Beispiel #1
0
/** Delay in microseconds
  \param delay time to wait in microseconds

  Calibrated in SimulAVR.

  Accuracy on 20 MHz CPU clock: -1/+3 clock cycles over the whole range(!).
  Accuracy on 16 MHz CPU clock: delay is about 0.8% too short.

  Exceptions are delays of 0..2 on 20 MHz, which are all 0.75 us and delays
  of 0..3 on 16 MHz, which are all 0.93us.
*/
void delay_us(uint16_t delay) {
	wd_reset();

  // Compensate call overhead, as close as possible.
  #define OVERHEAD_CALL_CLOCKS 39 // clock cycles
  #define OVERHEAD_CALL_DIV ((OVERHEAD_CALL_CLOCKS / (F_CPU / 1000000)) + 1)
  #define OVERHEAD_CALL_REM ((OVERHEAD_CALL_DIV * (F_CPU / 1000000)) - \
                             OVERHEAD_CALL_CLOCKS)

  if (delay > OVERHEAD_CALL_DIV) {
    delay -= OVERHEAD_CALL_DIV;
    if (OVERHEAD_CALL_REM >= 2)
      _delay_loop_2((OVERHEAD_CALL_REM + 2) / 4);
  }
  else {
    return;
  }

	while (delay > (65536L / (F_CPU / 4000000L))) {
    #define OVERHEAD_LOOP_CLOCKS 13

    _delay_loop_2(65536 - (OVERHEAD_LOOP_CLOCKS + 2) / 4);
		delay -= (65536L / (F_CPU / 4000000L));
		wd_reset();
	}
  if (delay)
    _delay_loop_2(delay * (F_CPU / 4000000L));
	wd_reset();
}
Beispiel #2
0
/** Delay in milliseconds.

  \param delay Time to wait in milliseconds.

  Accuracy on AVR, 20 MHz: delay < 0.04% too long over the whole range.
  Accuracy on AVR, 16 MHz: delay < 0.8% too short over the whole range.
  Accuracy on ARM, 48 MHz: delay < 0.1% too long over the whole range.
*/
void delay_ms(uint32_t delay) {
	wd_reset();
	while (delay > 65) {
		delay_us(64999);
		delay -= 65;
		wd_reset();
	}
  delay_us(delay * 1000 - 2);
	wd_reset();
}
/// delay microseconds
/// \param delay time to wait in microseconds
void _delay(uint32_t delay) {
#ifdef TRASH
	wd_reset();
	while (delay > (65536L / (F_CPU / 4000000L))) {
		_delay_loop_2(65534); // we use 65534 here to compensate for the time that the surrounding loop takes. TODO: exact figure needs tuning
		delay -= (65536L / (F_CPU / 4000000L));
		wd_reset();
	}
	_delay_loop_2(delay * (F_CPU / 4000000L));
	wd_reset();
#endif //#ifdef TRASH
}
/// delay milliseconds
/// \param delay time to wait in milliseconds
void _delay_ms(uint32_t delay) {
#ifdef TRASH
	wd_reset();
	while (delay > 65) {
		delay_us(64999);
		delay -= 65;
		wd_reset();
	}
	delay_us(delay * 1000);
	wd_reset();
#endif //#ifdef TRASH
}
Beispiel #5
0
void init(void) {
	// set up watchdog
	wd_init();

	// set up serial
	serial_init();

	// set up inputs and outputs
	io_init();

	// set up timers
	timer_init();

	// read PID settings from EEPROM
	heater_init();

	// set up default feedrate
	current_position.F = startpoint.F = next_target.target.F = SEARCH_FEEDRATE_Z;

	// start up analog read interrupt loop, if anything uses analog as determined by ANALOG_MASK in your config.h
	analog_init();

	// set up temperature inputs
	temp_init();

	// enable interrupts
	sei();

	// reset watchdog
	wd_reset();

	// say hi to host
	serial_writestr_P(PSTR("Start\nok\n"));

}
Beispiel #6
0
void emergency_stop(void)
{
	power_off();
	timer_stop();
	queue_flush();
	cli();
	for (;;)
		wd_reset();
}
Beispiel #7
0
/*! do stuff every 10 milliseconds

	called from clock(), do not call directly
*/
static void clock_10ms(void) {
	// reset watchdog
	wd_reset();

	temp_sensor_tick();

	ifclock(clock_flag_250ms) {
		clock_250ms();
	}
}
Beispiel #8
0
void clock_10ms() {
	// reset watchdog
	wd_reset();
	
	temp_tick();
	
	ifclock(CLOCK_FLAG_250MS) {
		clock_250ms();
	}
}
Beispiel #9
0
/*! do stuff every 10 milliseconds

	call from ifclock(CLOCK_FLAG_10MS) in busy loops
*/
void clock_10ms() {
	// reset watchdog
	wd_reset();

	temp_tick();

	ifclock(clock_flag_250ms) {
		clock_250ms();
	}

	update_position();
}
Beispiel #10
0
/// Startup code, run when we come out of reset
void init(void) {

	halInit();
  	chSysInit();

#if defined(PORT_LED1) && defined(PIN_LED1)
	palSetPadMode(PORT_LED1, PIN_LED1, PAL_MODE_OUTPUT_PUSHPULL);
#endif
#if defined(PORT_LED2) && defined(PIN_LED2)
	palSetPadMode(PORT_LED2, PIN_LED2, PAL_MODE_OUTPUT_PUSHPULL);
#endif

	// set up watchdog
	wd_init();

	// set up serial
	serial_init();

	// set up G-code parsing
	gcode_init();

	// set up inputs and outputs
	io_init();

	// set up timers
	timer_init();

	// read PID settings from EEPROM
	heater_init();

	// set up dda
	dda_init();

	// start up analog read interrupt loop,
	// if any of the temp sensors in your config.h use analog interface
	analog_init();

	// set up temperature inputs
	temp_init();

	// enable interrupts
	enable_irq();

	// reset watchdog
	wd_reset();

	// say hi to host
	serial_writestr_P(PSTR("start\nok\n"));

}
/*! do stuff every 10 milliseconds
 
 	call from ifclock(CLOCK_FLAG_10MS) in busy loops
 */
void clock_10ms() {
        // reset watchdog
        wd_reset();

        temp_tick();

#ifdef MOTOR_OVER_INTERCOM
        send_motor_if_new();
#endif
        ifclock(clock_flag_250ms) {
                clock_250ms();
        }

        update_position();

}
Beispiel #12
0
/// Startup code, run when we come out of reset
void init(void) {
	// set up watchdog
	wd_init();

	// set up serial
	serial_init();

	// set up G-code parsing
	gcode_init();

	// set up inputs and outputs
	io_init();

	// set up timers
	timer_init();

	// read PID settings from EEPROM
	heater_init();

	// set up dda
	dda_init();

	// start up analog read interrupt loop,
	// if any of the temp sensors in your config.h use analog interface
	analog_init();

	// set up temperature inputs
	temp_init();

	// enable interrupts
	sei();

	// reset watchdog
	wd_reset();

  // prepare the power supply
  power_init();

	// say hi to host
	serial_writestr_P(PSTR("start\nok\n"));

}
/**
 * Configures the selected watchdog timer.
 * The watchdog is configured to reset after the first time out.
 * The function also starts the selected watchdog.
 *
 * @note Once this function successfully configures one watchdog,
 *       it cannot be called (and configure other watchdogs)
 *       anymore. In this case, nothing will be done and
 *       pdFAIL will be returned immediately.
 *
 * @param wd - desired watchdog timer (between 0 and 1)
 * @param timeoutMs -watchdog's time out period in milliseconds
 *
 * @return pdPASS on success, pdFAIL if 'wd' is invalid
 */
int16_t watchdogInit( uint8_t wd, uint32_t timeoutMs )
{
    int16_t retVal = pdFAIL;

    /*
     * Immediately calculate the required load for the selected
     * watchdog, using relevant clocks' know frequencies.
     * Note: the frequency must be divided by 1000 first, otherwise
     * the multiplication of 'timeoutMs' and a frequency may
     * exceed the uint32_t range!
     */
    const uint32_t timeoutTicks =
        ( 1==wd ?
          timeoutMs * (configPIOSC_CLOCK_HZ / 1000) :
          timeoutMs * (configCPU_CLOCK_HZ /1000) );

    /* The function only succeeds if no watchdog has been configured yet */
    if ( __wdNr==WD_UNSPECIFIED && wd<BSP_NR_WATCHDOGS )
    {
        __wdNr = wd;

        /* reset the watchdog */
        wd_reset( __wdNr );
        /* configure its timeout period */
        wd_config( __wdNr, timeoutTicks , WDEX_IRQ_RESET );
        /* register its ISR handler */
        wd_registerIntHandler( __wdNr, &__wdHandler );
        /* and start the watchdog */
        wd_start( __wdNr );
        /* finally assign it a high interrupt priority */
        wd_setIntPriority(0);

        retVal = pdPASS;
    }

    return retVal;
}
/**
 * Reloads the selected watchdog's counter to the
 * load value, specified by wd_config().
 *
 * Nothing is done if 'wd' is greater than 1.
 *
 * @param wd - watchdog timer (between 0 and 1)
 */
void wd_reload(uint8_t wd)
{
    /*
     * For more details about the WDTLOAD register,
     * see page 779 of the Data Sheet
     */

    if ( wd >= BSP_NR_WATCHDOGS )
    {
        return;
    }

    if ( 1==wd && (6==sysctl_mcu_revision || 7==sysctl_mcu_revision) )
    {
        /*
         * According to page 64 of the Silicon Errata,
         * reloading the WDTLOAD of the watchdog 1 will not
         * restart the counter. As a workaround it is
         * suggested to reset, reconfigure and restart
         * the watchdog.
         */

        wd_reset(wd);
        wd_config(wd, __wdSettings[wd].loadVal, __wdSettings[wd].exType);

        /* Set the STALL bit if necessary */
        HWREG_SET_BITS( pReg[wd]->WD_TEST, TST_STALL );
        __waitWd1(wd);

        wd_start(wd);
    }
    else
    {
        /*
         * At other watchdogs, no workaround is necessary.
         * Reloading the WDTLOAD register will also
         * restart the counter.
         * Note: __waitWd1() is still preserved in the code.
         */

        /*
         * There is a hardware bug in both watchdog timers.
         * If the STALL bit of the WDTTEST register is set,
         * the WTDLOAD register cannot be changed.
         * See page 68 of the Silicon Errata for more details.
         *
         * For that reason the STALL bit will be cleared first
         * and set again later.
         */
        HWREG_CLEAR_BITS( pReg[wd]->WD_TEST, TST_STALL );
        __waitWd1(wd);

        pReg[wd]->WD_LOAD = __wdSettings[wd].loadVal;
        __waitWd1(wd);

        /* Set the STALL bit again. */
        HWREG_SET_BITS( pReg[wd]->WD_TEST, TST_STALL );
        __waitWd1(wd);

    }
}
void process_gcode_command() {
	uint32_t	backup_f;

	// convert relative to absolute
	if (next_target.option_all_relative) {
    next_target.target.axis[X] += startpoint.axis[X];
    next_target.target.axis[Y] += startpoint.axis[Y];
    next_target.target.axis[Z] += startpoint.axis[Z];
	}

	// E relative movement.
	// Matches Sprinter's behaviour as of March 2012.
	if (next_target.option_e_relative)
		next_target.target.e_relative = 1;
	else
		next_target.target.e_relative = 0;

	if (next_target.option_all_relative && !next_target.option_e_relative)
		next_target.target.axis[E] += startpoint.axis[E];

	// implement axis limits
	#ifdef	X_MIN
    if (next_target.target.axis[X] < (int32_t)(X_MIN * 1000.))
      next_target.target.axis[X] = (int32_t)(X_MIN * 1000.);
	#endif
	#ifdef	X_MAX
    if (next_target.target.axis[X] > (int32_t)(X_MAX * 1000.))
      next_target.target.axis[X] = (int32_t)(X_MAX * 1000.);
	#endif
	#ifdef	Y_MIN
    if (next_target.target.axis[Y] < (int32_t)(Y_MIN * 1000.))
      next_target.target.axis[Y] = (int32_t)(Y_MIN * 1000.);
	#endif
	#ifdef	Y_MAX
    if (next_target.target.axis[Y] > (int32_t)(Y_MAX * 1000.))
      next_target.target.axis[Y] = (int32_t)(Y_MAX * 1000.);
	#endif
	#ifdef	Z_MIN
    if (next_target.target.axis[Z] < (int32_t)(Z_MIN * 1000.))
      next_target.target.axis[Z] = (int32_t)(Z_MIN * 1000.);
	#endif
	#ifdef	Z_MAX
    if (next_target.target.axis[Z] > (int32_t)(Z_MAX * 1000.))
      next_target.target.axis[Z] = (int32_t)(Z_MAX * 1000.);
	#endif

	// The GCode documentation was taken from http://reprap.org/wiki/Gcode .

	if (next_target.seen_T) {
	    //? --- T: Select Tool ---
	    //?
	    //? Example: T1
	    //?
	    //? Select extruder number 1 to build with.  Extruder numbering starts at 0.

	    next_tool = next_target.T;
	}

	if (next_target.seen_G) {
		uint8_t axisSelected = 0;

		switch (next_target.G) {
			case 0:
				//? G0: Rapid Linear Motion
				//?
				//? Example: G0 X12
				//?
				//? In this case move rapidly to X = 12 mm.  In fact, the RepRap firmware uses exactly the same code for rapid as it uses for controlled moves (see G1 below), as - for the RepRap machine - this is just as efficient as not doing so.  (The distinction comes from some old machine tools that used to move faster if the axes were not driven in a straight line.  For them G0 allowed any movement in space to get to the destination as fast as possible.)
				//?
        temp_wait();
				backup_f = next_target.target.F;
				next_target.target.F = MAXIMUM_FEEDRATE_X * 2L;
				enqueue(&next_target.target);
				next_target.target.F = backup_f;
				break;

			case 1:
				//? --- G1: Linear Motion at Feed Rate ---
				//?
				//? Example: G1 X90.6 Y13.8 E22.4
				//?
				//? Go in a straight line from the current (X, Y) point to the point (90.6, 13.8), extruding material as the move happens from the current extruded length to a length of 22.4 mm.
				//?
        temp_wait();
				enqueue(&next_target.target);
				break;

				//	G2 - Arc Clockwise
				// unimplemented

				//	G3 - Arc Counter-clockwise
				// unimplemented

			case 4:
				//? --- G4: Dwell ---
				//?
				//? Example: G4 P200
				//?
				//? In this case sit still doing nothing for 200 milliseconds.  During delays the state of the machine (for example the temperatures of its extruders) will still be preserved and controlled.
				//?
				queue_wait();
				// delay
				if (next_target.seen_P) {
					for (;next_target.P > 0;next_target.P--) {
						clock();
						delay_ms(1);
					}
				}
				break;

			case 20:
				//? --- G20: Set Units to Inches ---
				//?
				//? Example: G20
				//?
				//? Units from now on are in inches.
				//?
				next_target.option_inches = 1;
				break;

			case 21:
				//? --- G21: Set Units to Millimeters ---
				//?
				//? Example: G21
				//?
				//? Units from now on are in millimeters.  (This is the RepRap default.)
				//?
				next_target.option_inches = 0;
				break;

			case 28:
				//? --- G28: Home ---
				//?
				//? Example: G28
				//?
        //? This causes the RepRap machine to search for its X, Y and Z
        //? endstops. It does so at high speed, so as to get there fast. When
        //? it arrives it backs off slowly until the endstop is released again.
        //? Backing off slowly ensures more accurate positioning.
				//?
        //? If you add axis characters, then just the axes specified will be
        //? seached. Thus
				//?
        //?   G28 X Y72.3
				//?
        //? will zero the X and Y axes, but not Z. Coordinate values are
        //? ignored.
				//?

				queue_wait();

				if (next_target.seen_X) {
					#if defined	X_MIN_PIN
						home_x_negative();
					#elif defined X_MAX_PIN
						home_x_positive();
					#endif
					axisSelected = 1;
				}
				if (next_target.seen_Y) {
					#if defined	Y_MIN_PIN
						home_y_negative();
					#elif defined Y_MAX_PIN
						home_y_positive();
					#endif
					axisSelected = 1;
				}
				if (next_target.seen_Z) {
          #if defined Z_MIN_PIN
            home_z_negative();
          #elif defined Z_MAX_PIN
            home_z_positive();
					#endif
					axisSelected = 1;
				}
				// there's no point in moving E, as E has no endstops

				if (!axisSelected) {
					home();
				}
				break;

			case 90:
				//? --- G90: Set to Absolute Positioning ---
				//?
				//? Example: G90
				//?
				//? All coordinates from now on are absolute relative to the origin
				//? of the machine. This is the RepRap default.
				//?
				//? If you ever want to switch back and forth between relative and
				//? absolute movement keep in mind, X, Y and Z follow the machine's
				//? coordinate system while E doesn't change it's position in the
				//? coordinate system on relative movements.
				//?

				// No wait_queue() needed.
				next_target.option_all_relative = 0;
				break;

			case 91:
				//? --- G91: Set to Relative Positioning ---
				//?
				//? Example: G91
				//?
				//? All coordinates from now on are relative to the last position.
				//?

				// No wait_queue() needed.
				next_target.option_all_relative = 1;
				break;

			case 92:
				//? --- G92: Set Position ---
				//?
				//? Example: G92 X10 E90
				//?
				//? Allows programming of absolute zero point, by reseting the current position to the values specified.  This would set the machine's X coordinate to 10, and the extrude coordinate to 90. No physical motion will occur.
				//?

				queue_wait();

				if (next_target.seen_X) {
          startpoint.axis[X] = next_target.target.axis[X];
					axisSelected = 1;
				}
				if (next_target.seen_Y) {
          startpoint.axis[Y] = next_target.target.axis[Y];
					axisSelected = 1;
				}
				if (next_target.seen_Z) {
          startpoint.axis[Z] = next_target.target.axis[Z];
					axisSelected = 1;
				}
				if (next_target.seen_E) {
          startpoint.axis[E] = next_target.target.axis[E];
					axisSelected = 1;
				}

				if (axisSelected == 0) {
          startpoint.axis[X] = next_target.target.axis[X] =
          startpoint.axis[Y] = next_target.target.axis[Y] =
          startpoint.axis[Z] = next_target.target.axis[Z] =
          startpoint.axis[E] = next_target.target.axis[E] = 0;
				}

				dda_new_startpoint();
				break;

			case 161:
				//? --- G161: Home negative ---
				//?
				//? Find the minimum limit of the specified axes by searching for the limit switch.
				//?
        #if defined X_MIN_PIN
          if (next_target.seen_X)
            home_x_negative();
        #endif
        #if defined Y_MIN_PIN
          if (next_target.seen_Y)
            home_y_negative();
        #endif
        #if defined Z_MIN_PIN
          if (next_target.seen_Z)
            home_z_negative();
        #endif
				break;

			case 162:
				//? --- G162: Home positive ---
				//?
				//? Find the maximum limit of the specified axes by searching for the limit switch.
				//?
        #if defined X_MAX_PIN
          if (next_target.seen_X)
            home_x_positive();
        #endif
        #if defined Y_MAX_PIN
          if (next_target.seen_Y)
            home_y_positive();
        #endif
        #if defined Z_MAX_PIN
          if (next_target.seen_Z)
            home_z_positive();
        #endif
				break;

				// unknown gcode: spit an error
			default:
				sersendf_P(PSTR("E: Bad G-code %d\n"), next_target.G);
				return;
		}
	}
	else if (next_target.seen_M) {
		uint8_t i;

		switch (next_target.M) {
			case 0:
				//? --- M0: machine stop ---
				//?
				//? Example: M0
				//?
				//? http://linuxcnc.org/handbook/RS274NGC_3/RS274NGC_33a.html#1002379
				//? Unimplemented, especially the restart after the stop. Fall trough to M2.
				//?

			case 2:
      case 84: // For compatibility with slic3rs default end G-code.
				//? --- M2: program end ---
				//?
				//? Example: M2
				//?
				//? http://linuxcnc.org/handbook/RS274NGC_3/RS274NGC_33a.html#1002379
				//?
				queue_wait();
				for (i = 0; i < NUM_HEATERS; i++)
					temp_set(i, 0);
				power_off();
        serial_writestr_P(PSTR("\nstop\n"));
				break;

			case 6:
				//? --- M6: tool change ---
				//?
				//? Undocumented.
				tool = next_tool;
				break;

      #ifdef SD
      case 20:
        //? --- M20: list SD card. ---
        sd_list("/");
        break;

      case 21:
        //? --- M21: initialise SD card. ---
        //?
        //? Has to be done before doing any other operation, including M20.
        sd_mount();
        break;

      case 22:
        //? --- M22: release SD card. ---
        //?
        //? Not mandatory. Just removing the card is fine, but results in
        //? odd behaviour when trying to read from the card anyways. M22
        //? makes also sure SD card printing is disabled, even with the card
        //? inserted.
        sd_unmount();
        break;

      case 23:
        //? --- M23: select file. ---
        //?
        //? This opens a file for reading. This file is valid up to M22 or up
        //? to the next M23.
        sd_open(gcode_str_buf);
        break;

      case 24:
        //? --- M24: start/resume SD print. ---
        //?
        //? This makes the SD card available as a G-code source. File is the
        //? one selected with M23.
        gcode_sources |= GCODE_SOURCE_SD;
        break;

      case 25:
        //? --- M25: pause SD print. ---
        //?
        //? This removes the SD card from the bitfield of available G-code
        //? sources. The file is kept open. The position inside the file
        //? is kept as well, to allow resuming.
        gcode_sources &= ! GCODE_SOURCE_SD;
        break;
      #endif /* SD */

			case 82:
				//? --- M82 - Set E codes absolute ---
				//?
				//? This is the default and overrides G90/G91.
				//? M82/M83 is not documented in the RepRap wiki, behaviour
				//? was taken from Sprinter as of March 2012.
				//?
				//? While E does relative movements, it doesn't change its
				//? position in the coordinate system. See also comment on G90.
				//?

				// No wait_queue() needed.
				next_target.option_e_relative = 0;
				break;

			case 83:
				//? --- M83 - Set E codes relative ---
				//?
				//? Counterpart to M82.
				//?

				// No wait_queue() needed.
				next_target.option_e_relative = 1;
				break;

			// M3/M101- extruder on
			case 3:
			case 101:
				//? --- M101: extruder on ---
				//?
				//? Undocumented.
        temp_wait();
				#ifdef DC_EXTRUDER
					heater_set(DC_EXTRUDER, DC_EXTRUDER_PWM);
				#endif
				break;

			// M5/M103- extruder off
			case 5:
			case 103:
				//? --- M103: extruder off ---
				//?
				//? Undocumented.
				#ifdef DC_EXTRUDER
					heater_set(DC_EXTRUDER, 0);
				#endif
				break;

			case 104:
				//? --- M104: Set Extruder Temperature (Fast) ---
				//?
				//? Example: M104 S190
				//?
        //? Set the temperature of the current extruder to 190<sup>o</sup>C
        //? and return control to the host immediately (''i.e.'' before that
        //? temperature has been reached by the extruder). For waiting, see M116.
        //?
        //? Teacup supports an optional P parameter as a zero-based temperature
        //? sensor index to address (e.g. M104 P1 S100 will set the temperature
        //? of the heater connected to the second temperature sensor rather
        //? than the extruder temperature).
        //?
				if ( ! next_target.seen_S)
					break;
        if ( ! next_target.seen_P)
          #ifdef HEATER_EXTRUDER
            next_target.P = HEATER_EXTRUDER;
          #else
            next_target.P = 0;
          #endif
				temp_set(next_target.P, next_target.S);
				break;

			case 105:
        //? --- M105: Get Temperature(s) ---
				//?
				//? Example: M105
				//?
        //? Request the temperature of the current extruder and the build base
        //? in degrees Celsius. For example, the line sent to the host in
        //? response to this command looks like
				//?
				//? <tt>ok T:201 B:117</tt>
				//?
        //? Teacup supports an optional P parameter as a zero-based temperature
        //? sensor index to address.
				//?
				#ifdef ENFORCE_ORDER
					queue_wait();
				#endif
				if ( ! next_target.seen_P)
					next_target.P = TEMP_SENSOR_none;
				temp_print(next_target.P);
				break;

			case 7:
			case 106:
				//? --- M106: Set Fan Speed / Set Device Power ---
				//?
				//? Example: M106 S120
				//?
				//? Control the cooling fan (if any).
				//?
        //? Teacup supports an optional P parameter as a zero-based heater
        //? index to address. The heater index can differ from the temperature
        //? sensor index, see config.h.

				#ifdef ENFORCE_ORDER
					// wait for all moves to complete
					queue_wait();
				#endif
        if ( ! next_target.seen_P)
          #ifdef HEATER_FAN
            next_target.P = HEATER_FAN;
          #else
            next_target.P = 0;
          #endif
				if ( ! next_target.seen_S)
					break;
        heater_set(next_target.P, next_target.S);
				break;

			case 110:
				//? --- M110: Set Current Line Number ---
				//?
				//? Example: N123 M110
				//?
				//? Set the current line number to 123.  Thus the expected next line after this command will be 124.
				//? This is a no-op in Teacup.
				//?
				break;

      #ifdef DEBUG
			case 111:
				//? --- M111: Set Debug Level ---
				//?
				//? Example: M111 S6
				//?
				//? Set the level of debugging information transmitted back to the host to level 6.  The level is the OR of three bits:
				//?
				//? <Pre>
				//? #define         DEBUG_PID       1
				//? #define         DEBUG_DDA       2
				//? #define         DEBUG_POSITION  4
				//? </pre>
				//?
				//? This command is only available in DEBUG builds of Teacup.

				if ( ! next_target.seen_S)
					break;
				debug_flags = next_target.S;
				break;
      #endif /* DEBUG */

      case 112:
        //? --- M112: Emergency Stop ---
        //?
        //? Example: M112
        //?
        //? Any moves in progress are immediately terminated, then the printer
        //? shuts down. All motors and heaters are turned off. Only way to
        //? restart is to press the reset button on the master microcontroller.
        //? See also M0.
        //?
        timer_stop();
        queue_flush();
        power_off();
        cli();
        for (;;)
          wd_reset();
        break;

			case 114:
				//? --- M114: Get Current Position ---
				//?
				//? Example: M114
				//?
				//? This causes the RepRap machine to report its current X, Y, Z and E coordinates to the host.
				//?
				//? For example, the machine returns a string such as:
				//?
				//? <tt>ok C: X:0.00 Y:0.00 Z:0.00 E:0.00</tt>
				//?
				#ifdef ENFORCE_ORDER
					// wait for all moves to complete
					queue_wait();
				#endif
				update_current_position();
				sersendf_P(PSTR("X:%lq,Y:%lq,Z:%lq,E:%lq,F:%lu\n"),
                        current_position.axis[X], current_position.axis[Y],
                        current_position.axis[Z], current_position.axis[E],
				                current_position.F);

        if (mb_tail_dda != NULL) {
          if (DEBUG_POSITION && (debug_flags & DEBUG_POSITION)) {
            sersendf_P(PSTR("Endpoint: X:%ld,Y:%ld,Z:%ld,E:%ld,F:%lu,c:%lu}\n"),
                       mb_tail_dda->endpoint.axis[X],
                       mb_tail_dda->endpoint.axis[Y],
                       mb_tail_dda->endpoint.axis[Z],
                       mb_tail_dda->endpoint.axis[E],
                       mb_tail_dda->endpoint.F,
                       #ifdef ACCELERATION_REPRAP
                         mb_tail_dda->end_c
                       #else
                         mb_tail_dda->c
                       #endif
            );
          }
          print_queue();
        }

				break;

			case 115:
				//? --- M115: Get Firmware Version and Capabilities ---
				//?
				//? Example: M115
				//?
				//? Request the Firmware Version and Capabilities of the current microcontroller
				//? The details are returned to the host computer as key:value pairs separated by spaces and terminated with a linefeed.
				//?
				//? sample data from firmware:
				//?  FIRMWARE_NAME:Teacup FIRMWARE_URL:http://github.com/traumflug/Teacup_Firmware/ PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1 TEMP_SENSOR_COUNT:1 HEATER_COUNT:1
				//?

				sersendf_P(PSTR("FIRMWARE_NAME:Teacup FIRMWARE_URL:http://github.com/traumflug/Teacup_Firmware/ PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:%d TEMP_SENSOR_COUNT:%d HEATER_COUNT:%d\n"), 1, NUM_TEMP_SENSORS, NUM_HEATERS);
				break;

			case 116:
				//? --- M116: Wait ---
				//?
				//? Example: M116
				//?
				//? Wait for temperatures and other slowly-changing variables to arrive at their set values.
        temp_set_wait();
				break;

      case 119:
        //? --- M119: report endstop status ---
        //? Report the current status of the endstops configured in the
        //? firmware to the host.
        power_on();
        endstops_on();
        delay_ms(10); // allow the signal to stabilize
        {
          #if ! (defined(X_MIN_PIN) || defined(X_MAX_PIN) || \
                 defined(Y_MIN_PIN) || defined(Y_MAX_PIN) || \
                 defined(Z_MIN_PIN) || defined(Z_MAX_PIN))
            serial_writestr_P(PSTR("No endstops defined."));
          #else
            const char* const open = PSTR("open ");
            const char* const triggered = PSTR("triggered ");
          #endif

          #if defined(X_MIN_PIN)
            serial_writestr_P(PSTR("x_min:"));
            x_min() ? serial_writestr_P(triggered) : serial_writestr_P(open);
          #endif
          #if defined(X_MAX_PIN)
            serial_writestr_P(PSTR("x_max:"));
            x_max() ? serial_writestr_P(triggered) : serial_writestr_P(open);
          #endif
          #if defined(Y_MIN_PIN)
            serial_writestr_P(PSTR("y_min:"));
            y_min() ? serial_writestr_P(triggered) : serial_writestr_P(open);
          #endif
          #if defined(Y_MAX_PIN)
            serial_writestr_P(PSTR("y_max:"));
            y_max() ? serial_writestr_P(triggered) : serial_writestr_P(open);
          #endif
          #if defined(Z_MIN_PIN)
            serial_writestr_P(PSTR("z_min:"));
            z_min() ? serial_writestr_P(triggered) : serial_writestr_P(open);
          #endif
          #if defined(Z_MAX_PIN)
            serial_writestr_P(PSTR("z_max:"));
            z_max() ? serial_writestr_P(triggered) : serial_writestr_P(open);
          #endif
        }
        endstops_off();
        serial_writechar('\n');
        break;

      #ifdef EECONFIG
			case 130:
				//? --- M130: heater P factor ---
				//? Undocumented.
			  	//  P factor in counts per degreeC of error
        if ( ! next_target.seen_P)
          #ifdef HEATER_EXTRUDER
            next_target.P = HEATER_EXTRUDER;
          #else
            next_target.P = 0;
          #endif
				if (next_target.seen_S)
					pid_set_p(next_target.P, next_target.S);
				break;

			case 131:
				//? --- M131: heater I factor ---
				//? Undocumented.
			  	// I factor in counts per C*s of integrated error
        if ( ! next_target.seen_P)
          #ifdef HEATER_EXTRUDER
            next_target.P = HEATER_EXTRUDER;
          #else
            next_target.P = 0;
          #endif
				if (next_target.seen_S)
					pid_set_i(next_target.P, next_target.S);
				break;

			case 132:
				//? --- M132: heater D factor ---
				//? Undocumented.
			  	// D factor in counts per degreesC/second
        if ( ! next_target.seen_P)
          #ifdef HEATER_EXTRUDER
            next_target.P = HEATER_EXTRUDER;
          #else
            next_target.P = 0;
          #endif
				if (next_target.seen_S)
					pid_set_d(next_target.P, next_target.S);
				break;

			case 133:
				//? --- M133: heater I limit ---
				//? Undocumented.
        if ( ! next_target.seen_P)
          #ifdef HEATER_EXTRUDER
            next_target.P = HEATER_EXTRUDER;
          #else
            next_target.P = 0;
          #endif
				if (next_target.seen_S)
					pid_set_i_limit(next_target.P, next_target.S);
				break;

			case 134:
				//? --- M134: save PID settings to eeprom ---
				//? Undocumented.
				heater_save_settings();
				break;
      #endif /* EECONFIG */

      #ifdef DEBUG
			case 136:
				//? --- M136: PRINT PID settings to host ---
				//? Undocumented.
				//? This comand is only available in DEBUG builds.
        if ( ! next_target.seen_P)
          #ifdef HEATER_EXTRUDER
            next_target.P = HEATER_EXTRUDER;
          #else
            next_target.P = 0;
          #endif
				heater_print(next_target.P);
				break;
      #endif /* DEBUG */

			case 140:
				//? --- M140: Set heated bed temperature ---
				//? Undocumented.
				#ifdef	HEATER_BED
					if ( ! next_target.seen_S)
						break;
					temp_set(HEATER_BED, next_target.S);
				#endif
				break;

      case 220:
        //? --- M220: Set speed factor override percentage ---
        if ( ! next_target.seen_S)
          break;
        // Scale 100% = 256
        next_target.target.f_multiplier = (next_target.S * 64 + 12) / 25;
        break;

      case 221:
        //? --- M221: Control the extruders flow ---
        if ( ! next_target.seen_S)
          break;
        // Scale 100% = 256
        next_target.target.e_multiplier = (next_target.S * 64 + 12) / 25;
        break;

      #ifdef DEBUG
			case 240:
				//? --- M240: echo off ---
				//? Disable echo.
				//? This command is only available in DEBUG builds.
				debug_flags &= ~DEBUG_ECHO;
				serial_writestr_P(PSTR("Echo off\n"));
				break;

			case 241:
				//? --- M241: echo on ---
				//? Enable echo.
				//? This command is only available in DEBUG builds.
				debug_flags |= DEBUG_ECHO;
				serial_writestr_P(PSTR("Echo on\n"));
				break;
      #endif /* DEBUG */

				// unknown mcode: spit an error
			default:
				sersendf_P(PSTR("E: Bad M-code %d\n"), next_target.M);
		} // switch (next_target.M)
	} // else if (next_target.seen_M)
} // process_gcode_command()
void process_gcode_command() {
	uint32_t	backup_f;

	// convert relative to absolute
	if (next_target.option_all_relative) {
		next_target.target.X += startpoint.X;
		next_target.target.Y += startpoint.Y;
		next_target.target.Z += startpoint.Z;
	}

	// E relative movement.
	// Matches Sprinter's behaviour as of March 2012.
	if (next_target.option_all_relative || next_target.option_e_relative)
		next_target.target.e_relative = 1;
	else
		next_target.target.e_relative = 0;

	// implement axis limits
	#ifdef	X_MIN
		if (next_target.target.X < X_MIN * 1000.)
			next_target.target.X = X_MIN * 1000.;
	#endif
	#ifdef	X_MAX
		if (next_target.target.X > X_MAX * 1000.)
			next_target.target.X = X_MAX * 1000.;
	#endif
	#ifdef	Y_MIN
		if (next_target.target.Y < Y_MIN * 1000.)
			next_target.target.Y = Y_MIN * 1000.;
	#endif
	#ifdef	Y_MAX
		if (next_target.target.Y > Y_MAX * 1000.)
			next_target.target.Y = Y_MAX * 1000.;
	#endif
	#ifdef	Z_MIN
		if (next_target.target.Z < Z_MIN * 1000.)
			next_target.target.Z = Z_MIN * 1000.;
	#endif
	#ifdef	Z_MAX
		if (next_target.target.Z > Z_MAX * 1000.)
			next_target.target.Z = Z_MAX * 1000.;
	#endif


	// The GCode documentation was taken from http://reprap.org/wiki/Gcode .

	if (next_target.seen_T) {
	    //? --- T: Select Tool ---
	    //?
	    //? Example: T1
	    //?
	    //? Select extruder number 1 to build with.  Extruder numbering starts at 0.

	    next_tool = next_target.T;
	}

	if (next_target.seen_G) {
		uint8_t axisSelected = 0;
		switch (next_target.G) {
			case 0:
				//? G0: Rapid Linear Motion
				//?
				//? Example: G0 X12
				//?
				//? In this case move rapidly to X = 12 mm.  In fact, the RepRap firmware uses exactly the same code for rapid as it uses for controlled moves (see G1 below), as - for the RepRap machine - this is just as efficient as not doing so.  (The distinction comes from some old machine tools that used to move faster if the axes were not driven in a straight line.  For them G0 allowed any movement in space to get to the destination as fast as possible.)
				//?
				backup_f = next_target.target.F;
				next_target.target.F = MAXIMUM_FEEDRATE_X * 2L;
				enqueue(&next_target.target);
				next_target.target.F = backup_f;
				break;

			case 1:
				//? --- G1: Linear Motion at Feed Rate ---
				//?
				//? Example: G1 X90.6 Y13.8 E22.4
				//?
				//? Go in a straight line from the current (X, Y) point to the point (90.6, 13.8), extruding material as the move happens from the current extruded length to a length of 22.4 mm.
				//?
				enqueue(&next_target.target);
				break;

				//	G2 - Arc Clockwise
				// unimplemented

				//	G3 - Arc Counter-clockwise
				// unimplemented

			case 4:
				//? --- G4: Dwell ---
				//?
				//? Example: G4 P200
				//?
				//? In this case sit still doing nothing for 200 milliseconds.  During delays the state of the machine (for example the temperatures of its extruders) will still be preserved and controlled.
				//?
				queue_wait();
				// delay
				if (next_target.seen_P) {
					for (;next_target.P > 0;next_target.P--) {
						clock();
						delay_ms(1);
					}
				}
				break;

			case 20:
				//? --- G20: Set Units to Inches ---
				//?
				//? Example: G20
				//?
				//? Units from now on are in inches.
				//?
				next_target.option_inches = 1;
				break;

			case 21:
				//? --- G21: Set Units to Millimeters ---
				//?
				//? Example: G21
				//?
				//? Units from now on are in millimeters.  (This is the RepRap default.)
				//?
				next_target.option_inches = 0;
				break;

			case 30:
				//? --- G30: Go home via point ---
				//?
				//? Undocumented.
				enqueue(&next_target.target);
				// no break here, G30 is move and then go home

			case 28:
				//? --- G28: Home ---
				//?
				//? Example: G28
				//?
				//? This causes the RepRap machine to move back to its X, Y and Z zero endstops.  It does so accelerating, so as to get there fast.  But when it arrives it backs off by 1 mm in each direction slowly, then moves back slowly to the stop.  This ensures more accurate positioning.
				//?
				//? If you add coordinates, then just the axes with coordinates specified will be zeroed.  Thus
				//?
				//? G28 X0 Y72.3
				//?
				//? will zero the X and Y axes, but not Z.  The actual coordinate values are ignored.
				//?

				queue_wait();

				if (next_target.seen_X) {
					#if defined	X_MIN_PIN
						home_x_negative();
					#elif defined X_MAX_PIN
						home_x_positive();
					#endif
					axisSelected = 1;
				}
				if (next_target.seen_Y) {
					#if defined	Y_MIN_PIN
						home_y_negative();
					#elif defined Y_MAX_PIN
						home_y_positive();
					#endif
					axisSelected = 1;
				}
				if (next_target.seen_Z) {
					#if defined Z_MAX_PIN
						home_z_positive();
					#elif defined	Z_MIN_PIN
						home_z_negative();
					#endif
					axisSelected = 1;
				}
				// there's no point in moving E, as E has no endstops

				if (!axisSelected) {
					home();
				}
				break;

			case 90:
				//? --- G90: Set to Absolute Positioning ---
				//?
				//? Example: G90
				//?
				//? All coordinates from now on are absolute relative to the origin
				//? of the machine. This is the RepRap default.
				//?
				//? If you ever want to switch back and forth between relative and
				//? absolute movement keep in mind, X, Y and Z follow the machine's
				//? coordinate system while E doesn't change it's position in the
				//? coordinate system on relative movements.
				//?

				// No wait_queue() needed.
				next_target.option_all_relative = 0;
				break;

			case 91:
				//? --- G91: Set to Relative Positioning ---
				//?
				//? Example: G91
				//?
				//? All coordinates from now on are relative to the last position.
				//?

				// No wait_queue() needed.
				next_target.option_all_relative = 1;
				break;

			case 92:
				//? --- G92: Set Position ---
				//?
				//? Example: G92 X10 E90
				//?
				//? Allows programming of absolute zero point, by reseting the current position to the values specified.  This would set the machine's X coordinate to 10, and the extrude coordinate to 90. No physical motion will occur.
				//?

				queue_wait();

				if (next_target.seen_X) {
					startpoint.X = next_target.target.X;
					axisSelected = 1;
				}
				if (next_target.seen_Y) {
					startpoint.Y = next_target.target.Y;
					axisSelected = 1;
				}
				if (next_target.seen_Z) {
					startpoint.Z = next_target.target.Z;
					axisSelected = 1;
				}
				if (next_target.seen_E) {
					startpoint.E = next_target.target.E;
					axisSelected = 1;
				}

				if (axisSelected == 0) {
					startpoint.X = next_target.target.X =
					startpoint.Y = next_target.target.Y =
					startpoint.Z = next_target.target.Z =
					startpoint.E = next_target.target.E = 0;
				}

				dda_new_startpoint();
				break;

			case 161:
				//? --- G161: Home negative ---
				//?
				//? Find the minimum limit of the specified axes by searching for the limit switch.
				//?
				if (next_target.seen_X)
					home_x_negative();
				if (next_target.seen_Y)
					home_y_negative();
				if (next_target.seen_Z)
					home_z_negative();
				break;

			case 162:
				//? --- G162: Home positive ---
				//?
				//? Find the maximum limit of the specified axes by searching for the limit switch.
				//?
				if (next_target.seen_X)
					home_x_positive();
				if (next_target.seen_Y)
					home_y_positive();
				if (next_target.seen_Z)
					home_z_positive();
				break;

				// unknown gcode: spit an error
			default:
				sersendf_P(PSTR("E: Bad G-code %d"), next_target.G);
				// newline is sent from gcode_parse after we return
				return;
		}
	}
	else if (next_target.seen_M) {
		uint8_t i;

		switch (next_target.M) {
			case 0:
				//? --- M0: machine stop ---
				//?
				//? Example: M0
				//?
				//? http://linuxcnc.org/handbook/RS274NGC_3/RS274NGC_33a.html#1002379
				//? Unimplemented, especially the restart after the stop. Fall trough to M2.
				//?

			case 2:
      case 84: // For compatibility with slic3rs default end G-code.
				//? --- M2: program end ---
				//?
				//? Example: M2
				//?
				//? http://linuxcnc.org/handbook/RS274NGC_3/RS274NGC_33a.html#1002379
				//?
				queue_wait();
				for (i = 0; i < NUM_HEATERS; i++)
					temp_set(i, 0);
				power_off();
				break;

			case 112:
				//? --- M112: Emergency Stop ---
				//?
				//? Example: M112
				//?
				//? Any moves in progress are immediately terminated, then RepRap shuts down.  All motors and heaters are turned off.
				//? It can be started again by pressing the reset button on the master microcontroller.  See also M0.
				//?

				timer_stop();
				queue_flush();
				power_off();
				cli();
				for (;;)
					wd_reset();
				break;

			case 6:
				//? --- M6: tool change ---
				//?
				//? Undocumented.
				tool = next_tool;
				break;

			case 82:
				//? --- M82 - Set E codes absolute ---
				//?
				//? This is the default and overrides G90/G91.
				//? M82/M83 is not documented in the RepRap wiki, behaviour
				//? was taken from Sprinter as of March 2012.
				//?
				//? While E does relative movements, it doesn't change its
				//? position in the coordinate system. See also comment on G90.
				//?

				// No wait_queue() needed.
				next_target.option_e_relative = 0;
				break;

			case 83:
				//? --- M83 - Set E codes relative ---
				//?
				//? Counterpart to M82.
				//?

				// No wait_queue() needed.
				next_target.option_e_relative = 1;
				break;

			// M3/M101- extruder on
			case 3:
			case 101:
				//? --- M101: extruder on ---
				//?
				//? Undocumented.
				if (temp_achieved() == 0) {
					enqueue(NULL);
				}
				#ifdef DC_EXTRUDER
					heater_set(DC_EXTRUDER, DC_EXTRUDER_PWM);
				#elif E_STARTSTOP_STEPS > 0
					do {
						// backup feedrate, move E very quickly then restore feedrate
						backup_f = startpoint.F;
						startpoint.F = MAXIMUM_FEEDRATE_E;
						SpecialMoveE(E_STARTSTOP_STEPS, MAXIMUM_FEEDRATE_E);
						startpoint.F = backup_f;
					} while (0);
				#endif
				break;

			// M102- extruder reverse

			// M5/M103- extruder off
			case 5:
			case 103:
				//? --- M103: extruder off ---
				//?
				//? Undocumented.
				#ifdef DC_EXTRUDER
					heater_set(DC_EXTRUDER, 0);
				#elif E_STARTSTOP_STEPS > 0
					do {
						// backup feedrate, move E very quickly then restore feedrate
						backup_f = startpoint.F;
						startpoint.F = MAXIMUM_FEEDRATE_E;
						SpecialMoveE(-E_STARTSTOP_STEPS, MAXIMUM_FEEDRATE_E);
						startpoint.F = backup_f;
					} while (0);
				#endif
				break;

			case 104:
				//? --- M104: Set Extruder Temperature (Fast) ---
				//?
				//? Example: M104 S190
				//?
        //? Set the temperature of the current extruder to 190<sup>o</sup>C
        //? and return control to the host immediately (''i.e.'' before that
        //? temperature has been reached by the extruder). For waiting, see M116.
        //?
        //? Teacup supports an optional P parameter as a zero-based temperature
        //? sensor index to address (e.g. M104 P1 S100 will set the temperature
        //? of the heater connected to the second temperature sensor rather
        //? than the extruder temperature).
        //?
				if ( ! next_target.seen_S)
					break;
        #ifdef HEATER_EXTRUDER
          if ( ! next_target.seen_P)
            next_target.P = HEATER_EXTRUDER;
        // else use the first available device
        #endif
				temp_set(next_target.P, next_target.S);
				break;

			case 105:
        //? --- M105: Get Temperature(s) ---
				//?
				//? Example: M105
				//?
        //? Request the temperature of the current extruder and the build base
        //? in degrees Celsius. For example, the line sent to the host in
        //? response to this command looks like
				//?
				//? <tt>ok T:201 B:117</tt>
				//?
        //? Teacup supports an optional P parameter as a zero-based temperature
        //? sensor index to address.
				//?
				#ifdef ENFORCE_ORDER
					queue_wait();
				#endif
				if ( ! next_target.seen_P)
					next_target.P = TEMP_SENSOR_none;
				temp_print(next_target.P);
				break;

			case 7:
			case 106:
				//? --- M106: Set Fan Speed / Set Device Power ---
				//?
				//? Example: M106 S120
				//?
				//? Control the cooling fan (if any).
				//?
        //? Teacup supports an optional P parameter as a zero-based heater
        //? index to address. The heater index can differ from the temperature
        //? sensor index, see config.h.

				#ifdef ENFORCE_ORDER
					// wait for all moves to complete
					queue_wait();
				#endif
        #ifdef HEATER_FAN
          if ( ! next_target.seen_P)
            next_target.P = HEATER_FAN;
        // else use the first available device
        #endif
				if ( ! next_target.seen_S)
					break;
        heater_set(next_target.P, next_target.S);
				break;

			case 110:
				//? --- M110: Set Current Line Number ---
				//?
				//? Example: N123 M110
				//?
				//? Set the current line number to 123.  Thus the expected next line after this command will be 124.
				//? This is a no-op in Teacup.
				//?
				break;

			#ifdef	DEBUG
			case 111:
				//? --- M111: Set Debug Level ---
				//?
				//? Example: M111 S6
				//?
				//? Set the level of debugging information transmitted back to the host to level 6.  The level is the OR of three bits:
				//?
				//? <Pre>
				//? #define         DEBUG_PID       1
				//? #define         DEBUG_DDA       2
				//? #define         DEBUG_POSITION  4
				//? </pre>
				//?
				//? This command is only available in DEBUG builds of Teacup.

				if ( ! next_target.seen_S)
					break;
				debug_flags = next_target.S;
				break;
			#endif

			case 114:
				//? --- M114: Get Current Position ---
				//?
				//? Example: M114
				//?
				//? This causes the RepRap machine to report its current X, Y, Z and E coordinates to the host.
				//?
				//? For example, the machine returns a string such as:
				//?
				//? <tt>ok C: X:0.00 Y:0.00 Z:0.00 E:0.00</tt>
				//?
				#ifdef ENFORCE_ORDER
					// wait for all moves to complete
					queue_wait();
				#endif
				update_current_position();
				sersendf_P(PSTR("X:%lq,Y:%lq,Z:%lq,E:%lq,F:%lu"),
				                current_position.X, current_position.Y,
				                current_position.Z, current_position.E,
				                current_position.F);

				#ifdef	DEBUG
					if (DEBUG_POSITION && (debug_flags & DEBUG_POSITION)) {
						sersendf_P(PSTR(",c:%lu}\nEndpoint: X:%ld,Y:%ld,Z:%ld,E:%ld,F:%lu,c:%lu}"),
						                movebuffer[mb_tail].c, movebuffer[mb_tail].endpoint.X,
						                movebuffer[mb_tail].endpoint.Y, movebuffer[mb_tail].endpoint.Z,
						                movebuffer[mb_tail].endpoint.E, movebuffer[mb_tail].endpoint.F,
						#ifdef ACCELERATION_REPRAP
							movebuffer[mb_tail].end_c
						#else
							movebuffer[mb_tail].c
						#endif
						);
						print_queue();
					}
				#endif /* DEBUG */

				// newline is sent from gcode_parse after we return
				break;

			case 115:
				//? --- M115: Get Firmware Version and Capabilities ---
				//?
				//? Example: M115
				//?
				//? Request the Firmware Version and Capabilities of the current microcontroller
				//? The details are returned to the host computer as key:value pairs separated by spaces and terminated with a linefeed.
				//?
				//? sample data from firmware:
				//?  FIRMWARE_NAME:Teacup FIRMWARE_URL:http://github.com/triffid/Teacup_Firmware/ PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1 TEMP_SENSOR_COUNT:1 HEATER_COUNT:1
				//?

				sersendf_P(PSTR("FIRMWARE_NAME:Teacup FIRMWARE_URL:http://github.com/triffid/Teacup_Firmware/ PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:%d TEMP_SENSOR_COUNT:%d HEATER_COUNT:%d"), 1, NUM_TEMP_SENSORS, NUM_HEATERS);
				// newline is sent from gcode_parse after we return
				break;

			case 116:
				//? --- M116: Wait ---
				//?
				//? Example: M116
				//?
				//? Wait for temperatures and other slowly-changing variables to arrive at their set values.

				enqueue(NULL);
				break;

      case 119:
        //? --- M119: report endstop status ---
        //? Report the current status of the endstops configured in the
        //? firmware to the host.
        power_on();
        endstops_on();
        delay_ms(10); // allow the signal to stabilize
        #if defined(X_MIN_PIN)
          sersendf_P(PSTR("x_min:%d "), x_min());
        #endif
        #if defined(X_MAX_PIN)
          sersendf_P(PSTR("x_max:%d "), x_max());
        #endif
        #if defined(Y_MIN_PIN)
          sersendf_P(PSTR("y_min:%d "), y_min());
        #endif
        #if defined(Y_MAX_PIN)
          sersendf_P(PSTR("y_max:%d "), y_max());
        #endif
        #if defined(Z_MIN_PIN)
          sersendf_P(PSTR("z_min:%d "), z_min());
        #endif
        #if defined(Z_MAX_PIN)
          sersendf_P(PSTR("z_max:%d "), z_max());
        #endif
        #if ! (defined(X_MIN_PIN) || defined(X_MAX_PIN) || \
               defined(Y_MIN_PIN) || defined(Y_MAX_PIN) || \
               defined(Z_MIN_PIN) || defined(Z_MAX_PIN))
          sersendf_P(PSTR("no endstops defined"));
        #endif
        endstops_off();
        break;

      #ifdef EECONFIG
			case 130:
				//? --- M130: heater P factor ---
				//? Undocumented.
        #ifdef HEATER_EXTRUDER
          if ( ! next_target.seen_P)
            next_target.P = HEATER_EXTRUDER;
        // else use the first available device
        #endif
				if (next_target.seen_S)
					pid_set_p(next_target.P, next_target.S);
				break;

			case 131:
				//? --- M131: heater I factor ---
				//? Undocumented.
        #ifdef HEATER_EXTRUDER
          if ( ! next_target.seen_P)
            next_target.P = HEATER_EXTRUDER;
        #endif
				if (next_target.seen_S)
					pid_set_i(next_target.P, next_target.S);
				break;

			case 132:
				//? --- M132: heater D factor ---
				//? Undocumented.
        #ifdef HEATER_EXTRUDER
          if ( ! next_target.seen_P)
            next_target.P = HEATER_EXTRUDER;
        #endif
				if (next_target.seen_S)
					pid_set_d(next_target.P, next_target.S);
				break;

			case 133:
				//? --- M133: heater I limit ---
				//? Undocumented.
        #ifdef HEATER_EXTRUDER
          if ( ! next_target.seen_P)
            next_target.P = HEATER_EXTRUDER;
        #endif
				if (next_target.seen_S)
					pid_set_i_limit(next_target.P, next_target.S);
				break;

			case 134:
				//? --- M134: save PID settings to eeprom ---
				//? Undocumented.
				heater_save_settings();
				break;
      #endif /* EECONFIG */

			#ifdef	DEBUG
			case 136:
				//? --- M136: PRINT PID settings to host ---
				//? Undocumented.
				//? This comand is only available in DEBUG builds.
				if ( ! next_target.seen_P)
					next_target.P = HEATER_EXTRUDER;
				heater_print(next_target.P);
				break;
			#endif

			case 140:
				//? --- M140: Set heated bed temperature ---
				//? Undocumented.
				#ifdef	HEATER_BED
					if ( ! next_target.seen_S)
						break;
					temp_set(HEATER_BED, next_target.S);
				#endif
				break;

			#ifdef	DEBUG
			case 240:
				//? --- M240: echo off ---
				//? Disable echo.
				//? This command is only available in DEBUG builds.
				debug_flags &= ~DEBUG_ECHO;
				serial_writestr_P(PSTR("Echo off"));
				// newline is sent from gcode_parse after we return
				break;

			case 241:
				//? --- M241: echo on ---
				//? Enable echo.
				//? This command is only available in DEBUG builds.
				debug_flags |= DEBUG_ECHO;
				serial_writestr_P(PSTR("Echo on"));
				// newline is sent from gcode_parse after we return
				break;

			#endif /* DEBUG */

				// unknown mcode: spit an error
			default:
				sersendf_P(PSTR("E: Bad M-code %d"), next_target.M);
				// newline is sent from gcode_parse after we return
		} // switch (next_target.M)
	} // else if (next_target.seen_M)
} // process_gcode_command()
Beispiel #17
0
void manage_heater()
{
  #ifdef USE_WATCHDOG
    wd_reset();
  #endif
  
  float pid_input;
  float pid_output;

  if(temp_meas_ready != true)   //better readability
    return; 

  CRITICAL_SECTION_START;
  temp_meas_ready = false;
  CRITICAL_SECTION_END;

  for(int e = 0; e < EXTRUDERS; e++) 
  {

  #ifdef PIDTEMP
    pid_input = analog2temp(current_raw[e], e);

    #ifndef PID_OPENLOOP
        pid_error[e] = pid_setpoint[e] - pid_input;
        if(pid_error[e] > 10) {
          pid_output = PID_MAX;
          pid_reset[e] = true;
        }
        else if(pid_error[e] < -10) {
          pid_output = 0;
          pid_reset[e] = true;
        }
        else {
          if(pid_reset[e] == true) {
            temp_iState[e] = 0.0;
            pid_reset[e] = false;
          }
          pTerm[e] = Kp * pid_error[e];
          temp_iState[e] += pid_error[e];
          temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
          iTerm[e] = Ki * temp_iState[e];
          //K1 defined in Configuration.h in the PID settings
          #define K2 (1.0-K1)
          dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
          temp_dState[e] = pid_input;
          pid_output = constrain(pTerm[e] + iTerm[e] - dTerm[e], 0, PID_MAX);
        }
    #endif //PID_OPENLOOP
    #ifdef PID_DEBUG
    SERIAL_ECHOLN(" PIDDEBUG "<<e<<": Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm[e]<<" iTerm "<<iTerm[e]<<" dTerm "<<dTerm[e]);  
    #endif //PID_DEBUG
  #else /* PID off */
    pid_output = 0;
    if(current_raw[e] < target_raw[e]) {
      pid_output = PID_MAX;
    }
  #endif

    // Check if temperature is within the correct range
    if((current_raw[e] > minttemp[e]) && (current_raw[e] < maxttemp[e])) 
    {
      //analogWrite(heater_pin_map[e], pid_output);
      soft_pwm[e] = (int)pid_output >> 1;
    }
    else {