p->p_comm, p->p_pid, instr, pc,
			       p->p_md.md_ss_addr, p->p_md.md_ss_instr); /* XXX */
#endif
			/* check and see if we got here by accident */
#ifdef notyet
			if (p->p_md.md_ss_addr != pc || instr != SSBREAKPOINT) {
				sig = SIGTRAP;
				fault_type = TRAP_TRACE;
				break;
			}
#endif
			/* restore original instruction and clear BP  */
			instr = p->p_md.md_ss_instr;
			if (instr != 0)
				ss_put_value(p, pc, instr, sizeof(instr));

			p->p_md.md_ss_addr = 0;
			p->p_md.md_ss_instr = 0;
			sig = SIGTRAP;
			fault_type = TRAP_BRKPT;
		}
#else
		sig = SIGTRAP;
		fault_type = TRAP_TRACE;
#endif
		break;
	case T_USERBPT+T_USER:
		/*
		 * This trap is meant to be used by debuggers to implement
		 * breakpoint debugging.  When we get this trap, we just
		 * return a signal which gets caught by the debugger.
		 */
		sig = SIGTRAP;
		fault_type = TRAP_BRKPT;
		break;

	case T_ASTFLT+T_USER:
		uvmexp.softs++;
		want_ast = 0;
		if (p->p_flag & P_OWEUPC) {
			p->p_flag &= ~P_OWEUPC;
			ADDUPROF(p);
		}
		break;
	}

	/*
	 * If trap from supervisor mode, just return
	 */
	if (type < T_USER)
		return;

	if (sig) {
		sv.sival_int = fault_addr;
		trapsignal(p, sig, fault_code, fault_type, sv);
	}

	userret(p, frame, sticks);
}
Beispiel #6
0
void
m88100_trap(unsigned type, struct trapframe *frame)
{
	struct proc *p;
	u_quad_t sticks = 0;
	struct vm_map *map;
	vaddr_t va, pcb_onfault;
	vm_prot_t ftype;
	int fault_type, pbus_type;
	u_long fault_code;
	unsigned nss, fault_addr;
	struct vmspace *vm;
	union sigval sv;
	int result;
#ifdef DDB
	int s;
#endif
	int sig = 0;

	extern struct vm_map *kernel_map;
	extern caddr_t guarded_access_start;
	extern caddr_t guarded_access_end;
	extern caddr_t guarded_access_bad;

	uvmexp.traps++;
	if ((p = curproc) == NULL)
		p = &proc0;

	if (USERMODE(frame->tf_epsr)) {
		sticks = p->p_sticks;
		type += T_USER;
		p->p_md.md_tf = frame;	/* for ptrace/signals */
	}
	fault_type = 0;
	fault_code = 0;
	fault_addr = frame->tf_sxip & XIP_ADDR;

	switch (type) {
	default:
		panictrap(frame->tf_vector, frame);
		break;
		/*NOTREACHED*/

#if defined(DDB)
	case T_KDB_BREAK:
		s = splhigh();
		db_enable_interrupt();
		ddb_break_trap(T_KDB_BREAK, (db_regs_t*)frame);
		db_disable_interrupt();
		splx(s);
		return;
	case T_KDB_ENTRY:
		s = splhigh();
		db_enable_interrupt();
		ddb_entry_trap(T_KDB_ENTRY, (db_regs_t*)frame);
		db_disable_interrupt();
		splx(s);
		return;
#endif /* DDB */
	case T_ILLFLT:
		printf("Unimplemented opcode!\n");
		panictrap(frame->tf_vector, frame);
		break;
	case T_INT:
	case T_INT+T_USER:
		/* This function pointer is set in machdep.c
		   It calls m188_ext_int or sbc_ext_int depending
		   on the value of brdtyp - smurph */
		(*md.interrupt_func)(T_INT, frame);
		return;

	case T_MISALGNFLT:
		printf("kernel misaligned access exception @ 0x%08x\n",
		    frame->tf_sxip);
		panictrap(frame->tf_vector, frame);
		break;

	case T_INSTFLT:
		/* kernel mode instruction access fault.
		 * Should never, never happen for a non-paged kernel.
		 */
#ifdef TRAPDEBUG
		pbus_type = CMMU_PFSR_FAULT(frame->tf_ipfsr);
		printf("Kernel Instruction fault #%d (%s) v = 0x%x, frame 0x%x cpu %d\n",
		    pbus_type, pbus_exception_type[pbus_type],
		    fault_addr, frame, frame->tf_cpu);
#endif
		panictrap(frame->tf_vector, frame);
		break;

	case T_DATAFLT:
		/* kernel mode data fault */

		/* data fault on the user address? */
		if ((frame->tf_dmt0 & DMT_DAS) == 0) {
			type = T_DATAFLT + T_USER;
			goto user_fault;
		}

		fault_addr = frame->tf_dma0;
		if (frame->tf_dmt0 & (DMT_WRITE|DMT_LOCKBAR)) {
			ftype = VM_PROT_READ|VM_PROT_WRITE;
			fault_code = VM_PROT_WRITE;
		} else {
			ftype = VM_PROT_READ;
			fault_code = VM_PROT_READ;
		}

		va = trunc_page((vaddr_t)fault_addr);
		if (va == 0) {
			panic("trap: bad kernel access at %x", fault_addr);
		}

		vm = p->p_vmspace;
		map = kernel_map;

		pbus_type = CMMU_PFSR_FAULT(frame->tf_dpfsr);
#ifdef TRAPDEBUG
		printf("Kernel Data access fault #%d (%s) v = 0x%x, frame 0x%x cpu %d\n",
		    pbus_type, pbus_exception_type[pbus_type],
		    fault_addr, frame, frame->tf_cpu);
#endif

		switch (pbus_type) {
		case CMMU_PFSR_BERROR:
			/*
		 	 * If it is a guarded access, bus error is OK.
		 	 */
			if ((frame->tf_sxip & XIP_ADDR) >=
			      (unsigned)&guarded_access_start &&
			    (frame->tf_sxip & XIP_ADDR) <=
			      (unsigned)&guarded_access_end) {
				frame->tf_snip =
				  ((unsigned)&guarded_access_bad    ) | NIP_V;
				frame->tf_sfip =
				  ((unsigned)&guarded_access_bad + 4) | FIP_V;
				frame->tf_sxip = 0;
				/* We sort of resolved the fault ourselves
				 * because we know where it came from
				 * [guarded_access()]. But we must still think
				 * about the other possible transactions in
				 * dmt1 & dmt2.  Mark dmt0 so that
				 * data_access_emulation skips it.  XXX smurph
				 */
				frame->tf_dmt0 |= DMT_SKIP;
				data_access_emulation((unsigned *)frame);
				frame->tf_dpfsr = 0;
				frame->tf_dmt0 = 0;
				return;
			}
			break;
		case CMMU_PFSR_SUCCESS:
			/*
			 * The fault was resolved. Call data_access_emulation
			 * to drain the data unit pipe line and reset dmt0
			 * so that trap won't get called again.
			 */
			data_access_emulation((unsigned *)frame);
			frame->tf_dpfsr = 0;
			frame->tf_dmt0 = 0;
			return;
		case CMMU_PFSR_SFAULT:
		case CMMU_PFSR_PFAULT:
			if ((pcb_onfault = p->p_addr->u_pcb.pcb_onfault) != 0)
				p->p_addr->u_pcb.pcb_onfault = 0;
			result = uvm_fault(map, va, VM_FAULT_INVALID, ftype);
			p->p_addr->u_pcb.pcb_onfault = pcb_onfault;
			if (result == 0) {
				/*
				 * We could resolve the fault. Call
				 * data_access_emulation to drain the data
				 * unit pipe line and reset dmt0 so that trap
				 * won't get called again.
				 */
				data_access_emulation((unsigned *)frame);
				frame->tf_dpfsr = 0;
				frame->tf_dmt0 = 0;
				return;
			}
			break;
		}
#ifdef TRAPDEBUG
		printf("PBUS Fault %d (%s) va = 0x%x\n", pbus_type,
		    pbus_exception_type[pbus_type], va);
#endif
		panictrap(frame->tf_vector, frame);
		/* NOTREACHED */
	case T_INSTFLT+T_USER:
		/* User mode instruction access fault */
		/* FALLTHROUGH */
	case T_DATAFLT+T_USER:
user_fault:
		if (type == T_INSTFLT + T_USER) {
			pbus_type = CMMU_PFSR_FAULT(frame->tf_ipfsr);
#ifdef TRAPDEBUG
			printf("User Instruction fault #%d (%s) v = 0x%x, frame 0x%x cpu %d\n",
			    pbus_type, pbus_exception_type[pbus_type],
			    fault_addr, frame, frame->tf_cpu);
#endif
		} else {
			fault_addr = frame->tf_dma0;
			pbus_type = CMMU_PFSR_FAULT(frame->tf_dpfsr);
#ifdef TRAPDEBUG
			printf("User Data access fault #%d (%s) v = 0x%x, frame 0x%x cpu %d\n",
			    pbus_type, pbus_exception_type[pbus_type],
			    fault_addr, frame, frame->tf_cpu);
#endif
		}

		if (frame->tf_dmt0 & (DMT_WRITE | DMT_LOCKBAR)) {
			ftype = VM_PROT_READ | VM_PROT_WRITE;
			fault_code = VM_PROT_WRITE;
		} else {
			ftype = VM_PROT_READ;
			fault_code = VM_PROT_READ;
		}

		va = trunc_page((vaddr_t)fault_addr);

		vm = p->p_vmspace;
		map = &vm->vm_map;
		if ((pcb_onfault = p->p_addr->u_pcb.pcb_onfault) != 0)
			p->p_addr->u_pcb.pcb_onfault = 0;

		/* Call uvm_fault() to resolve non-bus error faults */
		switch (pbus_type) {
		case CMMU_PFSR_SUCCESS:
			result = 0;
			break;
		case CMMU_PFSR_BERROR:
			result = EACCES;
			break;
		default:
			result = uvm_fault(map, va, VM_FAULT_INVALID, ftype);
			if (result == EACCES)
				result = EFAULT;
			break;
		}

		p->p_addr->u_pcb.pcb_onfault = pcb_onfault;

		if ((caddr_t)va >= vm->vm_maxsaddr) {
			if (result == 0) {
				nss = btoc(USRSTACK - va);/* XXX check this */
				if (nss > vm->vm_ssize)
					vm->vm_ssize = nss;
			}
		}

		/*
		 * This could be a fault caused in copyin*()
		 * while accessing user space.
		 */
		if (result != 0 && pcb_onfault != 0) {
			frame->tf_snip = pcb_onfault | NIP_V;
			frame->tf_sfip = (pcb_onfault + 4) | FIP_V;
			frame->tf_sxip = 0;
			/*
			 * Continue as if the fault had been resolved, but
			 * do not try to complete the faulting access.
			 */
			frame->tf_dmt0 |= DMT_SKIP;
			result = 0;
		}

		if (result == 0) {
			if (type == T_DATAFLT+T_USER) {
				/*
			 	 * We could resolve the fault. Call
			 	 * data_access_emulation to drain the data unit
			 	 * pipe line and reset dmt0 so that trap won't
			 	 * get called again.
			 	 */
				data_access_emulation((unsigned *)frame);
				frame->tf_dpfsr = 0;
				frame->tf_dmt0 = 0;
			} else {
				/*
				 * back up SXIP, SNIP,
				 * clearing the Error bit
				 */
				frame->tf_sfip = frame->tf_snip & ~FIP_E;
				frame->tf_snip = frame->tf_sxip & ~NIP_E;
				frame->tf_ipfsr = 0;
			}
		} else {
			sig = result == EACCES ? SIGBUS : SIGSEGV;
			fault_type = result == EACCES ?
			    BUS_ADRERR : SEGV_MAPERR;
		}
		break;
	case T_MISALGNFLT+T_USER:
		/* Fix any misaligned ld.d or st.d instructions */
		sig = double_reg_fixup(frame);
		fault_type = BUS_ADRALN;
		break;
	case T_PRIVINFLT+T_USER:
	case T_ILLFLT+T_USER:
#ifndef DDB
	case T_KDB_BREAK:
	case T_KDB_ENTRY:
#endif
	case T_KDB_BREAK+T_USER:
	case T_KDB_ENTRY+T_USER:
	case T_KDB_TRACE:
	case T_KDB_TRACE+T_USER:
		sig = SIGILL;
		break;
	case T_BNDFLT+T_USER:
		sig = SIGFPE;
		break;
	case T_ZERODIV+T_USER:
		sig = SIGFPE;
		fault_type = FPE_INTDIV;
		break;
	case T_OVFFLT+T_USER:
		sig = SIGFPE;
		fault_type = FPE_INTOVF;
		break;
	case T_FPEPFLT+T_USER:
	case T_FPEIFLT+T_USER:
		sig = SIGFPE;
		break;
	case T_SIGSYS+T_USER:
		sig = SIGSYS;
		break;
	case T_SIGTRAP+T_USER:
		sig = SIGTRAP;
		fault_type = TRAP_TRACE;
		break;
	case T_STEPBPT+T_USER:
#ifdef PTRACE
		/*
		 * This trap is used by the kernel to support single-step
		 * debugging (although any user could generate this trap
		 * which should probably be handled differently). When a
		 * process is continued by a debugger with the PT_STEP
		 * function of ptrace (single step), the kernel inserts
		 * one or two breakpoints in the user process so that only
		 * one instruction (or two in the case of a delayed branch)
		 * is executed.  When this breakpoint is hit, we get the
		 * T_STEPBPT trap.
		 */
		{
			unsigned va;
			unsigned instr;
			unsigned pc = PC_REGS(&frame->tf_regs);

			/* read break instruction */
			copyin((caddr_t)pc, &instr, sizeof(unsigned));
#if 0
			printf("trap: %s (%d) breakpoint %x at %x: (adr %x ins %x)\n",
			       p->p_comm, p->p_pid, instr, pc,
			       p->p_md.md_ss_addr, p->p_md.md_ss_instr); /* XXX */
#endif
			/* check and see if we got here by accident */
			if ((p->p_md.md_ss_addr != pc &&
			     p->p_md.md_ss_taken_addr != pc) ||
			    instr != SSBREAKPOINT) {
				sig = SIGTRAP;
				fault_type = TRAP_TRACE;
				break;
			}
			/* restore original instruction and clear BP  */
			va = p->p_md.md_ss_addr;
			if (va != 0) {
				instr = p->p_md.md_ss_instr;
				ss_put_value(p, va, instr, sizeof(instr));
			}

			/* branch taken instruction */
			instr = p->p_md.md_ss_taken_instr;
			if (instr != 0) {
				va = p->p_md.md_ss_taken_addr;
				ss_put_value(p, va, instr, sizeof(instr));
			}
#if 1
			frame->tf_sfip = frame->tf_snip;
			frame->tf_snip = pc | NIP_V;
#endif
			p->p_md.md_ss_addr = 0;
			p->p_md.md_ss_instr = 0;
			p->p_md.md_ss_taken_addr = 0;
			p->p_md.md_ss_taken_instr = 0;
			sig = SIGTRAP;
			fault_type = TRAP_BRKPT;
		}
#else
		sig = SIGTRAP;
		fault_type = TRAP_TRACE;
#endif
		break;

	case T_USERBPT+T_USER:
		/*
		 * This trap is meant to be used by debuggers to implement
		 * breakpoint debugging.  When we get this trap, we just
		 * return a signal which gets caught by the debugger.
		 */
		frame->tf_sfip = frame->tf_snip;
		frame->tf_snip = frame->tf_sxip;
		sig = SIGTRAP;
		fault_type = TRAP_BRKPT;
		break;

	case T_ASTFLT+T_USER:
		uvmexp.softs++;
		want_ast = 0;
		if (p->p_flag & P_OWEUPC) {
			p->p_flag &= ~P_OWEUPC;
			ADDUPROF(p);
		}
		break;
	}

	/*
	 * If trap from supervisor mode, just return
	 */
	if (type < T_USER)
		return;

	if (sig) {
		sv.sival_int = fault_addr;
		trapsignal(p, sig, fault_code, fault_type, sv);
		/*
		 * don't want multiple faults - we are going to
		 * deliver signal.
		 */
		frame->tf_dmt0 = 0;
		frame->tf_ipfsr = frame->tf_dpfsr = 0;
	}

	userret(p, frame, sticks);
}
Beispiel #7
0
/*
 * Trap is called from locore to handle most types of processor traps.
 */
void
trap(unsigned int status, unsigned int cause, vaddr_t vaddr, vaddr_t opc,
	struct trapframe *frame) 
{
	int type;
	struct lwp *l = curlwp;
	struct proc *p = curproc;
	vm_prot_t ftype;
	ksiginfo_t ksi;
	struct frame *fp;
	extern void fswintrberr(void);
	KSI_INIT_TRAP(&ksi);

	uvmexp.traps++;

	if ((type = TRAPTYPE(cause)) >= LENGTH(trap_type))
		panic("trap: unknown trap type %d", type);

	if (USERMODE(status)) {
		type |= T_USER;
		LWP_CACHE_CREDS(l, p);
	}

	/* Enable interrupts just at it was before the trap. */
	_splset(status & AVR32_STATUS_IMx);

	switch (type) {
	default:
	dopanic:
		(void)splhigh();
		printf("trap: %s in %s mode\n",
			trap_type[TRAPTYPE(cause)],
			USERMODE(status) ? "user" : "kernel");
		printf("status=0x%x, cause=0x%x, epc=%#lx, vaddr=%#lx\n",
			status, cause, opc, vaddr);
		if (curlwp != NULL) {
			fp = (struct frame *)l->l_md.md_regs;
			printf("pid=%d cmd=%s usp=0x%x ",
			    p->p_pid, p->p_comm, (int)fp->f_regs[_R_SP]);
		} else
			printf("curlwp == NULL ");
		printf("ksp=%p\n", &status);
#if defined(DDB)
		kdb_trap(type, (mips_reg_t *) frame);
		/* XXX force halt XXX */
#elif defined(KGDB)
		{
			struct frame *f = (struct frame *)&ddb_regs;
			extern mips_reg_t kgdb_cause, kgdb_vaddr;
			kgdb_cause = cause;
			kgdb_vaddr = vaddr;

			/*
			 * init global ddb_regs, used in db_interface.c routines
			 * shared between ddb and gdb. Send ddb_regs to gdb so
			 * that db_machdep.h macros will work with it, and
			 * allow gdb to alter the PC.
			 */
			db_set_ddb_regs(type, (mips_reg_t *) frame);
			PC_BREAK_ADVANCE(f);
			if (kgdb_trap(type, &ddb_regs)) {
				((mips_reg_t *)frame)[21] = f->f_regs[_R_PC];
				return;
			}
		}
#else
		panic("trap: dopanic: notyet");
#endif
		/*NOTREACHED*/
	case T_TLB_MOD:
		panic("trap: T_TLB_MOD: notyet");
#if notyet
		if (KERNLAND(vaddr)) {
			pt_entry_t *pte;
			unsigned entry;
			paddr_t pa;

			pte = kvtopte(vaddr);
			entry = pte->pt_entry;
			if (!avr32_pte_v(entry) /*|| (entry & mips_pg_m_bit())*/) {
				panic("ktlbmod: invalid pte");
			}
			if (entry & avr32_pte_ropage_bit()) {
				/* write to read only page in the kernel */
				ftype = VM_PROT_WRITE;
				goto kernelfault;
			}
			entry |= mips_pg_m_bit();	/* XXXAVR32 Do it on tlbarlo/ tlbarhi? */
			pte->pt_entry = entry;
			vaddr &= ~PGOFSET;
			MachTLBUpdate(vaddr, entry);
			pa = avr32_tlbpfn_to_paddr(entry);
			if (!IS_VM_PHYSADDR(pa)) {
				printf("ktlbmod: va %#lx pa %#llx\n",
				    vaddr, (long long)pa);
				panic("ktlbmod: unmanaged page");
			}
			pmap_set_modified(pa);
			return; /* KERN */
		}
		/*FALLTHROUGH*/
#endif
	case T_TLB_MOD+T_USER: 
		panic("trap: T_TLB_MOD+T_USER: notyet");
#if notyet
	    {
		pt_entry_t *pte;
		unsigned entry;
		paddr_t pa;
		pmap_t pmap;

		pmap  = p->p_vmspace->vm_map.pmap;
		if (!(pte = pmap_segmap(pmap, vaddr)))
			panic("utlbmod: invalid segmap");
		pte += (vaddr >> PGSHIFT) & (NPTEPG - 1);

		entry = pte->pt_entry;
		if (!avr32_pte_v(entry))
			panic("utlbmod: invalid pte");

		if (entry & avr32_pte_ropage_bit()) {
			/* write to read only page */
			ftype = VM_PROT_WRITE;
			goto pagefault;
		}
		/* entry |= mips_pg_m_bit();  XXXAVR32 Do it on tlbarlo/ tlbarhi? */
		pte->pt_entry = entry;
		vaddr = (vaddr & ~PGOFSET) |
			(pmap->pm_asid << AVR32_TLB_PID_SHIFT);
		MachTLBUpdate(vaddr, entry);
		pa = avr32_tlbpfn_to_paddr(entry);
		if (!IS_VM_PHYSADDR(pa)) {
			printf("utlbmod: va %#lx pa %#llx\n",
			    vaddr, (long long)pa);
			panic("utlbmod: unmanaged page");
		}
		pmap_set_modified(pa);
		if (type & T_USER)
			userret(l);
		return; /* GEN */
	    }
#endif
	case T_TLB_LD_MISS:
		panic("trap: T_TLB_LD_MISS: notyet");
	case T_TLB_ST_MISS:
		ftype = (type == T_TLB_LD_MISS) ? VM_PROT_READ : VM_PROT_WRITE;
		if (KERNLAND(vaddr))
			goto kernelfault;
		panic("trap: T_TLB_ST_MISS: notyet");
#if notyet
		/*
		 * It is an error for the kernel to access user space except
		 * through the copyin/copyout routines.
		 */
		if (l == NULL  || l->l_addr->u_pcb.pcb_onfault == NULL)
			goto dopanic;
		/* check for fuswintr() or suswintr() getting a page fault */
		if (l->l_addr->u_pcb.pcb_onfault == (void *)fswintrberr) {
			frame->tf_regs[TF_EPC] = (int)fswintrberr;
			return; /* KERN */
		}
		goto pagefault;
#endif
	case T_TLB_LD_MISS+T_USER:
		panic("trap: T_TLB_LD_MISS+T_USER: notyet");
#if notyet
		ftype = VM_PROT_READ;
		goto pagefault;
#endif
	case T_TLB_ST_MISS+T_USER:
		panic("trap: T_TLB_ST_MISS+T_USER: notyet");
#if notyet
		ftype = VM_PROT_WRITE;
#endif
	pagefault: ;
	    {
		vaddr_t va;
		struct vmspace *vm;
		struct vm_map *map;
		int rv;

		vm = p->p_vmspace;
		map = &vm->vm_map;
		va = trunc_page(vaddr);

		if ((l->l_flag & LW_SA) && (~l->l_pflag & LP_SA_NOBLOCK)) {
			l->l_savp->savp_faultaddr = (vaddr_t)vaddr;
			l->l_pflag |= LP_SA_PAGEFAULT;
		}

		if (p->p_emul->e_fault)
			rv = (*p->p_emul->e_fault)(p, va, ftype);
		else
			rv = uvm_fault(map, va, ftype);
				
#ifdef VMFAULT_TRACE
		printf(
	    "uvm_fault(%p (pmap %p), %lx (0x%x), %d) -> %d at pc %p\n",
		    map, vm->vm_map.pmap, va, vaddr, ftype, rv, (void*)opc);
#endif
		/*
		 * If this was a stack access we keep track of the maximum
		 * accessed stack size.  Also, if vm_fault gets a protection
		 * failure it is due to accessing the stack region outside
		 * the current limit and we need to reflect that as an access
		 * error.
		 */
		if ((void *)va >= vm->vm_maxsaddr) {
			if (rv == 0){
				uvm_grow(p, va);
			}
			else if (rv == EACCES)
				rv = EFAULT;
		}
		l->l_pflag &= ~LP_SA_PAGEFAULT;
		if (rv == 0) {
			if (type & T_USER) {
				userret(l);
			}
			return; /* GEN */
		}
		if ((type & T_USER) == 0)
			goto copyfault;
		if (rv == ENOMEM) {
			printf("UVM: pid %d (%s), uid %d killed: out of swap\n",
			       p->p_pid, p->p_comm,
			       l->l_cred ?
			       kauth_cred_geteuid(l->l_cred) : (uid_t) -1);
			ksi.ksi_signo = SIGKILL;
			ksi.ksi_code = 0;
		} else {
			if (rv == EACCES) {
				ksi.ksi_signo = SIGBUS;
				ksi.ksi_code = BUS_OBJERR;
			} else {
				ksi.ksi_signo = SIGSEGV;
				ksi.ksi_code = SEGV_MAPERR;
			}
		}
		ksi.ksi_trap = type & ~T_USER;
		ksi.ksi_addr = (void *)vaddr;
		break; /* SIGNAL */
	    }
	kernelfault: ;
	    {
		vaddr_t va;
		int rv;

		va = trunc_page(vaddr);
		rv = uvm_fault(kernel_map, va, ftype);
		if (rv == 0)
			return; /* KERN */
		/*FALLTHROUGH*/
	    }
	case T_ADDR_ERR_LD:	/* misaligned access */
	case T_ADDR_ERR_ST:	/* misaligned access */
	case T_BUS_ERR_LD_ST:	/* BERR asserted to CPU */
	copyfault:
		panic("trap: copyfault: notyet");
#if notyet
		if (l == NULL || l->l_addr->u_pcb.pcb_onfault == NULL)
			goto dopanic;
		frame->tf_regs[TF_EPC] = (intptr_t)l->l_addr->u_pcb.pcb_onfault;
		return; /* KERN */
#endif
#if notyet
	case T_ADDR_ERR_LD+T_USER:	/* misaligned or kseg access */
	case T_ADDR_ERR_ST+T_USER:	/* misaligned or kseg access */
	case T_BUS_ERR_IFETCH+T_USER:	/* BERR asserted to CPU */
	case T_BUS_ERR_LD_ST+T_USER:	/* BERR asserted to CPU */
		ksi.ksi_trap = type & ~T_USER;
		ksi.ksi_signo = SIGSEGV; /* XXX */
		ksi.ksi_addr = (void *)vaddr;
		ksi.ksi_code = SEGV_MAPERR; /* XXX */
		break; /* SIGNAL */

	case T_BREAK:
		panic("trap: T_BREAK: notyet");
#if defined(DDB)
		kdb_trap(type, (avr32_reg_t *) frame);
		return;	/* KERN */
#elif defined(KGDB)
		{
			struct frame *f = (struct frame *)&ddb_regs;
			extern avr32_reg_t kgdb_cause, kgdb_vaddr;
			kgdb_cause = cause;
			kgdb_vaddr = vaddr;

			/*
			 * init global ddb_regs, used in db_interface.c routines
			 * shared between ddb and gdb. Send ddb_regs to gdb so
			 * that db_machdep.h macros will work with it, and
			 * allow gdb to alter the PC.
			 */
			db_set_ddb_regs(type, (avr32_reg_t *) frame);
			PC_BREAK_ADVANCE(f);
			if (!kgdb_trap(type, &ddb_regs))
				printf("kgdb: ignored %s\n",
				       trap_type[TRAPTYPE(cause)]);
			else
				((avr32_reg_t *)frame)[21] = f->f_regs[_R_PC];

			return;
		}
#else
		goto dopanic;
#endif
	case T_BREAK+T_USER:
	    {
		vaddr_t va;
		uint32_t instr;
		int rv;

		/* compute address of break instruction */
		va = (DELAYBRANCH(cause)) ? opc + sizeof(int) : opc;

		/* read break instruction */
		instr = fuiword((void *)va);

		if (l->l_md.md_ss_addr != va || instr != MIPS_BREAK_SSTEP) {
			ksi.ksi_trap = type & ~T_USER;
			ksi.ksi_signo = SIGTRAP;
			ksi.ksi_addr = (void *)va;
			ksi.ksi_code = TRAP_TRACE;
			break;
		}
		/*
		 * Restore original instruction and clear BP
		 */
		rv = suiword((void *)va, l->l_md.md_ss_instr);
		if (rv < 0) {
			vaddr_t sa, ea;
			sa = trunc_page(va);
			ea = round_page(va + sizeof(int) - 1);
			rv = uvm_map_protect(&p->p_vmspace->vm_map,
				sa, ea, VM_PROT_ALL, false);
			if (rv == 0) {
				rv = suiword((void *)va, l->l_md.md_ss_instr);
				(void)uvm_map_protect(&p->p_vmspace->vm_map,
				sa, ea, VM_PROT_READ|VM_PROT_EXECUTE, false);
			}
		}
		mips_icache_sync_all();		/* XXXJRT -- necessary? */
		mips_dcache_wbinv_all();	/* XXXJRT -- necessary? */

		if (rv < 0)
			printf("Warning: can't restore instruction at 0x%lx: 0x%x\n",
				l->l_md.md_ss_addr, l->l_md.md_ss_instr);
		l->l_md.md_ss_addr = 0;
		ksi.ksi_trap = type & ~T_USER;
		ksi.ksi_signo = SIGTRAP;
		ksi.ksi_addr = (void *)va;
		ksi.ksi_code = TRAP_BRKPT;
		break; /* SIGNAL */
	    }
	case T_RES_INST+T_USER:
	case T_COP_UNUSABLE+T_USER:
#if !defined(SOFTFLOAT) && !defined(NOFPU)
		if ((cause & MIPS_CR_COP_ERR) == 0x10000000) {
			struct frame *f;

			f = (struct frame *)l->l_md.md_regs;
			savefpregs(fpcurlwp);	  	/* yield FPA */
			loadfpregs(l);          	/* load FPA */
			fpcurlwp = l;
			l->l_md.md_flags |= MDP_FPUSED;
			f->f_regs[_R_SR] |= MIPS_SR_COP_1_BIT;
		} else
#endif
		{
			MachEmulateInst(status, cause, opc, l->l_md.md_regs);
		}
		userret(l);
		return; /* GEN */
	case T_FPE+T_USER:
		panic ("trap: T_FPE+T_USER: notyet");
#if defined(SOFTFLOAT)
		MachEmulateInst(status, cause, opc, l->l_md.md_regs);
#elif !defined(NOFPU)
		MachFPTrap(status, cause, opc, l->l_md.md_regs);
#endif
		userret(l);
		return; /* GEN */
	case T_OVFLOW+T_USER:
	case T_TRAP+T_USER:
		ksi.ksi_trap = type & ~T_USER;
		ksi.ksi_signo = SIGFPE;
		fp = (struct frame *)l->l_md.md_regs;
		ksi.ksi_addr = (void *)fp->f_regs[_R_PC];
		ksi.ksi_code = FPE_FLTOVF; /* XXX */
		break; /* SIGNAL */
#endif
	}
	panic("trap: post-switch: notyet");
#if notyet
	fp = (struct frame *)l->l_md.md_regs;
	fp->f_regs[_R_CAUSE] = cause;
	fp->f_regs[_R_BADVADDR] = vaddr;
	(*p->p_emul->e_trapsignal)(l, &ksi);
	if ((type & T_USER) == 0)
		panic("trapsignal");
	userret(l);
#endif
	return;
}
/*
 * General page fault handler.
 */
void
do_fault(struct trapframe *tf, struct lwp *l,
    struct vm_map *map, vaddr_t va, vm_prot_t atype)
{
	int error;

	if (pmap_fault(map->pmap, va, atype))
		return;

	struct pcb * const pcb = lwp_getpcb(l);
	void * const onfault = pcb->pcb_onfault;
	const bool user = TRAP_USERMODE(tf);

	if (cpu_intr_p()) {
		KASSERT(!user);
		error = EFAULT;
	} else {
		pcb->pcb_onfault = NULL;
		error = uvm_fault(map, va, atype);
		pcb->pcb_onfault = onfault;
	}

	if (error != 0) {
		ksiginfo_t ksi;

		if (onfault != NULL) {
			tf->tf_r0 = error;
			tf->tf_r15 = (tf->tf_r15 & ~R15_PC) |
			    (register_t)onfault;
			return;
		}
#ifdef DDB
		if (db_validating) {
			db_faulted = true;
			tf->tf_r15 += INSN_SIZE;
			return;
		}
#endif
		if (!user) {
#ifdef DDB
			db_printf("Unhandled data abort in kernel mode\n");
			kdb_trap(T_FAULT, tf);
#else
#ifdef DEBUG
			printf("Unhandled data abort:\n");
			printregs(tf);
#endif
			panic("unhandled data abort in kernel mode");
#endif
		}

		KSI_INIT_TRAP(&ksi);

		if (error == ENOMEM) {
			printf("UVM: pid %d (%s), uid %d killed: "
			    "out of swap\n",
			    l->l_proc->p_pid, l->l_proc->p_comm,
			    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
			ksi.ksi_signo = SIGKILL;
		} else
			ksi.ksi_signo = SIGSEGV;
		ksi.ksi_code = (error == EPERM) ? SEGV_ACCERR : SEGV_MAPERR;
		ksi.ksi_addr = (void *) va;
		trapsignal(l, &ksi);
	} else if (!user) {
		ucas_ras_check(tf);
	}
}
Beispiel #9
0
void
data_abort_handler(trapframe_t *tf)
{
	struct vm_map *map;
	struct lwp * const l = curlwp;
	struct cpu_info * const ci = curcpu();
	u_int far, fsr;
	vm_prot_t ftype;
	void *onfault;
	vaddr_t va;
	int error;
	ksiginfo_t ksi;

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(maphist);

	/* Grab FAR/FSR before enabling interrupts */
	far = cpu_faultaddress();
	fsr = cpu_faultstatus();

	/* Update vmmeter statistics */
	ci->ci_data.cpu_ntrap++;

	/* Re-enable interrupts if they were enabled previously */
	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
	if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
		restore_interrupts(tf->tf_spsr & IF32_bits);

	/* Get the current lwp structure */

	UVMHIST_LOG(maphist, " (l=%#x, far=%#x, fsr=%#x",
	    l, far, fsr, 0);
	UVMHIST_LOG(maphist, "  tf=%#x, pc=%#x)",
	    tf, tf->tf_pc, 0, 0);

	/* Data abort came from user mode? */
	bool user = (TRAP_USERMODE(tf) != 0);
	if (user)
		LWP_CACHE_CREDS(l, l->l_proc);

	/* Grab the current pcb */
	struct pcb * const pcb = lwp_getpcb(l);

	curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++;

	/* Invoke the appropriate handler, if necessary */
	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
#ifdef DIAGNOSTIC
		printf("%s: data_aborts fsr=0x%x far=0x%x\n",
		    __func__, fsr, far);
#endif
		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
		    l, &ksi))
			goto do_trapsignal;
		goto out;
	}

	/*
	 * At this point, we're dealing with one of the following data aborts:
	 *
	 *  FAULT_TRANS_S  - Translation -- Section
	 *  FAULT_TRANS_P  - Translation -- Page
	 *  FAULT_DOMAIN_S - Domain -- Section
	 *  FAULT_DOMAIN_P - Domain -- Page
	 *  FAULT_PERM_S   - Permission -- Section
	 *  FAULT_PERM_P   - Permission -- Page
	 *
	 * These are the main virtual memory-related faults signalled by
	 * the MMU.
	 */

	/* fusubailout is used by [fs]uswintr to avoid page faulting */
	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
		tf->tf_r0 = EFAULT;
		tf->tf_pc = (intptr_t) pcb->pcb_onfault;
		return;
	}

	if (user) {
		lwp_settrapframe(l, tf);
	}

	/*
	 * Make sure the Program Counter is sane. We could fall foul of
	 * someone executing Thumb code, in which case the PC might not
	 * be word-aligned. This would cause a kernel alignment fault
	 * further down if we have to decode the current instruction.
	 */
#ifdef THUMB_CODE
	/*
	 * XXX: It would be nice to be able to support Thumb in the kernel
	 * at some point.
	 */
	if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
		    __func__);
		dab_fatal(tf, fsr, far, l, NULL);
	}
#else
	if (__predict_false((tf->tf_pc & 3) != 0)) {
		if (user) {
			/*
			 * Give the user an illegal instruction signal.
			 */
			/* Deliver a SIGILL to the process */
			KSI_INIT_TRAP(&ksi);
			ksi.ksi_signo = SIGILL;
			ksi.ksi_code = ILL_ILLOPC;
			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
			ksi.ksi_trap = fsr;
			goto do_trapsignal;
		}

		/*
		 * The kernel never executes Thumb code.
		 */
		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
		    __func__);
		dab_fatal(tf, fsr, far, l, NULL);
	}
#endif

	/* See if the CPU state needs to be fixed up */
	switch (data_abort_fixup(tf, fsr, far, l)) {
	case ABORT_FIXUP_RETURN:
		return;
	case ABORT_FIXUP_FAILED:
		/* Deliver a SIGILL to the process */
		KSI_INIT_TRAP(&ksi);
		ksi.ksi_signo = SIGILL;
		ksi.ksi_code = ILL_ILLOPC;
		ksi.ksi_addr = (uint32_t *)(intptr_t) far;
		ksi.ksi_trap = fsr;
		goto do_trapsignal;
	default:
		break;
	}

	va = trunc_page((vaddr_t)far);

	/*
	 * It is only a kernel address space fault iff:
	 *	1. user == 0  and
	 *	2. pcb_onfault not set or
	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
	 */
	if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
	    __predict_true((pcb->pcb_onfault == NULL ||
	     (read_insn(tf->tf_pc, false) & 0x05200000) != 0x04200000))) {
		map = kernel_map;

		/* Was the fault due to the FPE/IPKDB ? */
		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
			KSI_INIT_TRAP(&ksi);
			ksi.ksi_signo = SIGSEGV;
			ksi.ksi_code = SEGV_ACCERR;
			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
			ksi.ksi_trap = fsr;

			/*
			 * Force exit via userret()
			 * This is necessary as the FPE is an extension to
			 * userland that actually runs in a priveledged mode
			 * but uses USR mode permissions for its accesses.
			 */
			user = true;
			goto do_trapsignal;
		}
	} else {
		map = &l->l_proc->p_vmspace->vm_map;
	}

	/*
	 * We need to know whether the page should be mapped as R or R/W.
	 * Before ARMv6, the MMU did not give us the info as to whether the
	 * fault was caused by a read or a write.
	 *
	 * However, we know that a permission fault can only be the result of
	 * a write to a read-only location, so we can deal with those quickly.
	 *
	 * Otherwise we need to disassemble the instruction responsible to
	 * determine if it was a write.
	 */
	if (CPU_IS_ARMV6_P() || CPU_IS_ARMV7_P()) {
		ftype = (fsr & FAULT_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
	} else if (IS_PERMISSION_FAULT(fsr)) {
		ftype = VM_PROT_WRITE;
	} else {
#ifdef THUMB_CODE
		/* Fast track the ARM case.  */
		if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
			u_int insn = read_thumb_insn(tf->tf_pc, user);
			u_int insn_f8 = insn & 0xf800;
			u_int insn_fe = insn & 0xfe00;

			if (insn_f8 == 0x6000 || /* STR(1) */
			    insn_f8 == 0x7000 || /* STRB(1) */
			    insn_f8 == 0x8000 || /* STRH(1) */
			    insn_f8 == 0x9000 || /* STR(3) */
			    insn_f8 == 0xc000 || /* STM */
			    insn_fe == 0x5000 || /* STR(2) */
			    insn_fe == 0x5200 || /* STRH(2) */
			    insn_fe == 0x5400)   /* STRB(2) */
				ftype = VM_PROT_WRITE;
			else
				ftype = VM_PROT_READ;
		}
		else
#endif
		{
			u_int insn = read_insn(tf->tf_pc, user);

			if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
			    ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
			    ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
			    ((insn & 0x0f9000f0) == 0x01800090))   /* STREX[BDH] */
				ftype = VM_PROT_WRITE;
			else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
				ftype = VM_PROT_READ | VM_PROT_WRITE;
			else
				ftype = VM_PROT_READ;
		}
	}

	/*
	 * See if the fault is as a result of ref/mod emulation,
	 * or domain mismatch.
	 */
#ifdef DEBUG
	last_fault_code = fsr;
#endif
	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
		UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
		goto out;
	}

	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
		if (pcb->pcb_onfault) {
			tf->tf_r0 = EINVAL;
			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
			return;
		}
		printf("\nNon-emulated page fault with intr_depth > 0\n");
		dab_fatal(tf, fsr, far, l, NULL);
	}

	onfault = pcb->pcb_onfault;
	pcb->pcb_onfault = NULL;
	error = uvm_fault(map, va, ftype);
	pcb->pcb_onfault = onfault;

	if (__predict_true(error == 0)) {
		if (user)
			uvm_grow(l->l_proc, va); /* Record any stack growth */
		else
			ucas_ras_check(tf);
		UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
		goto out;
	}

	if (user == 0) {
		if (pcb->pcb_onfault) {
			tf->tf_r0 = error;
			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
			return;
		}

		printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
		    error);
		dab_fatal(tf, fsr, far, l, NULL);
	}

	KSI_INIT_TRAP(&ksi);

	if (error == ENOMEM) {
		printf("UVM: pid %d (%s), uid %d killed: "
		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
		ksi.ksi_signo = SIGKILL;
	} else
		ksi.ksi_signo = SIGSEGV;

	ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
	ksi.ksi_addr = (uint32_t *)(intptr_t) far;
	ksi.ksi_trap = fsr;
	UVMHIST_LOG(maphist, " <- error (%d)", error, 0, 0, 0);

do_trapsignal:
	call_trapsignal(l, tf, &ksi);
out:
	/* If returning to user mode, make sure to invoke userret() */
	if (user)
		userret(l);
}
Beispiel #10
0
/*
 * void prefetch_abort_handler(trapframe_t *tf)
 *
 * Abort handler called when instruction execution occurs at
 * a non existent or restricted (access permissions) memory page.
 * If the address is invalid and we were in SVC mode then panic as
 * the kernel should never prefetch abort.
 * If the address is invalid and the page is mapped then the user process
 * does no have read permission so send it a signal.
 * Otherwise fault the page in and try again.
 */
void
prefetch_abort_handler(trapframe_t *tf)
{
	struct lwp *l;
	struct pcb *pcb __diagused;
	struct vm_map *map;
	vaddr_t fault_pc, va;
	ksiginfo_t ksi;
	int error, user;

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(maphist);

	/* Update vmmeter statistics */
	curcpu()->ci_data.cpu_ntrap++;

	l = curlwp;
	pcb = lwp_getpcb(l);

	if ((user = TRAP_USERMODE(tf)) != 0)
		LWP_CACHE_CREDS(l, l->l_proc);

	/*
	 * Enable IRQ's (disabled by the abort) This always comes
	 * from user mode so we know interrupts were not disabled.
	 * But we check anyway.
	 */
	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
	if (__predict_true((tf->tf_spsr & I32_bit) != IF32_bits))
		restore_interrupts(tf->tf_spsr & IF32_bits);

	/* See if the CPU state needs to be fixed up */
	switch (prefetch_abort_fixup(tf)) {
	case ABORT_FIXUP_RETURN:
		KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
		return;
	case ABORT_FIXUP_FAILED:
		/* Deliver a SIGILL to the process */
		KSI_INIT_TRAP(&ksi);
		ksi.ksi_signo = SIGILL;
		ksi.ksi_code = ILL_ILLOPC;
		ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc;
		lwp_settrapframe(l, tf);
		goto do_trapsignal;
	default:
		break;
	}

	/* Prefetch aborts cannot happen in kernel mode */
	if (__predict_false(!user))
		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);

	/* Get fault address */
	fault_pc = tf->tf_pc;
	lwp_settrapframe(l, tf);
	UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)",
	    fault_pc, l, tf, 0);

	/* Ok validate the address, can only execute in USER space */
	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
		KSI_INIT_TRAP(&ksi);
		ksi.ksi_signo = SIGSEGV;
		ksi.ksi_code = SEGV_ACCERR;
		ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
		ksi.ksi_trap = fault_pc;
		goto do_trapsignal;
	}

	map = &l->l_proc->p_vmspace->vm_map;
	va = trunc_page(fault_pc);

	/*
	 * See if the pmap can handle this fault on its own...
	 */
#ifdef DEBUG
	last_fault_code = -1;
#endif
	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) {
		UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
		goto out;
	}

#ifdef DIAGNOSTIC
	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
	}
#endif

	KASSERT(pcb->pcb_onfault == NULL);
	error = uvm_fault(map, va, VM_PROT_READ|VM_PROT_EXECUTE);

	if (__predict_true(error == 0)) {
		UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
		goto out;
	}
	KSI_INIT_TRAP(&ksi);

	UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);

	if (error == ENOMEM) {
		printf("UVM: pid %d (%s), uid %d killed: "
		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
		ksi.ksi_signo = SIGKILL;
	} else
		ksi.ksi_signo = SIGSEGV;

	ksi.ksi_code = SEGV_MAPERR;
	ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
	ksi.ksi_trap = fault_pc;

do_trapsignal:
	call_trapsignal(l, tf, &ksi);

out:
	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
	userret(l);
}
Beispiel #11
0
void
m88100_trap(unsigned type, struct trapframe *frame)
{
	struct proc *p;
	struct vm_map *map;
	vaddr_t va, pcb_onfault;
	vm_prot_t ftype;
	int fault_type, pbus_type;
	u_long fault_code;
	unsigned fault_addr;
	struct vmspace *vm;
	union sigval sv;
	int result;
#ifdef DDB
	int s;
	u_int psr;
#endif
	int sig = 0;

	extern struct vm_map *kernel_map;

	uvmexp.traps++;
	if ((p = curproc) == NULL)
		p = &proc0;

	if (USERMODE(frame->tf_epsr)) {
		type += T_USER;
		p->p_md.md_tf = frame;	/* for ptrace/signals */
	}
	fault_type = 0;
	fault_code = 0;
	fault_addr = frame->tf_sxip & XIP_ADDR;

	switch (type) {
	default:
		panictrap(frame->tf_vector, frame);
		break;
		/*NOTREACHED*/

#if defined(DDB)
	case T_KDB_BREAK:
		s = splhigh();
		set_psr((psr = get_psr()) & ~PSR_IND);
		ddb_break_trap(T_KDB_BREAK, (db_regs_t*)frame);
		set_psr(psr);
		splx(s);
		return;
	case T_KDB_ENTRY:
		s = splhigh();
		set_psr((psr = get_psr()) & ~PSR_IND);
		ddb_entry_trap(T_KDB_ENTRY, (db_regs_t*)frame);
		set_psr(psr);
		splx(s);
		return;
#endif /* DDB */
	case T_ILLFLT:
		printf("Unimplemented opcode!\n");
		panictrap(frame->tf_vector, frame);
		break;
	case T_INT:
	case T_INT+T_USER:
		curcpu()->ci_intrdepth++;
		md_interrupt_func(T_INT, frame);
		curcpu()->ci_intrdepth--;
		return;

	case T_MISALGNFLT:
		printf("kernel misaligned access exception @ 0x%08x\n",
		    frame->tf_sxip);
		panictrap(frame->tf_vector, frame);
		break;

	case T_INSTFLT:
		/* kernel mode instruction access fault.
		 * Should never, never happen for a non-paged kernel.
		 */
#ifdef TRAPDEBUG
		pbus_type = CMMU_PFSR_FAULT(frame->tf_ipfsr);
		printf("Kernel Instruction fault #%d (%s) v = 0x%x, frame 0x%x cpu %p\n",
		    pbus_type, pbus_exception_type[pbus_type],
		    fault_addr, frame, frame->tf_cpu);
#endif
		panictrap(frame->tf_vector, frame);
		break;

	case T_DATAFLT:
		/* kernel mode data fault */

		/* data fault on the user address? */
		if ((frame->tf_dmt0 & DMT_DAS) == 0) {
			type = T_DATAFLT + T_USER;
			goto user_fault;
		}

		fault_addr = frame->tf_dma0;
		if (frame->tf_dmt0 & (DMT_WRITE|DMT_LOCKBAR)) {
			ftype = VM_PROT_READ|VM_PROT_WRITE;
			fault_code = VM_PROT_WRITE;
		} else {
			ftype = VM_PROT_READ;
			fault_code = VM_PROT_READ;
		}

		va = trunc_page((vaddr_t)fault_addr);
		if (va == 0) {
			panic("trap: bad kernel access at %x", fault_addr);
		}

		KERNEL_LOCK(LK_CANRECURSE | LK_EXCLUSIVE);
		vm = p->p_vmspace;
		map = kernel_map;

		pbus_type = CMMU_PFSR_FAULT(frame->tf_dpfsr);
#ifdef TRAPDEBUG
		printf("Kernel Data access fault #%d (%s) v = 0x%x, frame 0x%x cpu %p\n",
		    pbus_type, pbus_exception_type[pbus_type],
		    fault_addr, frame, frame->tf_cpu);
#endif

		switch (pbus_type) {
		case CMMU_PFSR_SUCCESS:
			/*
			 * The fault was resolved. Call data_access_emulation
			 * to drain the data unit pipe line and reset dmt0
			 * so that trap won't get called again.
			 */
			data_access_emulation((unsigned *)frame);
			frame->tf_dpfsr = 0;
			frame->tf_dmt0 = 0;
			KERNEL_UNLOCK();
			return;
		case CMMU_PFSR_SFAULT:
		case CMMU_PFSR_PFAULT:
			if ((pcb_onfault = p->p_addr->u_pcb.pcb_onfault) != 0)
				p->p_addr->u_pcb.pcb_onfault = 0;
			result = uvm_fault(map, va, VM_FAULT_INVALID, ftype);
			p->p_addr->u_pcb.pcb_onfault = pcb_onfault;
			if (result == 0) {
				/*
				 * We could resolve the fault. Call
				 * data_access_emulation to drain the data
				 * unit pipe line and reset dmt0 so that trap
				 * won't get called again.
				 */
				data_access_emulation((unsigned *)frame);
				frame->tf_dpfsr = 0;
				frame->tf_dmt0 = 0;
				KERNEL_UNLOCK();
				return;
			}
			break;
		}
#ifdef TRAPDEBUG
		printf("PBUS Fault %d (%s) va = 0x%x\n", pbus_type,
		    pbus_exception_type[pbus_type], va);
#endif
		KERNEL_UNLOCK();
		panictrap(frame->tf_vector, frame);
		/* NOTREACHED */
	case T_INSTFLT+T_USER:
		/* User mode instruction access fault */
		/* FALLTHROUGH */
	case T_DATAFLT+T_USER:
user_fault:
		if (type == T_INSTFLT + T_USER) {
			pbus_type = CMMU_PFSR_FAULT(frame->tf_ipfsr);
#ifdef TRAPDEBUG
			printf("User Instruction fault #%d (%s) v = 0x%x, frame 0x%x cpu %p\n",
			    pbus_type, pbus_exception_type[pbus_type],
			    fault_addr, frame, frame->tf_cpu);
#endif
		} else {
			fault_addr = frame->tf_dma0;
			pbus_type = CMMU_PFSR_FAULT(frame->tf_dpfsr);
#ifdef TRAPDEBUG
			printf("User Data access fault #%d (%s) v = 0x%x, frame 0x%x cpu %p\n",
			    pbus_type, pbus_exception_type[pbus_type],
			    fault_addr, frame, frame->tf_cpu);
#endif
		}

		if (frame->tf_dmt0 & (DMT_WRITE | DMT_LOCKBAR)) {
			ftype = VM_PROT_READ | VM_PROT_WRITE;
			fault_code = VM_PROT_WRITE;
		} else {
			ftype = VM_PROT_READ;
			fault_code = VM_PROT_READ;
		}

		va = trunc_page((vaddr_t)fault_addr);

		KERNEL_PROC_LOCK(p);
		vm = p->p_vmspace;
		map = &vm->vm_map;
		if ((pcb_onfault = p->p_addr->u_pcb.pcb_onfault) != 0)
			p->p_addr->u_pcb.pcb_onfault = 0;

		/* Call uvm_fault() to resolve non-bus error faults */
		switch (pbus_type) {
		case CMMU_PFSR_SUCCESS:
			result = 0;
			break;
		case CMMU_PFSR_BERROR:
			result = EACCES;
			break;
		default:
			result = uvm_fault(map, va, VM_FAULT_INVALID, ftype);
			break;
		}

		p->p_addr->u_pcb.pcb_onfault = pcb_onfault;

		if ((caddr_t)va >= vm->vm_maxsaddr) {
			if (result == 0)
				uvm_grow(p, va);
			else if (result == EACCES)
				result = EFAULT;
		}
		KERNEL_PROC_UNLOCK(p);

		/*
		 * This could be a fault caused in copyin*()
		 * while accessing user space.
		 */
		if (result != 0 && pcb_onfault != 0) {
			frame->tf_snip = pcb_onfault | NIP_V;
			frame->tf_sfip = (pcb_onfault + 4) | FIP_V;
			frame->tf_sxip = 0;
			/*
			 * Continue as if the fault had been resolved, but
			 * do not try to complete the faulting access.
			 */
			frame->tf_dmt0 |= DMT_SKIP;
			result = 0;
		}

		if (result == 0) {
			if (type == T_DATAFLT+T_USER) {
				/*
			 	 * We could resolve the fault. Call
			 	 * data_access_emulation to drain the data unit
			 	 * pipe line and reset dmt0 so that trap won't
			 	 * get called again.
			 	 */
				data_access_emulation((unsigned *)frame);
				frame->tf_dpfsr = 0;
				frame->tf_dmt0 = 0;
			} else {
				/*
				 * back up SXIP, SNIP,
				 * clearing the Error bit
				 */
				frame->tf_sfip = frame->tf_snip & ~FIP_E;
				frame->tf_snip = frame->tf_sxip & ~NIP_E;
				frame->tf_ipfsr = 0;
			}
		} else {
			sig = result == EACCES ? SIGBUS : SIGSEGV;
			fault_type = result == EACCES ?
			    BUS_ADRERR : SEGV_MAPERR;
		}
		break;
	case T_MISALGNFLT+T_USER:
		/* Fix any misaligned ld.d or st.d instructions */
		sig = double_reg_fixup(frame);
		fault_type = BUS_ADRALN;
		break;
	case T_PRIVINFLT+T_USER:
	case T_ILLFLT+T_USER:
#ifndef DDB
	case T_KDB_BREAK:
	case T_KDB_ENTRY:
#endif
	case T_KDB_BREAK+T_USER:
	case T_KDB_ENTRY+T_USER:
	case T_KDB_TRACE:
	case T_KDB_TRACE+T_USER:
		sig = SIGILL;
		break;
	case T_BNDFLT+T_USER:
		sig = SIGFPE;
		break;
	case T_ZERODIV+T_USER:
		sig = SIGFPE;
		fault_type = FPE_INTDIV;
		break;
	case T_OVFFLT+T_USER:
		sig = SIGFPE;
		fault_type = FPE_INTOVF;
		break;
	case T_FPEPFLT+T_USER:
		sig = SIGFPE;
		break;
	case T_SIGSYS+T_USER:
		sig = SIGSYS;
		break;
	case T_STEPBPT+T_USER:
#ifdef PTRACE
		/*
		 * This trap is used by the kernel to support single-step
		 * debugging (although any user could generate this trap
		 * which should probably be handled differently). When a
		 * process is continued by a debugger with the PT_STEP
		 * function of ptrace (single step), the kernel inserts
		 * one or two breakpoints in the user process so that only
		 * one instruction (or two in the case of a delayed branch)
		 * is executed.  When this breakpoint is hit, we get the
		 * T_STEPBPT trap.
		 */
		{
			u_int instr;
			vaddr_t pc = PC_REGS(&frame->tf_regs);

			/* read break instruction */
			copyin((caddr_t)pc, &instr, sizeof(u_int));

			/* check and see if we got here by accident */
			if ((p->p_md.md_bp0va != pc &&
			     p->p_md.md_bp1va != pc) ||
			    instr != SSBREAKPOINT) {
				sig = SIGTRAP;
				fault_type = TRAP_TRACE;
				break;
			}

			/* restore original instruction and clear breakpoint */
			if (p->p_md.md_bp0va == pc) {
				ss_put_value(p, pc, p->p_md.md_bp0save);
				p->p_md.md_bp0va = 0;
			}
			if (p->p_md.md_bp1va == pc) {
				ss_put_value(p, pc, p->p_md.md_bp1save);
				p->p_md.md_bp1va = 0;
			}

#if 1
			frame->tf_sfip = frame->tf_snip;
			frame->tf_snip = pc | NIP_V;
#endif
			sig = SIGTRAP;
			fault_type = TRAP_BRKPT;
		}
#else
		sig = SIGTRAP;
		fault_type = TRAP_TRACE;
#endif
		break;

	case T_USERBPT+T_USER:
		/*
		 * This trap is meant to be used by debuggers to implement
		 * breakpoint debugging.  When we get this trap, we just
		 * return a signal which gets caught by the debugger.
		 */
		frame->tf_sfip = frame->tf_snip;
		frame->tf_snip = frame->tf_sxip;
		sig = SIGTRAP;
		fault_type = TRAP_BRKPT;
		break;

	case T_ASTFLT+T_USER:
		uvmexp.softs++;
		p->p_md.md_astpending = 0;
		if (p->p_flag & P_OWEUPC) {
			KERNEL_PROC_LOCK(p);
			ADDUPROF(p);
			KERNEL_PROC_UNLOCK(p);
		}
		if (curcpu()->ci_want_resched)
			preempt(NULL);
		break;
	}

	/*
	 * If trap from supervisor mode, just return
	 */
	if (type < T_USER)
		return;

	if (sig) {
		sv.sival_int = fault_addr;
		KERNEL_PROC_LOCK(p);
		trapsignal(p, sig, fault_code, fault_type, sv);
		KERNEL_PROC_UNLOCK(p);
		/*
		 * don't want multiple faults - we are going to
		 * deliver signal.
		 */
		frame->tf_dmt0 = 0;
		frame->tf_ipfsr = frame->tf_dpfsr = 0;
	}

	userret(p);
}
Beispiel #12
0
void
m88110_trap(u_int type, struct trapframe *frame)
{
	struct proc *p;
	struct vm_map *map;
	vaddr_t va, pcb_onfault;
	vm_prot_t ftype;
	int fault_type;
	u_long fault_code;
	vaddr_t fault_addr;
	struct vmspace *vm;
	union sigval sv;
	int result;
#ifdef DDB
        int s;
	u_int psr;
#endif
	int sig = 0;

	uvmexp.traps++;
	if ((p = curproc) == NULL)
		p = &proc0;

	fault_type = SI_NOINFO;
	fault_code = 0;
	fault_addr = frame->tf_exip & XIP_ADDR;

	/*
	 * 88110 errata #16 (4.2) or #3 (5.1.1):
	 * ``bsr, br, bcnd, jsr and jmp instructions with the .n extension
	 *   can cause the enip value to be incremented by 4 incorrectly
	 *   if the instruction in the delay slot is the first word of a
	 *   page which misses in the mmu and results in a hardware
	 *   tablewalk which encounters an exception or an invalid
	 *   descriptor.  The exip value in this case will point to the
	 *   first word of the page, and the D bit will be set.
	 *
	 *   Note: if the instruction is a jsr.n r1, r1 will be overwritten
	 *   with erroneous data.  Therefore, no recovery is possible. Do
	 *   not allow this instruction to occupy the last word of a page.
	 *
	 *   Suggested fix: recover in general by backing up the exip by 4
	 *   and clearing the delay bit before an rte when the lower 3 hex
	 *   digits of the exip are 001.''
	 */
	if ((frame->tf_exip & PAGE_MASK) == 0x00000001 && type == T_INSTFLT) {
		u_int instr;

		/*
		 * Note that we have initialized fault_addr above, so that
		 * signals provide the correct address if necessary.
		 */
		frame->tf_exip = (frame->tf_exip & ~1) - 4;

		/*
		 * Check the instruction at the (backed up) exip.
		 * If it is a jsr.n, abort.
		 */
		if (!USERMODE(frame->tf_epsr)) {
			instr = *(u_int *)fault_addr;
			if (instr == 0xf400cc01)
				panic("mc88110 errata #16, exip %p enip %p",
				    (frame->tf_exip + 4) | 1, frame->tf_enip);
		} else {
			/* copyin here should not fail */
			if (copyin((const void *)frame->tf_exip, &instr,
			    sizeof instr) == 0 &&
			    instr == 0xf400cc01) {
				uprintf("mc88110 errata #16, exip %p enip %p",
				    (frame->tf_exip + 4) | 1, frame->tf_enip);
				sig = SIGILL;
			}
		}
	}

	if (USERMODE(frame->tf_epsr)) {
		type += T_USER;
		p->p_md.md_tf = frame;	/* for ptrace/signals */
	}

	if (sig != 0)
		goto deliver;

	switch (type) {
	default:
lose:
		panictrap(frame->tf_vector, frame);
		break;
		/*NOTREACHED*/

#ifdef DEBUG
	case T_110_DRM+T_USER:
	case T_110_DRM:
		printf("DMMU read miss: Hardware Table Searches should be enabled!\n");
		goto lose;
	case T_110_DWM+T_USER:
	case T_110_DWM:
		printf("DMMU write miss: Hardware Table Searches should be enabled!\n");
		goto lose;
	case T_110_IAM+T_USER:
	case T_110_IAM:
		printf("IMMU miss: Hardware Table Searches should be enabled!\n");
		goto lose;
#endif

#ifdef DDB
	case T_KDB_TRACE:
		s = splhigh();
		set_psr((psr = get_psr()) & ~PSR_IND);
		ddb_break_trap(T_KDB_TRACE, (db_regs_t*)frame);
		set_psr(psr);
		splx(s);
		return;
	case T_KDB_BREAK:
		s = splhigh();
		set_psr((psr = get_psr()) & ~PSR_IND);
		ddb_break_trap(T_KDB_BREAK, (db_regs_t*)frame);
		set_psr(psr);
		splx(s);
		return;
	case T_KDB_ENTRY:
		s = splhigh();
		set_psr((psr = get_psr()) & ~PSR_IND);
		ddb_entry_trap(T_KDB_ENTRY, (db_regs_t*)frame);
		set_psr(psr);
		/* skip trap instruction */
		m88110_skip_insn(frame);
		splx(s);
		return;
#endif /* DDB */
	case T_ILLFLT:
		/*
		 * The 88110 seems to trigger an instruction fault in
		 * supervisor mode when running the following sequence:
		 *
		 *	bcnd.n cond, reg, 1f
		 *	arithmetic insn
		 *	...
		 *  	the same exact arithmetic insn
		 *  1:	another arithmetic insn stalled by the previous one
		 *	...
		 *
		 * The exception is reported with exip pointing to the
		 * branch address. I don't know, at this point, if there
		 * is any better workaround than the aggressive one
		 * implemented below; I don't see how this could relate to
		 * any of the 88110 errata (although it might be related to
		 * branch prediction).
		 *
		 * For the record, the exact sequence triggering the
		 * spurious exception is:
		 *
		 *	bcnd.n	eq0, r2,  1f
		 *	 or	r25, r0,  r22
		 *	bsr	somewhere
		 *	or	r25, r0,  r22
		 *  1:	cmp	r13, r25, r20
		 *
		 * within the same cache line.
		 *
		 * Simply ignoring the exception and returning does not
		 * cause the exception to disappear. Clearing the
		 * instruction cache works, but on 88110+88410 systems,
		 * the 88410 needs to be invalidated as well. (note that
		 * the size passed to the flush routines does not matter
		 * since there is no way to flush a subset of the 88110
		 * I$ anyway)
		 */
	    {
		extern void *kernel_text, *etext;

		if (fault_addr >= (vaddr_t)&kernel_text &&
		    fault_addr < (vaddr_t)&etext) {
			cmmu_icache_inv(curcpu()->ci_cpuid,
			    trunc_page(fault_addr), PAGE_SIZE);
			cmmu_cache_wbinv(curcpu()->ci_cpuid,
			    trunc_page(fault_addr), PAGE_SIZE);
			return;
		}
	    }
		goto lose;
	case T_MISALGNFLT:
		printf("kernel misaligned access exception @%p\n",
		    frame->tf_exip);
		goto lose;
	case T_INSTFLT:
		/* kernel mode instruction access fault.
		 * Should never, never happen for a non-paged kernel.
		 */
#ifdef TRAPDEBUG
		printf("Kernel Instruction fault exip %x isr %x ilar %x\n",
		    frame->tf_exip, frame->tf_isr, frame->tf_ilar);
#endif
		goto lose;

	case T_DATAFLT:
		/* kernel mode data fault */

		/* data fault on the user address? */
		if ((frame->tf_dsr & CMMU_DSR_SU) == 0) {
			KERNEL_LOCK();
			goto m88110_user_fault;
		}

#ifdef TRAPDEBUG
		printf("Kernel Data access fault exip %x dsr %x dlar %x\n",
		    frame->tf_exip, frame->tf_dsr, frame->tf_dlar);
#endif

		fault_addr = frame->tf_dlar;
		if (frame->tf_dsr & CMMU_DSR_RW) {
			ftype = VM_PROT_READ;
			fault_code = VM_PROT_READ;
		} else {
			ftype = VM_PROT_READ|VM_PROT_WRITE;
			fault_code = VM_PROT_WRITE;
		}

		va = trunc_page((vaddr_t)fault_addr);

		KERNEL_LOCK();
		vm = p->p_vmspace;
		map = kernel_map;

		if (frame->tf_dsr & (CMMU_DSR_SI | CMMU_DSR_PI)) {
			/*
			 * On a segment or a page fault, call uvm_fault() to
			 * resolve the fault.
			 */
			if ((pcb_onfault = p->p_addr->u_pcb.pcb_onfault) != 0)
				p->p_addr->u_pcb.pcb_onfault = 0;
			result = uvm_fault(map, va, VM_FAULT_INVALID, ftype);
			p->p_addr->u_pcb.pcb_onfault = pcb_onfault;
			/*
			 * This could be a fault caused in copyout*()
			 * while accessing kernel space.
			 */
			if (result != 0 && pcb_onfault != 0) {
				frame->tf_exip = pcb_onfault;
				/*
				 * Continue as if the fault had been resolved.
				 */
				result = 0;
			}
			if (result == 0) {
				KERNEL_UNLOCK();
				return;
			}
		}
		KERNEL_UNLOCK();
		goto lose;
	case T_INSTFLT+T_USER:
		/* User mode instruction access fault */
		/* FALLTHROUGH */
	case T_DATAFLT+T_USER:
		KERNEL_LOCK();
m88110_user_fault:
		if (type == T_INSTFLT+T_USER) {
			ftype = VM_PROT_READ;
			fault_code = VM_PROT_READ;
#ifdef TRAPDEBUG
			printf("User Instruction fault exip %x isr %x ilar %x\n",
			    frame->tf_exip, frame->tf_isr, frame->tf_ilar);
#endif
		} else {
			fault_addr = frame->tf_dlar;
			if (frame->tf_dsr & CMMU_DSR_RW) {
				ftype = VM_PROT_READ;
				fault_code = VM_PROT_READ;
			} else {
				ftype = VM_PROT_READ|VM_PROT_WRITE;
				fault_code = VM_PROT_WRITE;
			}
#ifdef TRAPDEBUG
			printf("User Data access fault exip %x dsr %x dlar %x\n",
			    frame->tf_exip, frame->tf_dsr, frame->tf_dlar);
#endif
		}

		va = trunc_page((vaddr_t)fault_addr);

		vm = p->p_vmspace;
		map = &vm->vm_map;
		if ((pcb_onfault = p->p_addr->u_pcb.pcb_onfault) != 0)
			p->p_addr->u_pcb.pcb_onfault = 0;

		/*
		 * Call uvm_fault() to resolve non-bus error faults
		 * whenever possible.
		 */
		if (type == T_INSTFLT+T_USER) {
			/* instruction faults */
			if (frame->tf_isr &
			    (CMMU_ISR_BE | CMMU_ISR_SP | CMMU_ISR_TBE)) {
				/* bus error, supervisor protection */
				result = EACCES;
			} else
			if (frame->tf_isr & (CMMU_ISR_SI | CMMU_ISR_PI)) {
				/* segment or page fault */
				result = uvm_fault(map, va, VM_FAULT_INVALID, ftype);
			} else {
#ifdef TRAPDEBUG
				printf("Unexpected Instruction fault isr %x\n",
				    frame->tf_isr);
#endif
				KERNEL_UNLOCK();
				goto lose;
			}
		} else {
			/* data faults */
			if (frame->tf_dsr & CMMU_DSR_BE) {
				/* bus error */
				result = EACCES;
			} else
			if (frame->tf_dsr & (CMMU_DSR_SI | CMMU_DSR_PI)) {
				/* segment or page fault */
				result = uvm_fault(map, va, VM_FAULT_INVALID, ftype);
			} else
			if (frame->tf_dsr & (CMMU_DSR_CP | CMMU_DSR_WA)) {
				/* copyback or write allocate error */
				result = EACCES;
			} else
			if (frame->tf_dsr & CMMU_DSR_WE) {
				/* write fault  */
				/* This could be a write protection fault or an
				 * exception to set the used and modified bits
				 * in the pte. Basically, if we got a write
				 * error, then we already have a pte entry that
				 * faulted in from a previous seg fault or page
				 * fault.
				 * Get the pte and check the status of the
				 * modified and valid bits to determine if this
				 * indeed a real write fault.  XXX smurph
				 */
				if (pmap_set_modify(map->pmap, va)) {
#ifdef TRAPDEBUG
					printf("Corrected userland write fault, pmap %p va %p\n",
					    map->pmap, va);
#endif
					result = 0;
				} else {
					/* must be a real wp fault */
#ifdef TRAPDEBUG
					printf("Uncorrected userland write fault, pmap %p va %p\n",
					    map->pmap, va);
#endif
					result = uvm_fault(map, va, VM_FAULT_INVALID, ftype);
				}
			} else {
#ifdef TRAPDEBUG
				printf("Unexpected Data access fault dsr %x\n",
				    frame->tf_dsr);
#endif
				KERNEL_UNLOCK();
				goto lose;
			}
		}
		p->p_addr->u_pcb.pcb_onfault = pcb_onfault;

		if ((caddr_t)va >= vm->vm_maxsaddr) {
			if (result == 0)
				uvm_grow(p, va);
			else if (result == EACCES)
				result = EFAULT;
		}
		KERNEL_UNLOCK();

		/*
		 * This could be a fault caused in copyin*()
		 * while accessing user space.
		 */
		if (result != 0 && pcb_onfault != 0) {
			frame->tf_exip = pcb_onfault;
			/*
			 * Continue as if the fault had been resolved.
			 */
			result = 0;
		}

		if (result != 0) {
			sig = result == EACCES ? SIGBUS : SIGSEGV;
			fault_type = result == EACCES ?
			    BUS_ADRERR : SEGV_MAPERR;
		}
		break;
	case T_MISALGNFLT+T_USER:
		/* Fix any misaligned ld.d or st.d instructions */
		sig = double_reg_fixup(frame);
		fault_type = BUS_ADRALN;
		if (sig == 0) {
			/* skip recovered instruction */
			m88110_skip_insn(frame);
			goto userexit;
		}
		break;
	case T_PRIVINFLT+T_USER:
		fault_type = ILL_PRVREG;
		/* FALLTHROUGH */
	case T_ILLFLT+T_USER:
#ifndef DDB
	case T_KDB_BREAK:
	case T_KDB_ENTRY:
	case T_KDB_TRACE:
#endif
	case T_KDB_BREAK+T_USER:
	case T_KDB_ENTRY+T_USER:
	case T_KDB_TRACE+T_USER:
		sig = SIGILL;
		break;
	case T_BNDFLT+T_USER:
		sig = SIGFPE;
		/* skip trap instruction */
		m88110_skip_insn(frame);
		break;
	case T_ZERODIV+T_USER:
		sig = SIGFPE;
		fault_type = FPE_INTDIV;
		/* skip trap instruction */
		m88110_skip_insn(frame);
		break;
	case T_OVFFLT+T_USER:
		sig = SIGFPE;
		fault_type = FPE_INTOVF;
		/* skip trap instruction */
		m88110_skip_insn(frame);
		break;
	case T_FPEPFLT+T_USER:
		m88110_fpu_exception(frame);
		goto userexit;
	case T_SIGSYS+T_USER:
		sig = SIGSYS;
		break;
	case T_STEPBPT+T_USER:
#ifdef PTRACE
		/*
		 * This trap is used by the kernel to support single-step
		 * debugging (although any user could generate this trap
		 * which should probably be handled differently). When a
		 * process is continued by a debugger with the PT_STEP
		 * function of ptrace (single step), the kernel inserts
		 * one or two breakpoints in the user process so that only
		 * one instruction (or two in the case of a delayed branch)
		 * is executed.  When this breakpoint is hit, we get the
		 * T_STEPBPT trap.
		 */
		{
			u_int instr;
			vaddr_t pc = PC_REGS(&frame->tf_regs);

			/* read break instruction */
			copyin((caddr_t)pc, &instr, sizeof(u_int));

			/* check and see if we got here by accident */
			if ((p->p_md.md_bp0va != pc &&
			     p->p_md.md_bp1va != pc) ||
			    instr != SSBREAKPOINT) {
				sig = SIGTRAP;
				fault_type = TRAP_TRACE;
				break;
			}

			/* restore original instruction and clear breakpoint */
			if (p->p_md.md_bp0va == pc) {
				ss_put_value(p, pc, p->p_md.md_bp0save);
				p->p_md.md_bp0va = 0;
			}
			if (p->p_md.md_bp1va == pc) {
				ss_put_value(p, pc, p->p_md.md_bp1save);
				p->p_md.md_bp1va = 0;
			}

			sig = SIGTRAP;
			fault_type = TRAP_BRKPT;
		}
#else
		sig = SIGTRAP;
		fault_type = TRAP_TRACE;
#endif
		break;
	case T_USERBPT+T_USER:
		/*
		 * This trap is meant to be used by debuggers to implement
		 * breakpoint debugging.  When we get this trap, we just
		 * return a signal which gets caught by the debugger.
		 */
		sig = SIGTRAP;
		fault_type = TRAP_BRKPT;
		break;
	}

	/*
	 * If trap from supervisor mode, just return
	 */
	if (type < T_USER)
		return;

	if (sig) {
deliver:
		sv.sival_ptr = (void *)fault_addr;
		KERNEL_LOCK();
		trapsignal(p, sig, fault_code, fault_type, sv);
		KERNEL_UNLOCK();
	}

userexit:
	userret(p);
}
Beispiel #13
0
void
trap(int type, struct trapframe *frame)
{
	struct lwp *l;
	struct proc *p;
	struct pcb *pcbp;
	vaddr_t va;
	struct vm_map *map;
	struct vmspace *vm;
	vm_prot_t vftype;
	pa_space_t space;
	u_int opcode;
	int ret;
	const char *tts;
	int type_raw;
#ifdef DIAGNOSTIC
	extern int emergency_stack_start, emergency_stack_end;
#endif

	type_raw = type & ~T_USER;
	opcode = frame->tf_iir;
	if (type_raw == T_ITLBMISS || type_raw == T_ITLBMISSNA) {
		va = frame->tf_iioq_head;
		space = frame->tf_iisq_head;
		vftype = VM_PROT_READ;	/* XXX VM_PROT_EXECUTE ??? */
	} else {
		va = frame->tf_ior;
		space = frame->tf_isr;
		vftype = inst_store(opcode) ? VM_PROT_WRITE : VM_PROT_READ;
	}

	if ((l = curlwp) == NULL)
		l = &lwp0;
	p = l->l_proc;

#ifdef DIAGNOSTIC
	/*
	 * If we are on the emergency stack, then we either got
	 * a fault on the kernel stack, or we're just handling
	 * a trap for the machine check handler (which also 
	 * runs on the emergency stack).
	 *
	 * We *very crudely* differentiate between the two cases
	 * by checking the faulting instruction: if it is the
	 * function prologue instruction that stores the old
	 * frame pointer and updates the stack pointer, we assume
	 * that we faulted on the kernel stack.
	 *
	 * In this case, not completing that instruction will
	 * probably confuse backtraces in kgdb/ddb.  Completing
	 * it would be difficult, because we already faulted on
	 * that part of the stack, so instead we fix up the 
	 * frame as if the function called has just returned.
	 * This has peculiar knowledge about what values are in
	 * what registers during the "normal gcc -g" prologue.
	 */
	if (&type >= &emergency_stack_start &&
	    &type < &emergency_stack_end &&
	    type != T_IBREAK && STWM_R1_D_SR0_SP(opcode)) {
		/* Restore the caller's frame pointer. */
		frame->tf_r3 = frame->tf_r1;
		/* Restore the caller's instruction offsets. */
		frame->tf_iioq_head = frame->tf_rp;
		frame->tf_iioq_tail = frame->tf_iioq_head + 4;
		goto dead_end;
	}
#endif /* DIAGNOSTIC */
		
#ifdef DEBUG
	frame_sanity_check(frame, l);
#endif /* DEBUG */

	/* If this is a trap, not an interrupt, reenable interrupts. */
	if (type_raw != T_INTERRUPT)
		mtctl(frame->tf_eiem, CR_EIEM);

	if (frame->tf_flags & TFF_LAST)
		l->l_md.md_regs = frame;

	if ((type & ~T_USER) > trap_types)
		tts = "reserved";
	else
		tts = trap_type[type & ~T_USER];

#ifdef TRAPDEBUG
	if (type_raw != T_INTERRUPT && type_raw != T_IBREAK)
		printf("trap: %d, %s for %x:%x at %x:%x, fp=%p, rp=%x\n",
		    type, tts, space, (u_int)va, frame->tf_iisq_head,
		    frame->tf_iioq_head, frame, frame->tf_rp);
	else if (type_raw == T_IBREAK)
		printf("trap: break instruction %x:%x at %x:%x, fp=%p\n",
		    break5(opcode), break13(opcode),
		    frame->tf_iisq_head, frame->tf_iioq_head, frame);

	{
		extern int etext;
		if (frame < (struct trapframe *)&etext) {
			printf("trap: bogus frame ptr %p\n", frame);
			goto dead_end;
		}
	}
#endif
	switch (type) {
	case T_NONEXIST:
	case T_NONEXIST|T_USER:
#if !defined(DDB) && !defined(KGDB)
		/* we've got screwed up by the central scrutinizer */
		panic ("trap: elvis has just left the building!");
		break;
#else
		goto dead_end;
#endif
	case T_RECOVERY|T_USER:
#ifdef USERTRACE
		for(;;) {
			if (frame->tf_iioq_head != rctr_next_iioq)
				printf("-%08x\nr %08x",
					rctr_next_iioq - 4,
					frame->tf_iioq_head);
			rctr_next_iioq = frame->tf_iioq_head + 4;
			if (frame->tf_ipsw & PSW_N) {
				/* Advance the program counter. */
				frame->tf_iioq_head = frame->tf_iioq_tail;
				frame->tf_iioq_tail = frame->tf_iioq_head + 4;
				/* Clear flags. */
				frame->tf_ipsw &= ~(PSW_N|PSW_X|PSW_Y|PSW_Z|PSW_B|PSW_T|PSW_H|PSW_L);
				/* Simulate another trap. */
				continue;
			}
			break;
		}
		frame->tf_rctr = 0;
		break;
#endif /* USERTRACE */
	case T_RECOVERY:
#if !defined(DDB) && !defined(KGDB)
		/* XXX will implement later */
		printf ("trap: handicapped");
		break;
#else
		goto dead_end;
#endif

	case T_EMULATION | T_USER:
#ifdef FPEMUL
		hppa_fpu_emulate(frame, l);
#else  /* !FPEMUL */
		/*
		 * We don't have FPU emulation, so signal the
		 * process with a SIGFPE.
		 */
		hppa_trapsignal_hack(l, SIGFPE, frame->tf_iioq_head);
#endif /* !FPEMUL */
		break;

#ifdef DIAGNOSTIC
	case T_EXCEPTION:
		panic("FPU/SFU emulation botch");

		/* these just can't happen ever */
	case T_PRIV_OP:
	case T_PRIV_REG:
		/* these just can't make it to the trap() ever */
	case T_HPMC:      case T_HPMC | T_USER:
	case T_EMULATION:
#endif
	case T_IBREAK:
	case T_DATALIGN:
	case T_DBREAK:
	dead_end:
		if (type & T_USER) {
#ifdef DEBUG
			user_backtrace(frame, l, type);
#endif
			hppa_trapsignal_hack(l, SIGILL, frame->tf_iioq_head);
			break;
		}
		if (trap_kdebug(type, va, frame))
			return;
		else if (type == T_DATALIGN)
			panic ("trap: %s at 0x%x", tts, (u_int) va);
		else
			panic ("trap: no debugger for \"%s\" (%d)", tts, type);
		break;

	case T_IBREAK | T_USER:
	case T_DBREAK | T_USER:
		/* pass to user debugger */
		break;

	case T_EXCEPTION | T_USER:	/* co-proc assist trap */
		hppa_trapsignal_hack(l, SIGFPE, va);
		break;

	case T_OVERFLOW | T_USER:
		hppa_trapsignal_hack(l, SIGFPE, va);
		break;
		
	case T_CONDITION | T_USER:
		break;

	case T_ILLEGAL | T_USER:
#ifdef DEBUG
		user_backtrace(frame, l, type);
#endif
		hppa_trapsignal_hack(l, SIGILL, va);
		break;

	case T_PRIV_OP | T_USER:
#ifdef DEBUG
		user_backtrace(frame, l, type);
#endif
		hppa_trapsignal_hack(l, SIGILL, va);
		break;

	case T_PRIV_REG | T_USER:
#ifdef DEBUG
		user_backtrace(frame, l, type);
#endif
		hppa_trapsignal_hack(l, SIGILL, va);
		break;

		/* these should never got here */
	case T_HIGHERPL | T_USER:
	case T_LOWERPL | T_USER:
		hppa_trapsignal_hack(l, SIGSEGV, va);
		break;

	case T_IPROT | T_USER:
	case T_DPROT | T_USER:
		hppa_trapsignal_hack(l, SIGSEGV, va);
		break;

	case T_DATACC:   	case T_USER | T_DATACC:
	case T_ITLBMISS:	case T_USER | T_ITLBMISS:
	case T_DTLBMISS:	case T_USER | T_DTLBMISS:
	case T_ITLBMISSNA:	case T_USER | T_ITLBMISSNA:
	case T_DTLBMISSNA:	case T_USER | T_DTLBMISSNA:
	case T_TLB_DIRTY:	case T_USER | T_TLB_DIRTY:
		vm = p->p_vmspace;

		if (!vm) {
#ifdef TRAPDEBUG
			printf("trap: no vm, p=%p\n", p);
#endif
			goto dead_end;
		}

		/*
		 * it could be a kernel map for exec_map faults
		 */
		if (!(type & T_USER) && space == HPPA_SID_KERNEL)
			map = kernel_map;
		else {
			map = &vm->vm_map;
			if (l->l_flag & L_SA) {
				l->l_savp->savp_faultaddr = va;
				l->l_flag |= L_SA_PAGEFAULT;
			}
		}

		va = hppa_trunc_page(va);

		if (map->pmap->pmap_space != space) {
#ifdef TRAPDEBUG
			printf("trap: space missmatch %d != %d\n",
			    space, map->pmap->pmap_space);
#endif
			/* actually dump the user, crap the kernel */
			goto dead_end;
		}

		/* Never call uvm_fault in interrupt context. */
		KASSERT(hppa_intr_depth == 0);

		ret = uvm_fault(map, va, 0, vftype);

#ifdef TRAPDEBUG
		printf("uvm_fault(%p, %x, %d, %d)=%d\n",
		    map, (u_int)va, 0, vftype, ret);
#endif

		if (map != kernel_map)
			l->l_flag &= ~L_SA_PAGEFAULT;
		/*
		 * If this was a stack access we keep track of the maximum
		 * accessed stack size.  Also, if uvm_fault gets a protection
		 * failure it is due to accessing the stack region outside
		 * the current limit and we need to reflect that as an access
		 * error.
		 */
		if (va >= (vaddr_t)vm->vm_maxsaddr + vm->vm_ssize) {
			if (ret == 0) {
				vsize_t nss = btoc(va - USRSTACK + PAGE_SIZE);
				if (nss > vm->vm_ssize)
					vm->vm_ssize = nss;
			} else if (ret == EACCES)
				ret = EFAULT;
		}

		if (ret != 0) {
			if (type & T_USER) {
printf("trapsignal: uvm_fault(%p, %x, %d, %d)=%d\n",
	map, (u_int)va, 0, vftype, ret);
#ifdef DEBUG
				user_backtrace(frame, l, type);
#endif
				hppa_trapsignal_hack(l, SIGSEGV, frame->tf_ior);
			} else {
				if (l && l->l_addr->u_pcb.pcb_onfault) {
#ifdef PMAPDEBUG
					printf("trap: copyin/out %d\n",ret);
#endif
					pcbp = &l->l_addr->u_pcb;
					frame->tf_iioq_tail = 4 +
					    (frame->tf_iioq_head =
						pcbp->pcb_onfault);
					pcbp->pcb_onfault = 0;
					break;
				}
#if 1
if (trap_kdebug (type, va, frame))
	return;
#else
				panic("trap: uvm_fault(%p, %x, %d, %d): %d",
				    map, va, 0, vftype, ret);
#endif
			}
		}
		break;

	case T_DATALIGN | T_USER:
#ifdef DEBUG
		user_backtrace(frame, l, type);
#endif
		hppa_trapsignal_hack(l, SIGBUS, va);
		break;

	case T_INTERRUPT:
	case T_INTERRUPT|T_USER:
		hppa_intr(frame);
		mtctl(frame->tf_eiem, CR_EIEM);
#if 0
if (trap_kdebug (type, va, frame))
return;
#endif
		break;
	case T_LOWERPL:
	case T_DPROT:
	case T_IPROT:
	case T_OVERFLOW:
	case T_CONDITION:
	case T_ILLEGAL:
	case T_HIGHERPL:
	case T_TAKENBR:
	case T_POWERFAIL:
	case T_LPMC:
	case T_PAGEREF:
	case T_DATAPID:  	case T_DATAPID  | T_USER:
		if (0 /* T-chip */) {
			break;
		}
		/* FALLTHROUGH to unimplemented */
	default:
#if 1
if (trap_kdebug (type, va, frame))
	return;
#endif
		panic ("trap: unimplemented \'%s\' (%d)", tts, type);
	}

	if (type & T_USER)
		userret(l, l->l_md.md_regs->tf_iioq_head, 0);

#ifdef DEBUG
	frame_sanity_check(frame, l);
	if (frame->tf_flags & TFF_LAST && curlwp != NULL)
		frame_sanity_check(curlwp->l_md.md_regs, curlwp);
#endif /* DEBUG */
}
Beispiel #14
0
/*ARGSUSED*/
void
trap(struct trapframe *frame)
{
	struct proc *p = curproc;
	int type = (int)frame->tf_trapno;
	struct pcb *pcb;
	extern char doreti_iret[], resume_iret[];
	caddr_t onfault;
	int error;
	uint64_t cr2;
	union sigval sv;

	uvmexp.traps++;

	pcb = (p != NULL && p->p_addr != NULL) ? &p->p_addr->u_pcb : NULL;

#ifdef DEBUG
	if (trapdebug) {
		printf("trap %d code %lx rip %lx cs %lx rflags %lx cr2 %lx "
		       "cpl %x\n",
		    type, frame->tf_err, frame->tf_rip, frame->tf_cs,
		    frame->tf_rflags, rcr2(), curcpu()->ci_ilevel);
		printf("curproc %p\n", curproc);
		if (curproc)
			printf("pid %d\n", p->p_pid);
	}
#endif

	if (!KERNELMODE(frame->tf_cs, frame->tf_rflags)) {
		type |= T_USER;
		p->p_md.md_regs = frame;
	}

	switch (type) {

	default:
	we_re_toast:
#ifdef KGDB
		if (kgdb_trap(type, frame))
			return;
		else {
			/*
			 * If this is a breakpoint, don't panic
			 * if we're not connected.
			 */
			if (type == T_BPTFLT) {
				printf("kgdb: ignored %s\n", trap_type[type]);
				return;
			}
		}
#endif
#ifdef DDB
		if (kdb_trap(type, 0, frame))
			return;
#endif
		if (frame->tf_trapno < trap_types)
			printf("fatal %s", trap_type[frame->tf_trapno]);
		else
			printf("unknown trap %ld", (u_long)frame->tf_trapno);
		printf(" in %s mode\n", (type & T_USER) ? "user" : "supervisor");
		printf("trap type %d code %lx rip %lx cs %lx rflags %lx cr2 "
		       " %lx cpl %x rsp %lx\n",
		    type, frame->tf_err, (u_long)frame->tf_rip, frame->tf_cs,
		    frame->tf_rflags, rcr2(), curcpu()->ci_ilevel, frame->tf_rsp);

		panic("trap type %d, code=%lx, pc=%lx",
		    type, frame->tf_err, frame->tf_rip);
		/*NOTREACHED*/

	case T_PROTFLT:
	case T_SEGNPFLT:
	case T_ALIGNFLT:
	case T_TSSFLT:
		if (p == NULL)
			goto we_re_toast;
		/* Check for copyin/copyout fault. */
		if (pcb->pcb_onfault != 0) {
			error = EFAULT;
copyfault:
			frame->tf_rip = (u_int64_t)pcb->pcb_onfault;
			frame->tf_rax = error;
			return;
		}

		/*
		 * Check for failure during return to user mode.
		 * We do this by looking at the address of the
		 * instruction that faulted.
		 */
		if (frame->tf_rip == (u_int64_t)doreti_iret) {
			frame->tf_rip = (u_int64_t)resume_iret;
			return;
		}
		goto we_re_toast;

	case T_PROTFLT|T_USER:		/* protection fault */
	case T_TSSFLT|T_USER:
	case T_SEGNPFLT|T_USER:
	case T_STKFLT|T_USER:
	case T_NMI|T_USER:
#ifdef TRAP_SIGDEBUG
		printf("pid %d (%s): BUS at rip %lx addr %lx\n",
		    p->p_pid, p->p_comm, frame->tf_rip, rcr2());
		frame_dump(frame);
#endif
		sv.sival_ptr = (void *)frame->tf_rip;
		KERNEL_LOCK();
		trapsignal(p, SIGBUS, type & ~T_USER, BUS_OBJERR, sv);
		KERNEL_UNLOCK();
		goto out;
	case T_ALIGNFLT|T_USER:
		sv.sival_ptr = (void *)frame->tf_rip;
		KERNEL_LOCK();
		trapsignal(p, SIGBUS, type & ~T_USER, BUS_ADRALN, sv);
		KERNEL_UNLOCK();
		goto out;

	case T_PRIVINFLT|T_USER:	/* privileged instruction fault */
		sv.sival_ptr = (void *)frame->tf_rip;
		KERNEL_LOCK();
		trapsignal(p, SIGILL, type & ~T_USER, ILL_PRVOPC, sv);
		KERNEL_UNLOCK();
		goto out;
	case T_FPOPFLT|T_USER:		/* coprocessor operand fault */
#ifdef TRAP_SIGDEBUG
		printf("pid %d (%s): ILL at rip %lx addr %lx\n",
		    p->p_pid, p->p_comm, frame->tf_rip, rcr2());
		frame_dump(frame);
#endif
		sv.sival_ptr = (void *)frame->tf_rip;
		KERNEL_LOCK();
		trapsignal(p, SIGILL, type & ~T_USER, ILL_COPROC, sv);
		KERNEL_UNLOCK();
		goto out;

	case T_ASTFLT|T_USER:		/* Allow process switch */
		uvmexp.softs++;
		if (p->p_flag & P_OWEUPC) {
			KERNEL_LOCK();
			ADDUPROF(p);
			KERNEL_UNLOCK();
		}
		/* Allow a forced task switch. */
		if (curcpu()->ci_want_resched)
			preempt(NULL);
		goto out;

	case T_BOUND|T_USER:
		sv.sival_ptr = (void *)frame->tf_rip;
		KERNEL_LOCK();
		trapsignal(p, SIGFPE, type &~ T_USER, FPE_FLTSUB, sv);
		KERNEL_UNLOCK();
		goto out;
	case T_OFLOW|T_USER:
		sv.sival_ptr = (void *)frame->tf_rip;
		KERNEL_LOCK();
		trapsignal(p, SIGFPE, type &~ T_USER, FPE_INTOVF, sv);
		KERNEL_UNLOCK();
		goto out;
	case T_DIVIDE|T_USER:
		sv.sival_ptr = (void *)frame->tf_rip;
		KERNEL_LOCK();
		trapsignal(p, SIGFPE, type &~ T_USER, FPE_INTDIV, sv);
		KERNEL_UNLOCK();
		goto out;

	case T_ARITHTRAP|T_USER:
	case T_XMM|T_USER:
		fputrap(frame);
		goto out;

	case T_PAGEFLT:			/* allow page faults in kernel mode */
		if (p == NULL)
			goto we_re_toast;
		cr2 = rcr2();
		KERNEL_LOCK();
		goto faultcommon;

	case T_PAGEFLT|T_USER: {	/* page fault */
		vaddr_t va, fa;
		struct vmspace *vm;
		struct vm_map *map;
		vm_prot_t ftype;
		extern struct vm_map *kernel_map;

		cr2 = rcr2();
		KERNEL_LOCK();
faultcommon:
		vm = p->p_vmspace;
		if (vm == NULL)
			goto we_re_toast;
		fa = cr2;
		va = trunc_page((vaddr_t)cr2);
		/*
		 * It is only a kernel address space fault iff:
		 *	1. (type & T_USER) == 0  and
		 *	2. pcb_onfault not set or
		 *	3. pcb_onfault set but supervisor space fault
		 * The last can occur during an exec() copyin where the
		 * argument space is lazy-allocated.
		 */
		if (type == T_PAGEFLT && va >= VM_MIN_KERNEL_ADDRESS)
			map = kernel_map;
		else
			map = &vm->vm_map;
		if (frame->tf_err & PGEX_W)
			ftype = VM_PROT_WRITE;
		else if (frame->tf_err & PGEX_I)
			ftype = VM_PROT_EXECUTE;
		else
			ftype = VM_PROT_READ;

#ifdef DIAGNOSTIC
		if (map == kernel_map && va == 0) {
			printf("trap: bad kernel access at %lx\n", va);
			goto we_re_toast;
		}
#endif

		/* Fault the original page in. */
		onfault = pcb->pcb_onfault;
		pcb->pcb_onfault = NULL;
		error = uvm_fault(map, va, frame->tf_err & PGEX_P?
		    VM_FAULT_PROTECT : VM_FAULT_INVALID, ftype);
		pcb->pcb_onfault = onfault;
		if (error == 0) {
			if (map != kernel_map)
				uvm_grow(p, va);

			if (type == T_PAGEFLT) {
				KERNEL_UNLOCK();
				return;
			}
			KERNEL_UNLOCK();
			goto out;
		}
		if (error == EACCES) {
			error = EFAULT;
		}

		if (type == T_PAGEFLT) {
			if (pcb->pcb_onfault != 0) {
				KERNEL_UNLOCK();
				goto copyfault;
			}
			printf("uvm_fault(%p, 0x%lx, 0, %d) -> %x\n",
			    map, va, ftype, error);
			goto we_re_toast;
		}
		if (error == ENOMEM) {
			printf("UVM: pid %d (%s), uid %d killed: out of swap\n",
			       p->p_pid, p->p_comm,
			       p->p_cred && p->p_ucred ?
			       (int)p->p_ucred->cr_uid : -1);
			sv.sival_ptr = (void *)fa;
			trapsignal(p, SIGKILL, T_PAGEFLT, SEGV_MAPERR, sv);
		} else {
#ifdef TRAP_SIGDEBUG
			printf("pid %d (%s): SEGV at rip %lx addr %lx\n",
			    p->p_pid, p->p_comm, frame->tf_rip, va);
			frame_dump(frame);
#endif
			sv.sival_ptr = (void *)fa;
			trapsignal(p, SIGSEGV, T_PAGEFLT, SEGV_MAPERR, sv);
		}
		KERNEL_UNLOCK();
		break;
	}

	case T_TRCTRAP:
		goto we_re_toast;

	case T_BPTFLT|T_USER:		/* bpt instruction fault */
	case T_TRCTRAP|T_USER:		/* trace trap */
#ifdef MATH_EMULATE
	trace:
#endif
		KERNEL_LOCK();
		trapsignal(p, SIGTRAP, type &~ T_USER, TRAP_BRKPT, sv);
		KERNEL_UNLOCK();
		break;

#if	NISA > 0
	case T_NMI:
#if defined(KGDB) || defined(DDB)
		/* NMI can be hooked up to a pushbutton for debugging */
		printf ("NMI ... going to debugger\n");
#ifdef KGDB

		if (kgdb_trap(type, frame))
			return;
#endif
#ifdef DDB
		if (kdb_trap(type, 0, frame))
			return;
#endif
#endif /* KGDB || DDB */
		/* machine/parity/power fail/"kitchen sink" faults */

		if (x86_nmi() != 0)
			goto we_re_toast;
		else
			return;
#endif /* NISA > 0 */
	}

	if ((type & T_USER) == 0)
		return;
out:
	userret(p);
}
Beispiel #15
0
/*
 * Handle a TLB miss exception for a page marked as able to trigger the
 * end-of-page errata.
 * Returns nonzero if the exception has been completely serviced, and no
 * further processing in the trap handler is necessary.
 */
int
eop_tlb_miss_handler(struct trap_frame *trapframe, struct cpu_info *ci,
    struct proc *p)
{
	struct pcb *pcb;
	vaddr_t va, faultva;
	struct vmspace *vm;
	vm_map_t map;
	pmap_t pmap;
	pt_entry_t *pte, entry;
	int onfault;
	u_long asid;
	uint i, npairs;
	int64_t tlbidx;

	/*
	 * Check for a valid pte with the `special' bit set (PG_SP)
	 * in order to apply the end-of-page errata workaround.
	 */

	vm = p->p_vmspace;
	map = &vm->vm_map;
	faultva = trunc_page((vaddr_t)trapframe->badvaddr);
	pmap = map->pmap;

	pte = pmap_segmap(pmap, faultva);
	if (pte == NULL)
		return 0;

	pte += uvtopte(faultva);
	entry = *pte;
	if ((entry & PG_SP) == 0)
		return 0;

	pcb = &p->p_addr->u_pcb;
	asid = pmap->pm_asid[ci->ci_cpuid].pma_asid << PG_ASID_SHIFT;

	/*
	 * For now, only allow one EOP vulnerable page to get a wired TLB
	 * entry.  We will aggressively attempt to recycle the wired TLB
	 * entries created for that purpose, as soon as we are no longer
	 * needing the EOP page resident in the TLB.
	 */

	/*
	 * Figure out how many pages to wire in the TLB.
	 */

	if ((faultva & PG_ODDPG) != 0) {
		/* odd page: need two pairs */
		npairs = 2;
	} else {
		/* even page: only need one pair */
		npairs = 1;
	}

	/*
	 * Fault-in the next page.
	 */

	va = faultva + PAGE_SIZE;
	pte = pmap_segmap(pmap, va);
	if (pte != NULL)
		pte += uvtopte(va);

	if (pte == NULL || (*pte & PG_V) == 0) {
		onfault = pcb->pcb_onfault;
		pcb->pcb_onfault = 0;
		KERNEL_LOCK();
		(void)uvm_fault(map, va, 0, PROT_READ | PROT_EXEC);
		KERNEL_UNLOCK();
		pcb->pcb_onfault = onfault;
	}

	/*
	 * Clear possible TLB entries for the pages we're about to wire.
	 */

	for (i = npairs, va = faultva & PG_HVPN; i != 0;
	    i--, va += 2 * PAGE_SIZE) {
		tlbidx = tlb_probe(va | asid);
		if (tlbidx >= 0)
			tlb_update_indexed(CKSEG0_BASE, PG_NV, PG_NV, tlbidx);
	}

	/*
	 * Reserve the extra wired TLB, and fill them with the existing ptes.
	 */

	tlb_set_wired((UPAGES / 2) + npairs);
	for (i = 0, va = faultva & PG_HVPN; i != npairs;
	    i++, va += 2 * PAGE_SIZE) {
		pte = pmap_segmap(pmap, va);
		if (pte == NULL)
			tlb_update_indexed(va | asid,
			    PG_NV, PG_NV, (UPAGES / 2) + i);
		else {
			pte += uvtopte(va);
			tlb_update_indexed(va | asid,
			    pte[0], pte[1], (UPAGES / 2) + i);
		}
	}

	/*
	 * Save the base address of the EOP vulnerable page, to be able to
	 * figure out when the wired entry is no longer necessary.
	 */

	pcb->pcb_nwired = npairs;
	pcb->pcb_wiredva = faultva & PG_HVPN;
	pcb->pcb_wiredpc = faultva;

	return 1;
}
Beispiel #16
0
/*ARGSUSED*/
void
trap(struct frame *fp, int type, unsigned code, unsigned v)
{
	extern char fubail[], subail[];
	struct lwp *l;
	struct proc *p;
	struct pcb *pcb;
	void *onfault;
	ksiginfo_t ksi;
	int s;
	int rv;
	u_quad_t sticks = 0 /* XXX initialiser works around compiler bug */;
	static int panicking __diagused;

	curcpu()->ci_data.cpu_ntrap++;
	l = curlwp;
	p = l->l_proc;
	pcb = lwp_getpcb(l);

	KSI_INIT_TRAP(&ksi);
	ksi.ksi_trap = type & ~T_USER;

	if (USERMODE(fp->f_sr)) {
		type |= T_USER;
		sticks = p->p_sticks;
		l->l_md.md_regs = fp->f_regs;
		LWP_CACHE_CREDS(l, p);
	}
	switch (type) {

	default:
	dopanic:
		/*
		 * Let the kernel debugger see the trap frame that
		 * caused us to panic.  This is a convenience so
		 * one can see registers at the point of failure.
		 */
		s = splhigh();
		panicking = 1;
		printf("trap type %d, code = 0x%x, v = 0x%x\n", type, code, v);
		printf("%s program counter = 0x%x\n",
		    (type & T_USER) ? "user" : "kernel", fp->f_pc);
#ifdef KGDB
		/* If connected, step or cont returns 1 */
		if (kgdb_trap(type, (db_regs_t *)fp))
			goto kgdb_cont;
#endif
#ifdef DDB
		(void)kdb_trap(type, (db_regs_t *)fp);
#endif
#ifdef KGDB
	kgdb_cont:
#endif
		splx(s);
		if (panicstr) {
			printf("trap during panic!\n");
#ifdef DEBUG
			/* XXX should be a machine-dependent hook */
			printf("(press a key)\n"); (void)cngetc();
#endif
		}
		regdump((struct trapframe *)fp, 128);
		type &= ~T_USER;
		if ((u_int)type < trap_types)
			panic(trap_type[type]);
		panic("trap");

	case T_BUSERR:		/* kernel bus error */
		onfault = pcb->pcb_onfault;
		if (onfault == NULL)
			goto dopanic;
		rv = EFAULT;
		/* FALLTHROUGH */

	copyfault:
		/*
		 * If we have arranged to catch this fault in any of the
		 * copy to/from user space routines, set PC to return to
		 * indicated location and set flag informing buserror code
		 * that it may need to clean up stack frame.
		 */
		fp->f_stackadj = exframesize[fp->f_format];
		fp->f_format = fp->f_vector = 0;
		fp->f_pc = (int)onfault;
		fp->f_regs[D0] = rv;
		return;

	case T_BUSERR|T_USER:	/* bus error */
	case T_ADDRERR|T_USER:	/* address error */
		ksi.ksi_addr = (void *)v;
		ksi.ksi_signo = SIGBUS;
		ksi.ksi_code = (type == (T_BUSERR|T_USER)) ?
			BUS_OBJERR : BUS_ADRERR;
		break;

	case T_COPERR:		/* kernel coprocessor violation */
	case T_FMTERR|T_USER:	/* do all RTE errors come in as T_USER? */
	case T_FMTERR:		/* ...just in case... */
	/*
	 * The user has most likely trashed the RTE or FP state info
	 * in the stack frame of a signal handler.
	 */
		printf("pid %d: kernel %s exception\n", p->p_pid,
		       type==T_COPERR ? "coprocessor" : "format");
		type |= T_USER;

		mutex_enter(p->p_lock);
		SIGACTION(p, SIGILL).sa_handler = SIG_DFL;
		sigdelset(&p->p_sigctx.ps_sigignore, SIGILL);
		sigdelset(&p->p_sigctx.ps_sigcatch, SIGILL);
		sigdelset(&l->l_sigmask, SIGILL);
		mutex_exit(p->p_lock);

		ksi.ksi_signo = SIGILL;
		ksi.ksi_addr = (void *)(int)fp->f_format;
				/* XXX was ILL_RESAD_FAULT */
		ksi.ksi_code = (type == T_COPERR) ?
			ILL_COPROC : ILL_ILLOPC;
		break;

	case T_COPERR|T_USER:	/* user coprocessor violation */
	/* What is a proper response here? */
		ksi.ksi_signo = SIGFPE;
		ksi.ksi_code = FPE_FLTINV;
		break;

	case T_FPERR|T_USER:	/* 68881 exceptions */
	/*
	 * We pass along the 68881 status register which locore stashed
	 * in code for us.
	 */
		ksi.ksi_signo = SIGFPE;
		ksi.ksi_code = fpsr2siginfocode(code);
		break;

#ifdef M68040
	case T_FPEMULI|T_USER:	/* unimplemented FP instruction */
	case T_FPEMULD|T_USER:	/* unimplemented FP data type */
		/* XXX need to FSAVE */
		printf("pid %d(%s): unimplemented FP %s at %x (EA %x)\n",
		       p->p_pid, p->p_comm,
		       fp->f_format == 2 ? "instruction" : "data type",
		       fp->f_pc, fp->f_fmt2.f_iaddr);
		/* XXX need to FRESTORE */
		ksi.ksi_signo = SIGFPE;
		ksi.ksi_code = FPE_FLTINV;
		break;
#endif

	case T_ILLINST|T_USER:	/* illegal instruction fault */
	case T_PRIVINST|T_USER:	/* privileged instruction fault */
		ksi.ksi_addr = (void *)(int)fp->f_format;
				/* XXX was ILL_PRIVIN_FAULT */
		ksi.ksi_signo = SIGILL;
		ksi.ksi_code = (type == (T_PRIVINST|T_USER)) ?
			ILL_PRVOPC : ILL_ILLOPC;
		break;

	case T_ZERODIV|T_USER:	/* Divide by zero */
		ksi.ksi_addr = (void *)(int)fp->f_format;
				/* XXX was FPE_INTDIV_TRAP */
		ksi.ksi_signo = SIGFPE;
		ksi.ksi_code = FPE_FLTDIV;
		break;

	case T_CHKINST|T_USER:	/* CHK instruction trap */
		ksi.ksi_addr = (void *)(int)fp->f_format;
				/* XXX was FPE_SUBRNG_TRAP */
		ksi.ksi_signo = SIGFPE;
		break;

	case T_TRAPVINST|T_USER:	/* TRAPV instruction trap */
		ksi.ksi_addr = (void *)(int)fp->f_format;
				/* XXX was FPE_INTOVF_TRAP */
		ksi.ksi_signo = SIGFPE;
		break;

	/*
	 * XXX: Trace traps are a nightmare.
	 *
	 *	HP-UX uses trap #1 for breakpoints,
	 *	NetBSD/m68k uses trap #2,
	 *	SUN 3.x uses trap #15,
	 *	DDB and KGDB uses trap #15 (for kernel breakpoints;
	 *	handled elsewhere).
	 *
	 * NetBSD and HP-UX traps both get mapped by locore.s into T_TRACE.
	 * SUN 3.x traps get passed through as T_TRAP15 and are not really
	 * supported yet.
	 *
	 * XXX: We should never get kernel-mode T_TRAP15
	 * XXX: because locore.s now gives them special treatment.
	 */
	case T_TRAP15:		/* kernel breakpoint */
#ifdef DEBUG
		printf("unexpected kernel trace trap, type = %d\n", type);
		printf("program counter = 0x%x\n", fp->f_pc);
#endif
		fp->f_sr &= ~PSL_T;
		return;

	case T_TRACE|T_USER:	/* user trace trap */
#ifdef COMPAT_SUNOS
		/*
		 * SunOS uses Trap #2 for a "CPU cache flush".
		 * Just flush the on-chip caches and return.
		 */
		if (p->p_emul == &emul_sunos) {
			ICIA();
			DCIU();
			return;
		}
#endif
		/* FALLTHROUGH */
	case T_TRACE:		/* tracing a trap instruction */
	case T_TRAP15|T_USER:	/* SUN user trace trap */
		fp->f_sr &= ~PSL_T;
		ksi.ksi_signo = SIGTRAP;
		break;

	case T_ASTFLT:		/* system async trap, cannot happen */
		goto dopanic;

	case T_ASTFLT|T_USER:	/* user async trap */
		astpending = 0;
		/*
		 * We check for software interrupts first.  This is because
		 * they are at a higher level than ASTs, and on a VAX would
		 * interrupt the AST.  We assume that if we are processing
		 * an AST that we must be at IPL0 so we don't bother to
		 * check.  Note that we ensure that we are at least at SIR
		 * IPL while processing the SIR.
		 */
		spl1();
		/* fall into... */

	case T_SSIR:		/* software interrupt */
	case T_SSIR|T_USER:
		/*
		 * If this was not an AST trap, we are all done.
		 */
		if (type != (T_ASTFLT|T_USER)) {
			curcpu()->ci_data.cpu_ntrap--;
			return;
		}
		spl0();
		if (l->l_pflag & LP_OWEUPC) {
			l->l_pflag &= ~LP_OWEUPC;
			ADDUPROF(l);
		}
		if (curcpu()->ci_want_resched)
			preempt();
		goto out;

	case T_MMUFLT:		/* kernel mode page fault */
		/*
		 * If we were doing profiling ticks or other user mode
		 * stuff from interrupt code, Just Say No.
		 */
		onfault = pcb->pcb_onfault;
		if (onfault == fubail || onfault == subail) {
			rv = EFAULT;
			goto copyfault;
		}
		/* fall into ... */

	case T_MMUFLT|T_USER:	/* page fault */
	    {
		vaddr_t va;
		struct vmspace *vm = p->p_vmspace;
		struct vm_map *map;
		vm_prot_t ftype;
		extern struct vm_map *kernel_map;

		onfault = pcb->pcb_onfault;

#ifdef DEBUG
		if ((mmudebug & MDB_WBFOLLOW) || MDB_ISPID(p->p_pid))
		printf("trap: T_MMUFLT pid=%d, code=%x, v=%x, pc=%x, sr=%x\n",
		       p->p_pid, code, v, fp->f_pc, fp->f_sr);
#endif
		/*
		 * It is only a kernel address space fault iff:
		 * 	1. (type & T_USER) == 0  and
		 * 	2. pcb_onfault not set or
		 *	3. pcb_onfault set but supervisor space data fault
		 * The last can occur during an exec() copyin where the
		 * argument space is lazy-allocated.
		 */
		if ((type & T_USER) == 0 && (onfault == NULL || KDFAULT(code)))
			map = kernel_map;
		else {
			map = vm ? &vm->vm_map : kernel_map;
		}

		if (WRFAULT(code))
			ftype = VM_PROT_WRITE;
		else
			ftype = VM_PROT_READ;

		va = trunc_page((vaddr_t)v);

		if (map == kernel_map && va == 0) {
			printf("trap: bad kernel %s access at 0x%x\n",
			    (ftype & VM_PROT_WRITE) ? "read/write" :
			    "read", v);
			goto dopanic;
		}

#ifdef DIAGNOSTIC
		if (interrupt_depth && !panicking) {
			printf("trap: calling uvm_fault() from interrupt!\n");
			goto dopanic;
		}
#endif
		
		pcb->pcb_onfault = NULL;
		rv = uvm_fault(map, va, ftype);
		pcb->pcb_onfault = onfault;
#ifdef DEBUG
		if (rv && MDB_ISPID(p->p_pid))
			printf("uvm_fault(%p, 0x%lx, 0x%x) -> 0x%x\n",
			    map, va, ftype, rv);
#endif
		/*
		 * If this was a stack access we keep track of the maximum
		 * accessed stack size.  Also, if vm_fault gets a protection
		 * failure it is due to accessing the stack region outside
		 * the current limit and we need to reflect that as an access
		 * error.
		 */
		if (rv == 0) {
			if (map != kernel_map && (void *)va >= vm->vm_maxsaddr)
				uvm_grow(p, va);

			if (type == T_MMUFLT) {
				if (ucas_ras_check(&fp->F_t)) {
					return;
				}
#ifdef M68040
				if (cputype == CPU_68040)
					(void) writeback(fp, 1);
#endif
				return;
			}
			goto out;
		}
		if (rv == EACCES) {
			ksi.ksi_code = SEGV_ACCERR;
			rv = EFAULT;
		} else
			ksi.ksi_code = SEGV_MAPERR;
		if (type == T_MMUFLT) {
			if (onfault)
				goto copyfault;
			printf("uvm_fault(%p, 0x%lx, 0x%x) -> 0x%x\n",
			    map, va, ftype, rv);
			printf("  type %x, code [mmu,,ssw]: %x\n",
			       type, code);
			goto dopanic;
		}
		ksi.ksi_addr = (void *)v;
		switch (rv) {
		case ENOMEM:
			printf("UVM: pid %d (%s), uid %d killed: out of swap\n",
			       p->p_pid, p->p_comm,
			       l->l_cred ?
			       kauth_cred_geteuid(l->l_cred) : -1);
			ksi.ksi_signo = SIGKILL;
			break;
		case EINVAL:
			ksi.ksi_signo = SIGBUS;
			ksi.ksi_code = BUS_ADRERR;
			break;
		case EACCES:
			ksi.ksi_signo = SIGSEGV;
			ksi.ksi_code = SEGV_ACCERR;
			break;
		default:
			ksi.ksi_signo = SIGSEGV;
			ksi.ksi_code = SEGV_MAPERR;
			break;
		}
		break;
	    }
	}
	trapsignal(l, &ksi);
	if ((type & T_USER) == 0)
		return;
out:
	userret(l, fp, sticks, v, 1);
}
Beispiel #17
0
/*ARGSUSED*/
void
trap(struct frame *fp, int type, u_int code, u_int v)
{
	extern char fubail[], subail[];
	struct lwp *l;
	struct proc *p;
	ksiginfo_t ksi;
	int s;
	u_quad_t sticks;

	uvmexp.traps++;
	l = curlwp;

	KSI_INIT_TRAP(&ksi);
	ksi.ksi_trap = type & ~T_USER;

	p = l->l_proc;

	if (USERMODE(fp->f_sr)) {
		type |= T_USER;
		sticks = p->p_sticks;
		l->l_md.md_regs = fp->f_regs;
		LWP_CACHE_CREDS(l, p);
	} else
		sticks = 0;

#ifdef DIAGNOSTIC
	if (l->l_addr == NULL)
		panic("trap: type 0x%x, code 0x%x, v 0x%x -- no pcb",
			type, code, v);
#endif

	switch (type) {
	default:
	dopanic:
		printf("trap type %d, code = 0x%x, v = 0x%x\n", type, code, v);
		printf("%s program counter = 0x%x\n",
		    (type & T_USER) ? "user" : "kernel", fp->f_pc);
		/*
		 * Let the kernel debugger see the trap frame that
		 * caused us to panic.  This is a convenience so
		 * one can see registers at the point of failure.
		 */
		s = splhigh();
#ifdef KGDB
		/* If connected, step or cont returns 1 */
		if (kgdb_trap(type, (db_regs_t *)fp))
			goto kgdb_cont;
#endif
#ifdef DDB
		(void)kdb_trap(type, (db_regs_t *)fp);
#endif
#ifdef KGDB
	kgdb_cont:
#endif
		splx(s);
		if (panicstr) {
			printf("trap during panic!\n");
#ifdef DEBUG
			/* XXX should be a machine-dependent hook */
			printf("(press a key)\n"); (void)cngetc();
#endif
		}
		regdump((struct trapframe *)fp, 128);
		type &= ~T_USER;
		if ((u_int)type < trap_types)
			panic(trap_type[type]);
		panic("trap");

	case T_BUSERR:		/* Kernel bus error */
		if (!l->l_addr->u_pcb.pcb_onfault)
			goto dopanic;
		/*
		 * If we have arranged to catch this fault in any of the
		 * copy to/from user space routines, set PC to return to
		 * indicated location and set flag informing buserror code
		 * that it may need to clean up stack frame.
		 */
copyfault:
		fp->f_stackadj = exframesize[fp->f_format];
		fp->f_format = fp->f_vector = 0;
		fp->f_pc = (int)l->l_addr->u_pcb.pcb_onfault;
		return;

	case T_BUSERR|T_USER:	/* Bus error */
	case T_ADDRERR|T_USER:	/* Address error */
		ksi.ksi_addr = (void *)v;
		ksi.ksi_signo = SIGBUS;
		ksi.ksi_code = (type == (T_BUSERR|T_USER)) ?
			BUS_OBJERR : BUS_ADRERR;
		break;

	case T_ILLINST|T_USER:	/* Illegal instruction fault */
	case T_PRIVINST|T_USER:	/* Privileged instruction fault */
		ksi.ksi_addr = (void *)(int)fp->f_format;
				/* XXX was ILL_PRIVIN_FAULT */
		ksi.ksi_signo = SIGILL;
		ksi.ksi_code = (type == (T_PRIVINST|T_USER)) ?
			ILL_PRVOPC : ILL_ILLOPC;
		break;
	/*
	 * divde by zero, CHK/TRAPV inst 
	 */
	case T_ZERODIV|T_USER:		/* Divide by zero trap */
		ksi.ksi_code = FPE_FLTDIV;
	case T_CHKINST|T_USER:		/* CHK instruction trap */
	case T_TRAPVINST|T_USER:	/* TRAPV instruction trap */
		ksi.ksi_addr = (void *)(int)fp->f_format;
		ksi.ksi_signo = SIGFPE;
		break;

	/* 
	 * User coprocessor violation
	 */
	case T_COPERR|T_USER:
	/* XXX What is a proper response here? */
		ksi.ksi_signo = SIGFPE;
		ksi.ksi_code = FPE_FLTINV;
		break;
	/* 
	 * 6888x exceptions 
	 */
	case T_FPERR|T_USER:
		/*
		 * We pass along the 68881 status register which locore
		 * stashed in code for us.  Note that there is a
		 * possibility that the bit pattern of this register
		 * will conflict with one of the FPE_* codes defined
		 * in signal.h.  Fortunately for us, the only such
		 * codes we use are all in the range 1-7 and the low
		 * 3 bits of the status register are defined as 0 so
		 * there is no clash.
		 */
		ksi.ksi_signo = SIGFPE;
		ksi.ksi_addr = (void *)code;
		break;

	/*
	 * FPU faults in supervisor mode.
	 */
	case T_ILLINST:	/* fnop generates this, apparently. */
	case T_FPEMULI:
	case T_FPEMULD: {
		extern label_t *nofault;

		if (nofault)	/* If we're probing. */
			longjmp(nofault);
		if (type == T_ILLINST)
			printf("Kernel Illegal Instruction trap.\n");
		else
			printf("Kernel FPU trap.\n");
		goto dopanic;
	}

	/*
	 * Unimplemented FPU instructions/datatypes.
	 */
	case T_FPEMULI|T_USER:
	case T_FPEMULD|T_USER:
#ifdef FPU_EMULATE
		if (fpu_emulate(fp, &l->l_addr->u_pcb.pcb_fpregs,
			&ksi) == 0)
			; /* XXX - Deal with tracing? (fp->f_sr & PSL_T) */
#else
		uprintf("pid %d killed: no floating point support.\n",
			p->p_pid);
		ksi.ksi_signo = SIGILL;
		ksi.ksi_code = ILL_ILLOPC;
#endif
		break;

	case T_COPERR:		/* Kernel coprocessor violation */
	case T_FMTERR:		/* Kernel format error */
	case T_FMTERR|T_USER:	/* User format error */
		/*
		 * The user has most likely trashed the RTE or FP state info
		 * in the stack frame of a signal handler.
		 */
		printf("pid %d: kernel %s exception\n", p->p_pid,
		    type==T_COPERR ? "coprocessor" : "format");
		type |= T_USER;
		mutex_enter(p->p_lock);
		SIGACTION(p, SIGILL).sa_handler = SIG_DFL;
		sigdelset(&p->p_sigctx.ps_sigignore, SIGILL);
		sigdelset(&p->p_sigctx.ps_sigcatch, SIGILL);
		sigdelset(&l->l_sigmask, SIGILL);
		mutex_exit(p->p_lock);
		ksi.ksi_signo = SIGILL;
		ksi.ksi_addr = (void *)(int)fp->f_format;
				/* XXX was ILL_RESAD_FAULT */
		ksi.ksi_code = (type == T_COPERR) ?
			ILL_COPROC : ILL_ILLOPC;
		break;

	/*
	 * XXX: Trace traps are a nightmare.
	 *
	 *	HP-UX uses trap #1 for breakpoints,
	 *	NetBSD/m68k uses trap #2,
	 *	SUN 3.x uses trap #15,
	 *	DDB and KGDB uses trap #15 (for kernel breakpoints;
	 *	handled elsewhere).
	 *
	 * NetBSD and HP-UX traps both get mapped by locore.s into T_TRACE.
	 * SUN 3.x traps get passed through as T_TRAP15 and are not really
	 * supported yet.
	 *
	 * XXX: We should never get kernel-mode T_TRAP15 because
	 * XXX: locore.s now gives it special treatment.
	 */
	case T_TRAP15:		/* SUN trace trap */
#ifdef DEBUG
		printf("unexpected kernel trace trap, type = %d\n", type);
		printf("program counter = 0x%x\n", fp->f_pc);
#endif
		fp->f_sr &= ~PSL_T;
		ksi.ksi_signo = SIGTRAP;
		break;

	case T_TRACE|T_USER:	/* user trace trap */
#ifdef COMPAT_SUNOS
		/*
		 * SunOS uses Trap #2 for a "CPU cache flush".
		 * Just flush the on-chip caches and return.
		 */
		if (p->p_emul == &emul_sunos) {
			ICIA();
			DCIU();
			return;
		}
#endif
		/* FALLTHROUGH */
	case T_TRACE:		/* tracing a trap instruction */
	case T_TRAP15|T_USER:	/* SUN user trace trap */
		fp->f_sr &= ~PSL_T;
		ksi.ksi_signo = SIGTRAP;
		break;

	case T_ASTFLT:		/* System async trap, cannot happen */
		goto dopanic;

	case T_ASTFLT|T_USER:	/* User async trap. */
		astpending = 0;
		/*
		 * We check for software interrupts first.  This is because
		 * they are at a higher level than ASTs, and on a VAX would
		 * interrupt the AST.  We assume that if we are processing
		 * an AST that we must be at IPL0 so we don't bother to
		 * check.  Note that we ensure that we are at least at SIR
		 * IPL while processing the SIR.
		 */
		spl1();
		/* fall into... */

	case T_SSIR:		/* Software interrupt */
	case T_SSIR|T_USER:
		/*
		 * If this was not an AST trap, we are all done.
		 */
		if (type != (T_ASTFLT|T_USER)) {
			uvmexp.traps--;
			return;
		}
		spl0();
		if (l->l_pflag & LP_OWEUPC) {
			l->l_pflag &= ~LP_OWEUPC;
			ADDUPROF(l);
		}
		if (curcpu()->ci_want_resched)
			preempt();
		goto out;

	case T_MMUFLT:		/* Kernel mode page fault */
		/*
		 * If we were doing profiling ticks or other user mode
		 * stuff from interrupt code, Just Say No.
		 */
		if (l->l_addr->u_pcb.pcb_onfault == fubail ||
		    l->l_addr->u_pcb.pcb_onfault == subail)
			goto copyfault;
		/* fall into... */

	case T_MMUFLT|T_USER:	/* page fault */
	    {
		vaddr_t va;
		struct vmspace *vm = p->p_vmspace;
		struct vm_map *map;
		int rv;
		vm_prot_t ftype;
		extern struct vm_map *kernel_map;

#ifdef DEBUG
		if ((mmudebug & MDB_WBFOLLOW) || MDB_ISPID(p->p_pid))
		printf("trap: T_MMUFLT pid=%d, code=%x, v=%x, pc=%x, sr=%x\n",
			p->p_pid, code, v, fp->f_pc, fp->f_sr);
#endif
		/*
		 * It is only a kernel address space fault iff:
		 *	1. (type & T_USER) == 0 and
		 *	2. pcb_onfault not set or
		 *	3. pcb_onfault set but supervisor data fault
		 * The last can occur during an exec() copyin where the
		 * argument space is lazy-allocated.
		 */
		if (type == T_MMUFLT &&
		    (!l->l_addr->u_pcb.pcb_onfault || KDFAULT(code)))
			map = kernel_map;
		else {
			map = vm ? &vm->vm_map : kernel_map;
			if ((l->l_flag & LW_SA)
			    && (~l->l_pflag & LP_SA_NOBLOCK)) {
				l->l_savp->savp_faultaddr = (vaddr_t)v;
				l->l_pflag |= LP_SA_PAGEFAULT;
			}
		}
		if (WRFAULT(code))
			ftype = VM_PROT_WRITE;
		else
			ftype = VM_PROT_READ;
		va = trunc_page((vaddr_t)v);
#ifdef DEBUG
		if (map == kernel_map && va == 0) {
			printf("trap: bad kernel access at %x\n", v);
			goto dopanic;
		}
#endif
		rv = uvm_fault(map, va, ftype);
#ifdef DEBUG
		if (rv && MDB_ISPID(p->p_pid))
			printf("uvm_fault(%p, 0x%lx, 0x%x) -> 0x%x\n",
			    map, va, ftype, rv);
#endif
		/*
		 * If this was a stack access, we keep track of the maximum
		 * accessed stack size.  Also, if vm_fault gets a protection
		 * failure, it is due to accessing the stack region outside
		 * the current limit and we need to reflect that as an access
		 * error.
		 */
		if (rv == 0) {
			if (map != kernel_map && (void *)va >= vm->vm_maxsaddr)
				uvm_grow(p, va);

			if (type == T_MMUFLT) {
#if defined(M68040)
				if (mmutype == MMU_68040)
					(void)writeback(fp, 1);
#endif
				return;
			}
			l->l_pflag &= ~LP_SA_PAGEFAULT;
			goto out;
		}
		if (rv == EACCES) {
			ksi.ksi_code = SEGV_ACCERR;
			rv = EFAULT;
		} else
			ksi.ksi_code = SEGV_MAPERR;
		if (type == T_MMUFLT) {
			if (l->l_addr->u_pcb.pcb_onfault)
				goto copyfault;
			printf("uvm_fault(%p, 0x%lx, 0x%x) -> 0x%x\n",
			    map, va, ftype, rv);
			printf("  type %x, code [mmu,,ssw]: %x\n",
				type, code);
			goto dopanic;
		}
		l->l_pflag &= ~LP_SA_PAGEFAULT;
		ksi.ksi_addr = (void *)v;
		if (rv == ENOMEM) {
			printf("UVM: pid %d (%s), uid %d killed: out of swap\n",
			       p->p_pid, p->p_comm,
			       l->l_cred ?
			       kauth_cred_geteuid(l->l_cred) : -1);
			ksi.ksi_signo = SIGKILL;
		} else {
			ksi.ksi_signo = SIGSEGV;
		}
		break;
	    }
	}
	if (ksi.ksi_signo)
		trapsignal(l, &ksi);
	if ((type & T_USER) == 0)
		return;
out:
	userret(l, fp, sticks, v, 1); 
}