Beispiel #1
0
void MultiBandBlender::feed(InputArray _img, InputArray mask, Point tl)
{
#if ENABLE_LOG
    int64 t = getTickCount();
#endif

    UMat img = _img.getUMat();
    CV_Assert(img.type() == CV_16SC3 || img.type() == CV_8UC3);
    CV_Assert(mask.type() == CV_8U);

    // Keep source image in memory with small border
    int gap = 3 * (1 << num_bands_);
    Point tl_new(std::max(dst_roi_.x, tl.x - gap),
                 std::max(dst_roi_.y, tl.y - gap));
    Point br_new(std::min(dst_roi_.br().x, tl.x + img.cols + gap),
                 std::min(dst_roi_.br().y, tl.y + img.rows + gap));

    // Ensure coordinates of top-left, bottom-right corners are divided by (1 << num_bands_).
    // After that scale between layers is exactly 2.
    //
    // We do it to avoid interpolation problems when keeping sub-images only. There is no such problem when
    // image is bordered to have size equal to the final image size, but this is too memory hungry approach.
    tl_new.x = dst_roi_.x + (((tl_new.x - dst_roi_.x) >> num_bands_) << num_bands_);
    tl_new.y = dst_roi_.y + (((tl_new.y - dst_roi_.y) >> num_bands_) << num_bands_);
    int width = br_new.x - tl_new.x;
    int height = br_new.y - tl_new.y;
    width += ((1 << num_bands_) - width % (1 << num_bands_)) % (1 << num_bands_);
    height += ((1 << num_bands_) - height % (1 << num_bands_)) % (1 << num_bands_);
    br_new.x = tl_new.x + width;
    br_new.y = tl_new.y + height;
    int dy = std::max(br_new.y - dst_roi_.br().y, 0);
    int dx = std::max(br_new.x - dst_roi_.br().x, 0);
    tl_new.x -= dx; br_new.x -= dx;
    tl_new.y -= dy; br_new.y -= dy;

    int top = tl.y - tl_new.y;
    int left = tl.x - tl_new.x;
    int bottom = br_new.y - tl.y - img.rows;
    int right = br_new.x - tl.x - img.cols;

    // Create the source image Laplacian pyramid
    UMat img_with_border;
    copyMakeBorder(_img, img_with_border, top, bottom, left, right,
                   BORDER_REFLECT);
    LOGLN("  Add border to the source image, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
#if ENABLE_LOG
    t = getTickCount();
#endif

    std::vector<UMat> src_pyr_laplace;
    if (can_use_gpu_ && img_with_border.depth() == CV_16S)
        createLaplacePyrGpu(img_with_border, num_bands_, src_pyr_laplace);
    else
        createLaplacePyr(img_with_border, num_bands_, src_pyr_laplace);

    LOGLN("  Create the source image Laplacian pyramid, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
#if ENABLE_LOG
    t = getTickCount();
#endif

    // Create the weight map Gaussian pyramid
    UMat weight_map;
    std::vector<UMat> weight_pyr_gauss(num_bands_ + 1);

    if(weight_type_ == CV_32F)
    {
        mask.getUMat().convertTo(weight_map, CV_32F, 1./255.);
    }
    else // weight_type_ == CV_16S
    {
        mask.getUMat().convertTo(weight_map, CV_16S);
        UMat add_mask;
        compare(mask, 0, add_mask, CMP_NE);
        add(weight_map, Scalar::all(1), weight_map, add_mask);
    }

    copyMakeBorder(weight_map, weight_pyr_gauss[0], top, bottom, left, right, BORDER_CONSTANT);

    for (int i = 0; i < num_bands_; ++i)
        pyrDown(weight_pyr_gauss[i], weight_pyr_gauss[i + 1]);

    LOGLN("  Create the weight map Gaussian pyramid, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
#if ENABLE_LOG
    t = getTickCount();
#endif

    int y_tl = tl_new.y - dst_roi_.y;
    int y_br = br_new.y - dst_roi_.y;
    int x_tl = tl_new.x - dst_roi_.x;
    int x_br = br_new.x - dst_roi_.x;

    // Add weighted layer of the source image to the final Laplacian pyramid layer
    for (int i = 0; i <= num_bands_; ++i)
    {
        Rect rc(x_tl, y_tl, x_br - x_tl, y_br - y_tl);
#ifdef HAVE_OPENCL
        if ( !cv::ocl::useOpenCL() ||
             !ocl_MultiBandBlender_feed(src_pyr_laplace[i], weight_pyr_gauss[i],
                    dst_pyr_laplace_[i](rc), dst_band_weights_[i](rc)) )
#endif
        {
            Mat _src_pyr_laplace = src_pyr_laplace[i].getMat(ACCESS_READ);
            Mat _dst_pyr_laplace = dst_pyr_laplace_[i](rc).getMat(ACCESS_RW);
            Mat _weight_pyr_gauss = weight_pyr_gauss[i].getMat(ACCESS_READ);
            Mat _dst_band_weights = dst_band_weights_[i](rc).getMat(ACCESS_RW);
            if(weight_type_ == CV_32F)
            {
                for (int y = 0; y < rc.height; ++y)
                {
                    const Point3_<short>* src_row = _src_pyr_laplace.ptr<Point3_<short> >(y);
                    Point3_<short>* dst_row = _dst_pyr_laplace.ptr<Point3_<short> >(y);
                    const float* weight_row = _weight_pyr_gauss.ptr<float>(y);
                    float* dst_weight_row = _dst_band_weights.ptr<float>(y);

                    for (int x = 0; x < rc.width; ++x)
                    {
                        dst_row[x].x += static_cast<short>(src_row[x].x * weight_row[x]);
                        dst_row[x].y += static_cast<short>(src_row[x].y * weight_row[x]);
                        dst_row[x].z += static_cast<short>(src_row[x].z * weight_row[x]);
                        dst_weight_row[x] += weight_row[x];
                    }
                }
            }
            else // weight_type_ == CV_16S
            {
                for (int y = 0; y < y_br - y_tl; ++y)
                {
                    const Point3_<short>* src_row = _src_pyr_laplace.ptr<Point3_<short> >(y);
                    Point3_<short>* dst_row = _dst_pyr_laplace.ptr<Point3_<short> >(y);
                    const short* weight_row = _weight_pyr_gauss.ptr<short>(y);
                    short* dst_weight_row = _dst_band_weights.ptr<short>(y);

                    for (int x = 0; x < x_br - x_tl; ++x)
                    {
                        dst_row[x].x += short((src_row[x].x * weight_row[x]) >> 8);
                        dst_row[x].y += short((src_row[x].y * weight_row[x]) >> 8);
                        dst_row[x].z += short((src_row[x].z * weight_row[x]) >> 8);
                        dst_weight_row[x] += weight_row[x];
                    }
                }
            }
        }
#ifdef HAVE_OPENCL
        else
        {
Beispiel #2
0
void MultiBandBlender::feed(const Mat &img, const Mat &mask, Point tl)
{
    CV_Assert(img.type() == CV_16SC3 || img.type() == CV_8UC3);
    CV_Assert(mask.type() == CV_8U);

    // Keep source image in memory with small border
    int gap = 3 * (1 << num_bands_);
    Point tl_new(std::max(dst_roi_.x, tl.x - gap),
                 std::max(dst_roi_.y, tl.y - gap));
    Point br_new(std::min(dst_roi_.br().x, tl.x + img.cols + gap),
                 std::min(dst_roi_.br().y, tl.y + img.rows + gap));

    // Ensure coordinates of top-left, bottom-right corners are divided by (1 << num_bands_).
    // After that scale between layers is exactly 2.
    //
    // We do it to avoid interpolation problems when keeping sub-images only. There is no such problem when
    // image is bordered to have size equal to the final image size, but this is too memory hungry approach.
    tl_new.x = dst_roi_.x + (((tl_new.x - dst_roi_.x) >> num_bands_) << num_bands_);
    tl_new.y = dst_roi_.y + (((tl_new.y - dst_roi_.y) >> num_bands_) << num_bands_);
    int width = br_new.x - tl_new.x;
    int height = br_new.y - tl_new.y;
    width += ((1 << num_bands_) - width % (1 << num_bands_)) % (1 << num_bands_);
    height += ((1 << num_bands_) - height % (1 << num_bands_)) % (1 << num_bands_);
    br_new.x = tl_new.x + width;
    br_new.y = tl_new.y + height;
    int dy = std::max(br_new.y - dst_roi_.br().y, 0);
    int dx = std::max(br_new.x - dst_roi_.br().x, 0);
    tl_new.x -= dx; br_new.x -= dx;
    tl_new.y -= dy; br_new.y -= dy;

    int top = tl.y - tl_new.y;
    int left = tl.x - tl_new.x;
    int bottom = br_new.y - tl.y - img.rows;
    int right = br_new.x - tl.x - img.cols;

    // Create the source image Laplacian pyramid
    Mat img_with_border;
    copyMakeBorder(img, img_with_border, top, bottom, left, right,
                   BORDER_REFLECT);
    std::vector<Mat> src_pyr_laplace;
    if (can_use_gpu_ && img_with_border.depth() == CV_16S)
        createLaplacePyrGpu(img_with_border, num_bands_, src_pyr_laplace);
    else
        createLaplacePyr(img_with_border, num_bands_, src_pyr_laplace);

    // Create the weight map Gaussian pyramid
    Mat weight_map;
    std::vector<Mat> weight_pyr_gauss(num_bands_ + 1);

    if(weight_type_ == CV_32F)
    {
        mask.convertTo(weight_map, CV_32F, 1./255.);
    }
    else// weight_type_ == CV_16S
    {
        mask.convertTo(weight_map, CV_16S);
        add(weight_map, 1, weight_map, mask != 0);
    }

    copyMakeBorder(weight_map, weight_pyr_gauss[0], top, bottom, left, right, BORDER_CONSTANT);

    for (int i = 0; i < num_bands_; ++i)
        pyrDown(weight_pyr_gauss[i], weight_pyr_gauss[i + 1]);

    int y_tl = tl_new.y - dst_roi_.y;
    int y_br = br_new.y - dst_roi_.y;
    int x_tl = tl_new.x - dst_roi_.x;
    int x_br = br_new.x - dst_roi_.x;

    // Add weighted layer of the source image to the final Laplacian pyramid layer
    if(weight_type_ == CV_32F)
    {
        for (int i = 0; i <= num_bands_; ++i)
        {
            for (int y = y_tl; y < y_br; ++y)
            {
                int y_ = y - y_tl;
                const Point3_<short>* src_row = src_pyr_laplace[i].ptr<Point3_<short> >(y_);
                Point3_<short>* dst_row = dst_pyr_laplace_[i].ptr<Point3_<short> >(y);
                const float* weight_row = weight_pyr_gauss[i].ptr<float>(y_);
                float* dst_weight_row = dst_band_weights_[i].ptr<float>(y);

                for (int x = x_tl; x < x_br; ++x)
                {
                    int x_ = x - x_tl;
                    dst_row[x].x += static_cast<short>(src_row[x_].x * weight_row[x_]);
                    dst_row[x].y += static_cast<short>(src_row[x_].y * weight_row[x_]);
                    dst_row[x].z += static_cast<short>(src_row[x_].z * weight_row[x_]);
                    dst_weight_row[x] += weight_row[x_];
                }
            }
            x_tl /= 2; y_tl /= 2;
            x_br /= 2; y_br /= 2;
        }
    }
    else// weight_type_ == CV_16S
    {
        for (int i = 0; i <= num_bands_; ++i)
        {
            for (int y = y_tl; y < y_br; ++y)
            {
                int y_ = y - y_tl;
                const Point3_<short>* src_row = src_pyr_laplace[i].ptr<Point3_<short> >(y_);
                Point3_<short>* dst_row = dst_pyr_laplace_[i].ptr<Point3_<short> >(y);
                const short* weight_row = weight_pyr_gauss[i].ptr<short>(y_);
                short* dst_weight_row = dst_band_weights_[i].ptr<short>(y);

                for (int x = x_tl; x < x_br; ++x)
                {
                    int x_ = x - x_tl;
                    dst_row[x].x += short((src_row[x_].x * weight_row[x_]) >> 8);
                    dst_row[x].y += short((src_row[x_].y * weight_row[x_]) >> 8);
                    dst_row[x].z += short((src_row[x_].z * weight_row[x_]) >> 8);
                    dst_weight_row[x] += weight_row[x_];
                }
            }
            x_tl /= 2; y_tl /= 2;
            x_br /= 2; y_br /= 2;
        }
    }
}