// For viewing skin map on input source.
void vp9_output_skin_map(VP9_COMP *const cpi, FILE *yuv_skinmap_file) {
  int i, j, mi_row, mi_col, num_bl;
  VP9_COMMON *const cm = &cpi->common;
  uint8_t *y;
  const uint8_t *src_y = cpi->Source->y_buffer;
  const int src_ystride = cpi->Source->y_stride;
  const int y_bsize = 16;  // Use 8x8 or 16x16.
  const int shy = (y_bsize == 8) ? 3 : 4;
  const int fac = y_bsize / 8;

  YV12_BUFFER_CONFIG skinmap;
  memset(&skinmap, 0, sizeof(YV12_BUFFER_CONFIG));
  if (vpx_alloc_frame_buffer(&skinmap, cm->width, cm->height, cm->subsampling_x,
                             cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS,
                             cm->byte_alignment)) {
    vpx_free_frame_buffer(&skinmap);
    return;
  }
  memset(skinmap.buffer_alloc, 128, skinmap.frame_size);
  y = skinmap.y_buffer;
  // Loop through blocks and set skin map based on center pixel of block.
  // Set y to white for skin block, otherwise set to source with gray scale.
  // Ignore rightmost/bottom boundary blocks.
  for (mi_row = 0; mi_row < cm->mi_rows - 1; mi_row += fac) {
    num_bl = 0;
    for (mi_col = 0; mi_col < cm->mi_cols - 1; mi_col += fac) {
      const int block_index = mi_row * cm->mi_cols + mi_col;
      const int is_skin = cpi->skin_map[block_index];
      for (i = 0; i < y_bsize; i++) {
        for (j = 0; j < y_bsize; j++) {
          y[i * src_ystride + j] = is_skin ? 255 : src_y[i * src_ystride + j];
        }
      }
      num_bl++;
      y += y_bsize;
      src_y += y_bsize;
    }
    y += (src_ystride << shy) - (num_bl << shy);
    src_y += (src_ystride << shy) - (num_bl << shy);
  }
  vpx_write_yuv_frame(yuv_skinmap_file, &skinmap);
  vpx_free_frame_buffer(&skinmap);
}
Beispiel #2
0
struct lookahead_ctx *vp10_lookahead_init(unsigned int width,
                                          unsigned int height,
                                          unsigned int subsampling_x,
                                          unsigned int subsampling_y,
#if CONFIG_VPX_HIGHBITDEPTH
                                          int use_highbitdepth,
#endif
                                          unsigned int depth) {
  struct lookahead_ctx *ctx = NULL;

  // Clamp the lookahead queue depth
  depth = clamp(depth, 1, MAX_LAG_BUFFERS);

  // Allocate memory to keep previous source frames available.
  depth += MAX_PRE_FRAMES;

  // Allocate the lookahead structures
  ctx = calloc(1, sizeof(*ctx));
  if (ctx) {
    const int legacy_byte_alignment = 0;
    unsigned int i;
    ctx->max_sz = depth;
    ctx->buf = calloc(depth, sizeof(*ctx->buf));
    if (!ctx->buf) goto bail;
    for (i = 0; i < depth; i++)
      if (vpx_alloc_frame_buffer(
              &ctx->buf[i].img, width, height, subsampling_x, subsampling_y,
#if CONFIG_VPX_HIGHBITDEPTH
              use_highbitdepth,
#endif
              VPX_ENC_BORDER_IN_PIXELS, legacy_byte_alignment))
        goto bail;
  }
  return ctx;
bail:
  vp10_lookahead_destroy(ctx);
  return NULL;
}
Beispiel #3
0
int vp10_lookahead_push(struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src,
                        int64_t ts_start, int64_t ts_end,
#if CONFIG_VPX_HIGHBITDEPTH
                        int use_highbitdepth,
#endif
                        unsigned int flags) {
  struct lookahead_entry *buf;
#if USE_PARTIAL_COPY
  int row, col, active_end;
  int mb_rows = (src->y_height + 15) >> 4;
  int mb_cols = (src->y_width + 15) >> 4;
#endif
  int width = src->y_crop_width;
  int height = src->y_crop_height;
  int uv_width = src->uv_crop_width;
  int uv_height = src->uv_crop_height;
  int subsampling_x = src->subsampling_x;
  int subsampling_y = src->subsampling_y;
  int larger_dimensions, new_dimensions;

  if (ctx->sz + 1 + MAX_PRE_FRAMES > ctx->max_sz) return 1;
  ctx->sz++;
  buf = pop(ctx, &ctx->write_idx);

  new_dimensions = width != buf->img.y_crop_width ||
                   height != buf->img.y_crop_height ||
                   uv_width != buf->img.uv_crop_width ||
                   uv_height != buf->img.uv_crop_height;
  larger_dimensions = width > buf->img.y_width || height > buf->img.y_height ||
                      uv_width > buf->img.uv_width ||
                      uv_height > buf->img.uv_height;
  assert(!larger_dimensions || new_dimensions);

#if USE_PARTIAL_COPY
  // TODO(jkoleszar): This is disabled for now, as
  // vp10_copy_and_extend_frame_with_rect is not subsampling/alpha aware.

  // Only do this partial copy if the following conditions are all met:
  // 1. Lookahead queue has has size of 1.
  // 2. Active map is provided.
  // 3. This is not a key frame, golden nor altref frame.
  if (!new_dimensions && ctx->max_sz == 1 && active_map && !flags) {
    for (row = 0; row < mb_rows; ++row) {
      col = 0;

      while (1) {
        // Find the first active macroblock in this row.
        for (; col < mb_cols; ++col) {
          if (active_map[col]) break;
        }

        // No more active macroblock in this row.
        if (col == mb_cols) break;

        // Find the end of active region in this row.
        active_end = col;

        for (; active_end < mb_cols; ++active_end) {
          if (!active_map[active_end]) break;
        }

        // Only copy this active region.
        vp10_copy_and_extend_frame_with_rect(src, &buf->img, row << 4, col << 4,
                                             16, (active_end - col) << 4);

        // Start again from the end of this active region.
        col = active_end;
      }

      active_map += mb_cols;
    }
  } else {
#endif
    if (larger_dimensions) {
      YV12_BUFFER_CONFIG new_img;
      memset(&new_img, 0, sizeof(new_img));
      if (vpx_alloc_frame_buffer(&new_img, width, height, subsampling_x,
                                 subsampling_y,
#if CONFIG_VPX_HIGHBITDEPTH
                                 use_highbitdepth,
#endif
                                 VPX_ENC_BORDER_IN_PIXELS, 0))
        return 1;
      vpx_free_frame_buffer(&buf->img);
      buf->img = new_img;
    } else if (new_dimensions) {
      buf->img.y_crop_width = src->y_crop_width;
      buf->img.y_crop_height = src->y_crop_height;
      buf->img.uv_crop_width = src->uv_crop_width;
      buf->img.uv_crop_height = src->uv_crop_height;
      buf->img.subsampling_x = src->subsampling_x;
      buf->img.subsampling_y = src->subsampling_y;
    }
    // Partial copy not implemented yet
    vp10_copy_and_extend_frame(src, &buf->img);
#if USE_PARTIAL_COPY
  }
#endif

  buf->ts_start = ts_start;
  buf->ts_end = ts_end;
  buf->flags = flags;
  return 0;
}
Beispiel #4
0
// For viewing skin map on input source.
void vp9_compute_skin_map(VP9_COMP *const cpi, FILE *yuv_skinmap_file) {
  int i, j, mi_row, mi_col, num_bl;
  VP9_COMMON *const cm = &cpi->common;
  uint8_t *y;
  const uint8_t *src_y = cpi->Source->y_buffer;
  const uint8_t *src_u = cpi->Source->u_buffer;
  const uint8_t *src_v = cpi->Source->v_buffer;
  const int src_ystride = cpi->Source->y_stride;
  const int src_uvstride = cpi->Source->uv_stride;
  int y_bsize = 16;  // Use 8x8 or 16x16.
  int uv_bsize = y_bsize >> 1;
  int ypos = y_bsize >> 1;
  int uvpos = uv_bsize >> 1;
  int shy = (y_bsize == 8) ? 3 : 4;
  int shuv = shy - 1;
  int fac = y_bsize / 8;
  // Use center pixel or average of center 2x2 pixels.
  int mode_filter = 1;
  YV12_BUFFER_CONFIG skinmap;
  memset(&skinmap, 0, sizeof(YV12_BUFFER_CONFIG));
  if (vpx_alloc_frame_buffer(&skinmap, cm->width, cm->height,
                               cm->subsampling_x, cm->subsampling_y,
                               VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment)) {
      vpx_free_frame_buffer(&skinmap);
      return;
  }
  memset(skinmap.buffer_alloc, 128, skinmap.frame_size);
  y = skinmap.y_buffer;
  // Loop through blocks and set skin map based on center pixel of block.
  // Set y to white for skin block, otherwise set to source with gray scale.
  // Ignore rightmost/bottom boundary blocks.
  for (mi_row = 0; mi_row < cm->mi_rows - 1; mi_row += fac) {
    num_bl = 0;
    for (mi_col = 0; mi_col < cm->mi_cols - 1; mi_col += fac) {
      // Select pixel for each block for skin detection.
      // Use center pixel, or 2x2 average at center.
      uint8_t ysource = src_y[ypos * src_ystride + ypos];
      uint8_t usource = src_u[uvpos * src_uvstride + uvpos];
      uint8_t vsource = src_v[uvpos * src_uvstride + uvpos];
      uint8_t ysource2 = src_y[(ypos + 1) * src_ystride + ypos];
      uint8_t usource2 = src_u[(uvpos + 1) * src_uvstride + uvpos];
      uint8_t vsource2 = src_v[(uvpos + 1) * src_uvstride + uvpos];
      uint8_t ysource3 = src_y[ypos * src_ystride + (ypos + 1)];
      uint8_t usource3 = src_u[uvpos * src_uvstride + (uvpos  + 1)];
      uint8_t vsource3 = src_v[uvpos * src_uvstride + (uvpos +  1)];
      uint8_t ysource4 = src_y[(ypos + 1) * src_ystride + (ypos + 1)];
      uint8_t usource4 = src_u[(uvpos + 1) * src_uvstride + (uvpos  + 1)];
      uint8_t vsource4 = src_v[(uvpos + 1) * src_uvstride + (uvpos +  1)];
      int is_skin = 0;
      if (mode_filter == 1) {
        ysource = (ysource + ysource2 + ysource3 + ysource4) >> 2;
        usource = (usource + usource2 + usource3 + usource4) >> 2;
        vsource = (vsource + vsource2 + vsource3 + vsource4) >> 2;
      }
      is_skin = vp9_skin_pixel(ysource, usource, vsource);
      for (i = 0; i < y_bsize; i++) {
        for (j = 0; j < y_bsize; j++) {
          if (is_skin)
            y[i * src_ystride + j] = 255;
          else
            y[i * src_ystride + j] = src_y[i * src_ystride + j];
        }
      }
      num_bl++;
      y += y_bsize;
      src_y += y_bsize;
      src_u += uv_bsize;
      src_v += uv_bsize;
    }
    y += (src_ystride << shy) - (num_bl << shy);
    src_y += (src_ystride << shy) - (num_bl << shy);
    src_u += (src_uvstride << shuv) - (num_bl << shuv);
    src_v += (src_uvstride << shuv) - (num_bl << shuv);
  }