void FFTAccelerate::doFFTReal(float samples[], float amp[], int numSamples) { int i; vDSP_Length log2n = log2f(numSamples); int nOver2 = numSamples/2; //-- window //vDSP_blkman_window(window, windowSize, 0); vDSP_vmul(samples, 1, window, 1, in_real, 1, numSamples); //Convert float array of reals samples to COMPLEX_SPLIT array A vDSP_ctoz((COMPLEX*)in_real,2,&A,1,nOver2); //Perform FFT using fftSetup and A //Results are returned in A vDSP_fft_zrip(fftSetup, &A, 1, log2n, FFT_FORWARD); // scale by 1/2*n because vDSP_fft_zrip doesn't use the right scaling factors natively ("for better performances") { const float scale = 1.0f/(2.0f*(float)numSamples); vDSP_vsmul( A.realp, 1, &scale, A.realp, 1, numSamples/2 ); vDSP_vsmul( A.imagp, 1, &scale, A.imagp, 1, numSamples/2 ); } //Convert COMPLEX_SPLIT A result to float array to be returned /*amp[0] = A.realp[0]/(numSamples*2); for(i=1;i<numSamples/2;i++) amp[i]=sqrt(A.realp[i]*A.realp[i]+A.imagp[i]*A.imagp[i]);*/ // collapse split complex array into a real array. // split[0] contains the DC, and the values we're interested in are split[1] to split[len/2] (since the rest are complex conjugates) vDSP_zvabs( &A, 1, amp, 1, numSamples/2 ); }
Pitch PitchDetector::process(float *input, unsigned int numberOfSamples) { assert(this->numberOfSamples==numberOfSamples); int n = numberOfSamples; float *originalReal = this->FFTBuffer; // 1.1.时域上加窗 vDSP_vmul(input, 1, this->windowFunc, 1, originalReal, 1, n); // 分前后加窗没什么不一样啊 // vDSP_vmul(input, 1, this->windowFunc, 1, originalReal+(n/2), 1, n/2); // vDSP_vmul(input+(n/2), 1, this->windowFunc+(n/2), 1, originalReal, 1, n/2); // 2.拆成复数形似{1+2i, 3+4i, ..., 1023+1024i} 原始数组可以认为是(COMPLEX*)交错存储 现在拆成COMPLEX_SPLIT非交错(分轨式)存储 vDSP_ctoz((COMPLEX*)originalReal, 2, &this->A, 1, n/2); // 读取originalReal以2的步长塞进A里面 // // 3.fft变换的预设 float originalRealInLog2 = log2f(n); // FFTSetup setupReal = vDSP_create_fftsetup(originalRealInLog2, FFT_RADIX2); // 4.傅里叶变换 vDSP_fft_zrip(this->setupReal, &this->A, 1, originalRealInLog2, FFT_FORWARD); // 5.转换成能量值 vDSP_zvabs(&this->A, 1, this->magnitudes, 1, n/2); Float32 one = 1; vDSP_vdbcon(this->magnitudes, 1, &one, this->magnitudes, 1, n/2, 0); // 6.获取基频f0 float maxValue; vDSP_Length index; vDSP_maxvi(this->magnitudes, 1, &maxValue, &index, n/2); // 6.1.微调参数 double alpha = this->magnitudes[index - 1]; double beta = this->magnitudes[index]; double gamma = this->magnitudes[index + 1]; double p = 0.5 * (alpha - gamma) / (alpha - 2 * beta + gamma); // 7.转换为频率 indexHZ = index * (SampleRate / (n/2)) float indexHZ = (index+p) * ((this->sampleRate*1.0) / n); // 8.乐理信息生成 Pitch pitch; pitch.frequency = indexHZ; pitch.amplitude = beta; pitch.key = 12 * log2(indexHZ / 127.09) + 28.5; pitch.octave = (pitch.key - 3.0) / 12 + 1; calStep(&pitch); pitch.stepString = calStep(indexHZ); return pitch; }