/* * This is the inode flushing abort routine. It is called * from xfs_iflush when the filesystem is shutting down to clean * up the inode state. * It is responsible for removing the inode item * from the AIL if it has not been re-logged, and unlocking the inode's * flush lock. */ void xfs_iflush_abort( xfs_inode_t *ip) { xfs_inode_log_item_t *iip = ip->i_itemp; if (iip) { struct xfs_ail *ailp = iip->ili_item.li_ailp; if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { spin_lock(&ailp->xa_lock); if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { /* xfs_trans_ail_delete() drops the AIL lock. */ xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip); } else spin_unlock(&ailp->xa_lock); } iip->ili_logged = 0; /* * Clear the ili_last_fields bits now that we know that the * data corresponding to them is safely on disk. */ iip->ili_last_fields = 0; /* * Clear the inode logging fields so no more flushes are * attempted. */ iip->ili_format.ilf_fields = 0; } /* * Release the inode's flush lock since we're done with it. */ xfs_ifunlock(ip); }
/* * This is the inode flushing abort routine. It is called from xfs_iflush when * the filesystem is shutting down to clean up the inode state. It is * responsible for removing the inode item from the AIL if it has not been * re-logged, and unlocking the inode's flush lock. */ void xfs_iflush_abort( xfs_inode_t *ip, bool stale) { xfs_inode_log_item_t *iip = ip->i_itemp; if (iip) { if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { xfs_trans_ail_remove(&iip->ili_item, stale ? SHUTDOWN_LOG_IO_ERROR : SHUTDOWN_CORRUPT_INCORE); } iip->ili_logged = 0; /* * Clear the ili_last_fields bits now that we know that the * data corresponding to them is safely on disk. */ iip->ili_last_fields = 0; /* * Clear the inode logging fields so no more flushes are * attempted. */ iip->ili_fields = 0; iip->ili_fsync_fields = 0; } /* * Release the inode's flush lock since we're done with it. */ xfs_ifunlock(ip); }
STATIC int xfs_sync_inode_attr( struct xfs_inode *ip, struct xfs_perag *pag, int flags) { int error = 0; xfs_ilock(ip, XFS_ILOCK_SHARED); if (xfs_inode_clean(ip)) goto out_unlock; if (!xfs_iflock_nowait(ip)) { if (!(flags & SYNC_WAIT)) goto out_unlock; xfs_iflock(ip); } if (xfs_inode_clean(ip)) { xfs_ifunlock(ip); goto out_unlock; } error = xfs_iflush(ip, flags); out_unlock: xfs_iunlock(ip, XFS_ILOCK_SHARED); return error; }
STATIC int xfs_sync_inode_attr( struct xfs_inode *ip, struct xfs_perag *pag, int flags) { int error = 0; error = xfs_sync_inode_valid(ip, pag); if (error) return error; xfs_ilock(ip, XFS_ILOCK_SHARED); if (xfs_inode_clean(ip)) goto out_unlock; if (!xfs_iflock_nowait(ip)) { if (!(flags & SYNC_WAIT)) goto out_unlock; xfs_iflock(ip); } if (xfs_inode_clean(ip)) { xfs_ifunlock(ip); goto out_unlock; } error = xfs_iflush(ip, (flags & SYNC_WAIT) ? XFS_IFLUSH_SYNC : XFS_IFLUSH_DELWRI); out_unlock: xfs_iunlock(ip, XFS_ILOCK_SHARED); IRELE(ip); return error; }
void xfs_iflush_abort( xfs_inode_t *ip) { xfs_inode_log_item_t *iip = ip->i_itemp; if (iip) { struct xfs_ail *ailp = iip->ili_item.li_ailp; if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { spin_lock(&ailp->xa_lock); if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { /* */ xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip); } else spin_unlock(&ailp->xa_lock); } iip->ili_logged = 0; /* */ iip->ili_last_fields = 0; /* */ iip->ili_fields = 0; } /* */ xfs_ifunlock(ip); }
/* * This is called to attempt to lock the inode associated with this * inode log item, in preparation for the push routine which does the actual * iflush. Don't sleep on the inode lock or the flush lock. * * If the flush lock is already held, indicating that the inode has * been or is in the process of being flushed, then (ideally) we'd like to * see if the inode's buffer is still incore, and if so give it a nudge. * We delay doing so until the pushbuf routine, though, to avoid holding * the AIL lock across a call to the blackhole which is the buffer cache. * Also we don't want to sleep in any device strategy routines, which can happen * if we do the subsequent bawrite in here. */ STATIC uint xfs_inode_item_trylock( xfs_inode_log_item_t *iip) { register xfs_inode_t *ip; ip = iip->ili_inode; if (xfs_ipincount(ip) > 0) { return XFS_ITEM_PINNED; } if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { return XFS_ITEM_LOCKED; } if (!xfs_iflock_nowait(ip)) { /* * If someone else isn't already trying to push the inode * buffer, we get to do it. */ if (iip->ili_pushbuf_flag == 0) { iip->ili_pushbuf_flag = 1; #ifdef DEBUG iip->ili_push_owner = current_pid(); #endif /* * Inode is left locked in shared mode. * Pushbuf routine gets to unlock it. */ return XFS_ITEM_PUSHBUF; } else { /* * We hold the AIL lock, so we must specify the * NONOTIFY flag so that we won't double trip. */ xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); return XFS_ITEM_FLUSHING; } /* NOTREACHED */ } /* Stale items should force out the iclog */ if (ip->i_flags & XFS_ISTALE) { xfs_ifunlock(ip); xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); return XFS_ITEM_PINNED; } #ifdef DEBUG if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { ASSERT(iip->ili_format.ilf_fields != 0); ASSERT(iip->ili_logged == 0); ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL); } #endif return XFS_ITEM_SUCCESS; }
/*ARGSUSED*/ void xfs_iflush_done( xfs_buf_t *bp, xfs_inode_log_item_t *iip) { xfs_inode_t *ip; SPLDECL(s); ip = iip->ili_inode; /* * We only want to pull the item from the AIL if it is * actually there and its location in the log has not * changed since we started the flush. Thus, we only bother * if the ili_logged flag is set and the inode's lsn has not * changed. First we check the lsn outside * the lock since it's cheaper, and then we recheck while * holding the lock before removing the inode from the AIL. */ if (iip->ili_logged && (iip->ili_item.li_lsn == iip->ili_flush_lsn)) { AIL_LOCK(ip->i_mount, s); if (iip->ili_item.li_lsn == iip->ili_flush_lsn) { /* * xfs_trans_delete_ail() drops the AIL lock. */ xfs_trans_delete_ail(ip->i_mount, (xfs_log_item_t*)iip, s); } else { AIL_UNLOCK(ip->i_mount, s); } } iip->ili_logged = 0; /* * Clear the ili_last_fields bits now that we know that the * data corresponding to them is safely on disk. */ iip->ili_last_fields = 0; /* * Release the inode's flush lock since we're done with it. */ xfs_ifunlock(ip); return; }
/* * This is called to attempt to lock the inode associated with this * inode log item, in preparation for the push routine which does the actual * iflush. Don't sleep on the inode lock or the flush lock. * * If the flush lock is already held, indicating that the inode has * been or is in the process of being flushed, then (ideally) we'd like to * see if the inode's buffer is still incore, and if so give it a nudge. * We delay doing so until the pushbuf routine, though, to avoid holding * the AIL lock across a call to the blackhole which is the buffer cache. * Also we don't want to sleep in any device strategy routines, which can happen * if we do the subsequent bawrite in here. */ STATIC uint xfs_inode_item_trylock( struct xfs_log_item *lip) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; if (xfs_ipincount(ip) > 0) return XFS_ITEM_PINNED; if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) return XFS_ITEM_LOCKED; if (!xfs_iflock_nowait(ip)) { /* * inode has already been flushed to the backing buffer, * leave it locked in shared mode, pushbuf routine will * unlock it. */ return XFS_ITEM_PUSHBUF; } /* Stale items should force out the iclog */ if (ip->i_flags & XFS_ISTALE) { xfs_ifunlock(ip); /* * we hold the AIL lock - notify the unlock routine of this * so it doesn't try to get the lock again. */ xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); return XFS_ITEM_PINNED; } #ifdef DEBUG if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { ASSERT(iip->ili_format.ilf_fields != 0); ASSERT(iip->ili_logged == 0); ASSERT(lip->li_flags & XFS_LI_IN_AIL); } #endif return XFS_ITEM_SUCCESS; }
/* * This is the inode flushing abort routine. It is called * from xfs_iflush when the filesystem is shutting down to clean * up the inode state. * It is responsible for removing the inode item * from the AIL if it has not been re-logged, and unlocking the inode's * flush lock. */ void xfs_iflush_abort( xfs_inode_t *ip) { xfs_inode_log_item_t *iip; xfs_mount_t *mp; SPLDECL(s); iip = ip->i_itemp; mp = ip->i_mount; if (iip) { if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { AIL_LOCK(mp, s); if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { /* * xfs_trans_delete_ail() drops the AIL lock. */ xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip, s); } else AIL_UNLOCK(mp, s); } iip->ili_logged = 0; /* * Clear the ili_last_fields bits now that we know that the * data corresponding to them is safely on disk. */ iip->ili_last_fields = 0; /* * Clear the inode logging fields so no more flushes are * attempted. */ iip->ili_format.ilf_fields = 0; } /* * Release the inode's flush lock since we're done with it. */ xfs_ifunlock(ip); }
STATIC int xfs_sync_inode_attr( struct xfs_inode *ip, struct xfs_perag *pag, int flags) { int error = 0; xfs_ilock(ip, XFS_ILOCK_SHARED); if (xfs_inode_clean(ip)) goto out_unlock; if (!xfs_iflock_nowait(ip)) { if (!(flags & SYNC_WAIT)) goto out_unlock; xfs_iflock(ip); } if (xfs_inode_clean(ip)) { xfs_ifunlock(ip); goto out_unlock; } error = xfs_iflush(ip, flags); /* * We don't want to try again on non-blocking flushes that can't run * again immediately. If an inode really must be written, then that's * what the SYNC_WAIT flag is for. */ if (error == EAGAIN) { ASSERT(!(flags & SYNC_WAIT)); error = 0; } out_unlock: xfs_iunlock(ip, XFS_ILOCK_SHARED); return error; }
STATIC uint xfs_inode_item_trylock( struct xfs_log_item *lip) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; if (xfs_ipincount(ip) > 0) return XFS_ITEM_PINNED; if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) return XFS_ITEM_LOCKED; if (!xfs_iflock_nowait(ip)) { /* */ return XFS_ITEM_PUSHBUF; } /* */ if (ip->i_flags & XFS_ISTALE) { xfs_ifunlock(ip); xfs_iunlock(ip, XFS_ILOCK_SHARED); return XFS_ITEM_PINNED; } #ifdef DEBUG if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { ASSERT(iip->ili_fields != 0); ASSERT(iip->ili_logged == 0); ASSERT(lip->li_flags & XFS_LI_IN_AIL); } #endif return XFS_ITEM_SUCCESS; }
/* * This is the inode flushing I/O completion routine. It is called * from interrupt level when the buffer containing the inode is * flushed to disk. It is responsible for removing the inode item * from the AIL if it has not been re-logged, and unlocking the inode's * flush lock. * * To reduce AIL lock traffic as much as possible, we scan the buffer log item * list for other inodes that will run this function. We remove them from the * buffer list so we can process all the inode IO completions in one AIL lock * traversal. */ void xfs_iflush_done( struct xfs_buf *bp, struct xfs_log_item *lip) { struct xfs_inode_log_item *iip; struct xfs_log_item *blip; struct xfs_log_item *next; struct xfs_log_item *prev; struct xfs_ail *ailp = lip->li_ailp; int need_ail = 0; /* * Scan the buffer IO completions for other inodes being completed and * attach them to the current inode log item. */ blip = bp->b_fspriv; prev = NULL; while (blip != NULL) { if (lip->li_cb != xfs_iflush_done) { prev = blip; blip = blip->li_bio_list; continue; } /* remove from list */ next = blip->li_bio_list; if (!prev) { bp->b_fspriv = next; } else { prev->li_bio_list = next; } /* add to current list */ blip->li_bio_list = lip->li_bio_list; lip->li_bio_list = blip; /* * while we have the item, do the unlocked check for needing * the AIL lock. */ iip = INODE_ITEM(blip); if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) need_ail++; blip = next; } /* make sure we capture the state of the initial inode. */ iip = INODE_ITEM(lip); if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) need_ail++; /* * We only want to pull the item from the AIL if it is * actually there and its location in the log has not * changed since we started the flush. Thus, we only bother * if the ili_logged flag is set and the inode's lsn has not * changed. First we check the lsn outside * the lock since it's cheaper, and then we recheck while * holding the lock before removing the inode from the AIL. */ if (need_ail) { struct xfs_log_item *log_items[need_ail]; int i = 0; spin_lock(&ailp->xa_lock); for (blip = lip; blip; blip = blip->li_bio_list) { iip = INODE_ITEM(blip); if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) { log_items[i++] = blip; } ASSERT(i <= need_ail); } /* xfs_trans_ail_delete_bulk() drops the AIL lock. */ xfs_trans_ail_delete_bulk(ailp, log_items, i); } /* * clean up and unlock the flush lock now we are done. We can clear the * ili_last_fields bits now that we know that the data corresponding to * them is safely on disk. */ for (blip = lip; blip; blip = next) { next = blip->li_bio_list; blip->li_bio_list = NULL; iip = INODE_ITEM(blip); iip->ili_logged = 0; iip->ili_last_fields = 0; xfs_ifunlock(iip->ili_inode); } }
/* * Inodes in different states need to be treated differently, and the return * value of xfs_iflush is not sufficient to get this right. The following table * lists the inode states and the reclaim actions necessary for non-blocking * reclaim: * * * inode state iflush ret required action * --------------- ---------- --------------- * bad - reclaim * shutdown EIO unpin and reclaim * clean, unpinned 0 reclaim * stale, unpinned 0 reclaim * clean, pinned(*) 0 requeue * stale, pinned EAGAIN requeue * dirty, delwri ok 0 requeue * dirty, delwri blocked EAGAIN requeue * dirty, sync flush 0 reclaim * * (*) dgc: I don't think the clean, pinned state is possible but it gets * handled anyway given the order of checks implemented. * * As can be seen from the table, the return value of xfs_iflush() is not * sufficient to correctly decide the reclaim action here. The checks in * xfs_iflush() might look like duplicates, but they are not. * * Also, because we get the flush lock first, we know that any inode that has * been flushed delwri has had the flush completed by the time we check that * the inode is clean. The clean inode check needs to be done before flushing * the inode delwri otherwise we would loop forever requeuing clean inodes as * we cannot tell apart a successful delwri flush and a clean inode from the * return value of xfs_iflush(). * * Note that because the inode is flushed delayed write by background * writeback, the flush lock may already be held here and waiting on it can * result in very long latencies. Hence for sync reclaims, where we wait on the * flush lock, the caller should push out delayed write inodes first before * trying to reclaim them to minimise the amount of time spent waiting. For * background relaim, we just requeue the inode for the next pass. * * Hence the order of actions after gaining the locks should be: * bad => reclaim * shutdown => unpin and reclaim * pinned, delwri => requeue * pinned, sync => unpin * stale => reclaim * clean => reclaim * dirty, delwri => flush and requeue * dirty, sync => flush, wait and reclaim */ STATIC int xfs_reclaim_inode( struct xfs_inode *ip, struct xfs_perag *pag, int sync_mode) { int error; restart: error = 0; xfs_ilock(ip, XFS_ILOCK_EXCL); if (!xfs_iflock_nowait(ip)) { if (!(sync_mode & SYNC_WAIT)) goto out; /* * If we only have a single dirty inode in a cluster there is * a fair chance that the AIL push may have pushed it into * the buffer, but xfsbufd won't touch it until 30 seconds * from now, and thus we will lock up here. * * Promote the inode buffer to the front of the delwri list * and wake up xfsbufd now. */ xfs_promote_inode(ip); xfs_iflock(ip); } if (is_bad_inode(VFS_I(ip))) goto reclaim; if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { xfs_iunpin_wait(ip); goto reclaim; } if (xfs_ipincount(ip)) { if (!(sync_mode & SYNC_WAIT)) { xfs_ifunlock(ip); goto out; } xfs_iunpin_wait(ip); } if (xfs_iflags_test(ip, XFS_ISTALE)) goto reclaim; if (xfs_inode_clean(ip)) goto reclaim; /* * Now we have an inode that needs flushing. * * We do a nonblocking flush here even if we are doing a SYNC_WAIT * reclaim as we can deadlock with inode cluster removal. * xfs_ifree_cluster() can lock the inode buffer before it locks the * ip->i_lock, and we are doing the exact opposite here. As a result, * doing a blocking xfs_itobp() to get the cluster buffer will result * in an ABBA deadlock with xfs_ifree_cluster(). * * As xfs_ifree_cluser() must gather all inodes that are active in the * cache to mark them stale, if we hit this case we don't actually want * to do IO here - we want the inode marked stale so we can simply * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush, * just unlock the inode, back off and try again. Hopefully the next * pass through will see the stale flag set on the inode. */ error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode); if (sync_mode & SYNC_WAIT) { if (error == EAGAIN) { xfs_iunlock(ip, XFS_ILOCK_EXCL); /* backoff longer than in xfs_ifree_cluster */ delay(2); goto restart; } xfs_iflock(ip); goto reclaim; } /* * When we have to flush an inode but don't have SYNC_WAIT set, we * flush the inode out using a delwri buffer and wait for the next * call into reclaim to find it in a clean state instead of waiting for * it now. We also don't return errors here - if the error is transient * then the next reclaim pass will flush the inode, and if the error * is permanent then the next sync reclaim will reclaim the inode and * pass on the error. */ if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) { xfs_warn(ip->i_mount, "inode 0x%llx background reclaim flush failed with %d", (long long)ip->i_ino, error); } out: xfs_iflags_clear(ip, XFS_IRECLAIM); xfs_iunlock(ip, XFS_ILOCK_EXCL); /* * We could return EAGAIN here to make reclaim rescan the inode tree in * a short while. However, this just burns CPU time scanning the tree * waiting for IO to complete and xfssyncd never goes back to the idle * state. Instead, return 0 to let the next scheduled background reclaim * attempt to reclaim the inode again. */ return 0; reclaim: xfs_ifunlock(ip); xfs_iunlock(ip, XFS_ILOCK_EXCL); XFS_STATS_INC(xs_ig_reclaims); /* * Remove the inode from the per-AG radix tree. * * Because radix_tree_delete won't complain even if the item was never * added to the tree assert that it's been there before to catch * problems with the inode life time early on. */ spin_lock(&pag->pag_ici_lock); if (!radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) ASSERT(0); __xfs_inode_clear_reclaim(pag, ip); spin_unlock(&pag->pag_ici_lock); /* * Here we do an (almost) spurious inode lock in order to coordinate * with inode cache radix tree lookups. This is because the lookup * can reference the inodes in the cache without taking references. * * We make that OK here by ensuring that we wait until the inode is * unlocked after the lookup before we go ahead and free it. We get * both the ilock and the iolock because the code may need to drop the * ilock one but will still hold the iolock. */ xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); xfs_qm_dqdetach(ip); xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); xfs_inode_free(ip); return error; }
/* * Inodes in different states need to be treated differently. The following * table lists the inode states and the reclaim actions necessary: * * inode state iflush ret required action * --------------- ---------- --------------- * bad - reclaim * shutdown EIO unpin and reclaim * clean, unpinned 0 reclaim * stale, unpinned 0 reclaim * clean, pinned(*) 0 requeue * stale, pinned EAGAIN requeue * dirty, async - requeue * dirty, sync 0 reclaim * * (*) dgc: I don't think the clean, pinned state is possible but it gets * handled anyway given the order of checks implemented. * * Also, because we get the flush lock first, we know that any inode that has * been flushed delwri has had the flush completed by the time we check that * the inode is clean. * * Note that because the inode is flushed delayed write by AIL pushing, the * flush lock may already be held here and waiting on it can result in very * long latencies. Hence for sync reclaims, where we wait on the flush lock, * the caller should push the AIL first before trying to reclaim inodes to * minimise the amount of time spent waiting. For background relaim, we only * bother to reclaim clean inodes anyway. * * Hence the order of actions after gaining the locks should be: * bad => reclaim * shutdown => unpin and reclaim * pinned, async => requeue * pinned, sync => unpin * stale => reclaim * clean => reclaim * dirty, async => requeue * dirty, sync => flush, wait and reclaim */ STATIC int xfs_reclaim_inode( struct xfs_inode *ip, struct xfs_perag *pag, int sync_mode) { struct xfs_buf *bp = NULL; xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ int error; restart: error = 0; xfs_ilock(ip, XFS_ILOCK_EXCL); if (!xfs_iflock_nowait(ip)) { if (!(sync_mode & SYNC_WAIT)) goto out; xfs_iflock(ip); } if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { xfs_iunpin_wait(ip); /* xfs_iflush_abort() drops the flush lock */ xfs_iflush_abort(ip, false); goto reclaim; } if (xfs_ipincount(ip)) { if (!(sync_mode & SYNC_WAIT)) goto out_ifunlock; xfs_iunpin_wait(ip); } if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) { xfs_ifunlock(ip); goto reclaim; } /* * Never flush out dirty data during non-blocking reclaim, as it would * just contend with AIL pushing trying to do the same job. */ if (!(sync_mode & SYNC_WAIT)) goto out_ifunlock; /* * Now we have an inode that needs flushing. * * Note that xfs_iflush will never block on the inode buffer lock, as * xfs_ifree_cluster() can lock the inode buffer before it locks the * ip->i_lock, and we are doing the exact opposite here. As a result, * doing a blocking xfs_imap_to_bp() to get the cluster buffer would * result in an ABBA deadlock with xfs_ifree_cluster(). * * As xfs_ifree_cluser() must gather all inodes that are active in the * cache to mark them stale, if we hit this case we don't actually want * to do IO here - we want the inode marked stale so we can simply * reclaim it. Hence if we get an EAGAIN error here, just unlock the * inode, back off and try again. Hopefully the next pass through will * see the stale flag set on the inode. */ error = xfs_iflush(ip, &bp); if (error == -EAGAIN) { xfs_iunlock(ip, XFS_ILOCK_EXCL); /* backoff longer than in xfs_ifree_cluster */ delay(2); goto restart; } if (!error) { error = xfs_bwrite(bp); xfs_buf_relse(bp); } reclaim: ASSERT(!xfs_isiflocked(ip)); /* * Because we use RCU freeing we need to ensure the inode always appears * to be reclaimed with an invalid inode number when in the free state. * We do this as early as possible under the ILOCK so that * xfs_iflush_cluster() can be guaranteed to detect races with us here. * By doing this, we guarantee that once xfs_iflush_cluster has locked * XFS_ILOCK that it will see either a valid, flushable inode that will * serialise correctly, or it will see a clean (and invalid) inode that * it can skip. */ spin_lock(&ip->i_flags_lock); ip->i_flags = XFS_IRECLAIM; ip->i_ino = 0; spin_unlock(&ip->i_flags_lock); xfs_iunlock(ip, XFS_ILOCK_EXCL); XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); /* * Remove the inode from the per-AG radix tree. * * Because radix_tree_delete won't complain even if the item was never * added to the tree assert that it's been there before to catch * problems with the inode life time early on. */ spin_lock(&pag->pag_ici_lock); if (!radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(ip->i_mount, ino))) ASSERT(0); xfs_perag_clear_reclaim_tag(pag); spin_unlock(&pag->pag_ici_lock); /* * Here we do an (almost) spurious inode lock in order to coordinate * with inode cache radix tree lookups. This is because the lookup * can reference the inodes in the cache without taking references. * * We make that OK here by ensuring that we wait until the inode is * unlocked after the lookup before we go ahead and free it. */ xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_qm_dqdetach(ip); xfs_iunlock(ip, XFS_ILOCK_EXCL); __xfs_inode_free(ip); return error; out_ifunlock: xfs_ifunlock(ip); out: xfs_iflags_clear(ip, XFS_IRECLAIM); xfs_iunlock(ip, XFS_ILOCK_EXCL); /* * We could return -EAGAIN here to make reclaim rescan the inode tree in * a short while. However, this just burns CPU time scanning the tree * waiting for IO to complete and the reclaim work never goes back to * the idle state. Instead, return 0 to let the next scheduled * background reclaim attempt to reclaim the inode again. */ return 0; }
/* * xfs_unmount_flush implements a set of flush operation on special * inodes, which are needed as a separate set of operations so that * they can be called as part of relocation process. */ int xfs_unmount_flush( xfs_mount_t *mp, /* Mount structure we are getting rid of. */ int relocation) /* Called from vfs relocation. */ { xfs_inode_t *rip = mp->m_rootip; xfs_inode_t *rbmip; xfs_inode_t *rsumip = NULL; vnode_t *rvp = XFS_ITOV(rip); int error; xfs_ilock(rip, XFS_ILOCK_EXCL); xfs_iflock(rip); /* * Flush out the real time inodes. */ if ((rbmip = mp->m_rbmip) != NULL) { xfs_ilock(rbmip, XFS_ILOCK_EXCL); xfs_iflock(rbmip); error = xfs_iflush(rbmip, XFS_IFLUSH_SYNC); xfs_iunlock(rbmip, XFS_ILOCK_EXCL); if (error == EFSCORRUPTED) goto fscorrupt_out; ASSERT(vn_count(XFS_ITOV(rbmip)) == 1); rsumip = mp->m_rsumip; xfs_ilock(rsumip, XFS_ILOCK_EXCL); xfs_iflock(rsumip); error = xfs_iflush(rsumip, XFS_IFLUSH_SYNC); xfs_iunlock(rsumip, XFS_ILOCK_EXCL); if (error == EFSCORRUPTED) goto fscorrupt_out; ASSERT(vn_count(XFS_ITOV(rsumip)) == 1); } /* * Synchronously flush root inode to disk */ error = xfs_iflush(rip, XFS_IFLUSH_SYNC); if (error == EFSCORRUPTED) goto fscorrupt_out2; if (vn_count(rvp) != 1 && !relocation) { xfs_iunlock(rip, XFS_ILOCK_EXCL); return XFS_ERROR(EBUSY); } /* * Release dquot that rootinode, rbmino and rsumino might be holding, * flush and purge the quota inodes. */ error = XFS_QM_UNMOUNT(mp); if (error == EFSCORRUPTED) goto fscorrupt_out2; if (rbmip) { VN_RELE(XFS_ITOV(rbmip)); VN_RELE(XFS_ITOV(rsumip)); } xfs_iunlock(rip, XFS_ILOCK_EXCL); return 0; fscorrupt_out: xfs_ifunlock(rip); fscorrupt_out2: xfs_iunlock(rip, XFS_ILOCK_EXCL); return XFS_ERROR(EFSCORRUPTED); }
void xfs_iflush_done( struct xfs_buf *bp, struct xfs_log_item *lip) { struct xfs_inode_log_item *iip; struct xfs_log_item *blip; struct xfs_log_item *next; struct xfs_log_item *prev; struct xfs_ail *ailp = lip->li_ailp; int need_ail = 0; /* */ blip = bp->b_fspriv; prev = NULL; while (blip != NULL) { if (lip->li_cb != xfs_iflush_done) { prev = blip; blip = blip->li_bio_list; continue; } /* */ next = blip->li_bio_list; if (!prev) { bp->b_fspriv = next; } else { prev->li_bio_list = next; } /* */ blip->li_bio_list = lip->li_bio_list; lip->li_bio_list = blip; /* */ iip = INODE_ITEM(blip); if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) need_ail++; blip = next; } /* */ iip = INODE_ITEM(lip); if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) need_ail++; /* */ if (need_ail) { struct xfs_log_item *log_items[need_ail]; int i = 0; spin_lock(&ailp->xa_lock); for (blip = lip; blip; blip = blip->li_bio_list) { iip = INODE_ITEM(blip); if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) { log_items[i++] = blip; } ASSERT(i <= need_ail); } /* */ xfs_trans_ail_delete_bulk(ailp, log_items, i); } /* */ for (blip = lip; blip; blip = next) { next = blip->li_bio_list; blip->li_bio_list = NULL; iip = INODE_ITEM(blip); iip->ili_logged = 0; iip->ili_last_fields = 0; xfs_ifunlock(iip->ili_inode); } }
/* * xfs sync routine for internal use * * This routine supports all of the flags defined for the generic VFS_SYNC * interface as explained above under xfs_sync. In the interests of not * changing interfaces within the 6.5 family, additional internallly- * required functions are specified within a separate xflags parameter, * only available by calling this routine. * */ STATIC int xfs_sync_inodes( xfs_mount_t *mp, int flags, int xflags, int *bypassed) { xfs_inode_t *ip = NULL; xfs_inode_t *ip_next; xfs_buf_t *bp; vnode_t *vp = NULL; vmap_t vmap; int error; int last_error; uint64_t fflag; uint lock_flags; uint base_lock_flags; boolean_t mount_locked; boolean_t vnode_refed; int preempt; xfs_dinode_t *dip; xfs_iptr_t *ipointer; #ifdef DEBUG boolean_t ipointer_in = B_FALSE; #define IPOINTER_SET ipointer_in = B_TRUE #define IPOINTER_CLR ipointer_in = B_FALSE #else #define IPOINTER_SET #define IPOINTER_CLR #endif /* Insert a marker record into the inode list after inode ip. The list * must be locked when this is called. After the call the list will no * longer be locked. */ #define IPOINTER_INSERT(ip, mp) { \ ASSERT(ipointer_in == B_FALSE); \ ipointer->ip_mnext = ip->i_mnext; \ ipointer->ip_mprev = ip; \ ip->i_mnext = (xfs_inode_t *)ipointer; \ ipointer->ip_mnext->i_mprev = (xfs_inode_t *)ipointer; \ preempt = 0; \ XFS_MOUNT_IUNLOCK(mp); \ mount_locked = B_FALSE; \ IPOINTER_SET; \ } /* Remove the marker from the inode list. If the marker was the only item * in the list then there are no remaining inodes and we should zero out * the whole list. If we are the current head of the list then move the head * past us. */ #define IPOINTER_REMOVE(ip, mp) { \ ASSERT(ipointer_in == B_TRUE); \ if (ipointer->ip_mnext != (xfs_inode_t *)ipointer) { \ ip = ipointer->ip_mnext; \ ip->i_mprev = ipointer->ip_mprev; \ ipointer->ip_mprev->i_mnext = ip; \ if (mp->m_inodes == (xfs_inode_t *)ipointer) { \ mp->m_inodes = ip; \ } \ } else { \ ASSERT(mp->m_inodes == (xfs_inode_t *)ipointer); \ mp->m_inodes = NULL; \ ip = NULL; \ } \ IPOINTER_CLR; \ } #define XFS_PREEMPT_MASK 0x7f if (bypassed) *bypassed = 0; if (XFS_MTOVFS(mp)->vfs_flag & VFS_RDONLY) return 0; error = 0; last_error = 0; preempt = 0; /* Allocate a reference marker */ ipointer = (xfs_iptr_t *)kmem_zalloc(sizeof(xfs_iptr_t), KM_SLEEP); fflag = XFS_B_ASYNC; /* default is don't wait */ if (flags & SYNC_BDFLUSH) fflag = XFS_B_DELWRI; if (flags & SYNC_WAIT) fflag = 0; /* synchronous overrides all */ base_lock_flags = XFS_ILOCK_SHARED; if (flags & (SYNC_DELWRI | SYNC_CLOSE)) { /* * We need the I/O lock if we're going to call any of * the flush/inval routines. */ base_lock_flags |= XFS_IOLOCK_SHARED; } XFS_MOUNT_ILOCK(mp); ip = mp->m_inodes; mount_locked = B_TRUE; vnode_refed = B_FALSE; IPOINTER_CLR; do { ASSERT(ipointer_in == B_FALSE); ASSERT(vnode_refed == B_FALSE); lock_flags = base_lock_flags; /* * There were no inodes in the list, just break out * of the loop. */ if (ip == NULL) { break; } /* * We found another sync thread marker - skip it */ if (ip->i_mount == NULL) { ip = ip->i_mnext; continue; } vp = XFS_ITOV_NULL(ip); /* * If the vnode is gone then this is being torn down, * call reclaim if it is flushed, else let regular flush * code deal with it later in the loop. */ if (vp == NULL) { /* Skip ones already in reclaim */ if (ip->i_flags & XFS_IRECLAIM) { ip = ip->i_mnext; continue; } if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL) == 0) { ip = ip->i_mnext; } else if ((xfs_ipincount(ip) == 0) && xfs_iflock_nowait(ip)) { IPOINTER_INSERT(ip, mp); xfs_finish_reclaim(ip, 1, XFS_IFLUSH_DELWRI_ELSE_ASYNC); XFS_MOUNT_ILOCK(mp); mount_locked = B_TRUE; IPOINTER_REMOVE(ip, mp); } else { xfs_iunlock(ip, XFS_ILOCK_EXCL); ip = ip->i_mnext; } continue; } if (XFS_FORCED_SHUTDOWN(mp) && !(flags & SYNC_CLOSE)) { XFS_MOUNT_IUNLOCK(mp); kmem_free(ipointer, sizeof(xfs_iptr_t)); return 0; } /* * If this is just vfs_sync() or pflushd() calling * then we can skip inodes for which it looks like * there is nothing to do. Since we don't have the * inode locked this is racey, but these are periodic * calls so it doesn't matter. For the others we want * to know for sure, so we at least try to lock them. */ if (flags & SYNC_BDFLUSH) { if (((ip->i_itemp == NULL) || !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) && (ip->i_update_core == 0)) { ip = ip->i_mnext; continue; } } /* * Try to lock without sleeping. We're out of order with * the inode list lock here, so if we fail we need to drop * the mount lock and try again. If we're called from * bdflush() here, then don't bother. * * The inode lock here actually coordinates with the * almost spurious inode lock in xfs_ireclaim() to prevent * the vnode we handle here without a reference from * being freed while we reference it. If we lock the inode * while it's on the mount list here, then the spurious inode * lock in xfs_ireclaim() after the inode is pulled from * the mount list will sleep until we release it here. * This keeps the vnode from being freed while we reference * it. It is also cheaper and simpler than actually doing * a vn_get() for every inode we touch here. */ if (xfs_ilock_nowait(ip, lock_flags) == 0) { if ((flags & SYNC_BDFLUSH) || (vp == NULL)) { ip = ip->i_mnext; continue; } /* * We need to unlock the inode list lock in order * to lock the inode. Insert a marker record into * the inode list to remember our position, dropping * the lock is now done inside the IPOINTER_INSERT * macro. * * We also use the inode list lock to protect us * in taking a snapshot of the vnode version number * for use in calling vn_get(). */ VMAP(vp, vmap); IPOINTER_INSERT(ip, mp); vp = vn_get(vp, &vmap); if (vp == NULL) { /* * The vnode was reclaimed once we let go * of the inode list lock. Skip to the * next list entry. Remove the marker. */ XFS_MOUNT_ILOCK(mp); mount_locked = B_TRUE; vnode_refed = B_FALSE; IPOINTER_REMOVE(ip, mp); continue; } xfs_ilock(ip, lock_flags); ASSERT(vp == XFS_ITOV(ip)); ASSERT(ip->i_mount == mp); vnode_refed = B_TRUE; } /* From here on in the loop we may have a marker record * in the inode list. */ if ((flags & SYNC_CLOSE) && (vp != NULL)) { /* * This is the shutdown case. We just need to * flush and invalidate all the pages associated * with the inode. Drop the inode lock since * we can't hold it across calls to the buffer * cache. * * We don't set the VREMAPPING bit in the vnode * here, because we don't hold the vnode lock * exclusively. It doesn't really matter, though, * because we only come here when we're shutting * down anyway. */ xfs_iunlock(ip, XFS_ILOCK_SHARED); if (XFS_FORCED_SHUTDOWN(mp)) { VOP_TOSS_PAGES(vp, 0, -1, FI_REMAPF); } else { VOP_FLUSHINVAL_PAGES(vp, 0, -1, FI_REMAPF); } xfs_ilock(ip, XFS_ILOCK_SHARED); } else if ((flags & SYNC_DELWRI) && (vp != NULL)) { if (VN_DIRTY(vp)) { /* We need to have dropped the lock here, * so insert a marker if we have not already * done so. */ if (mount_locked) { IPOINTER_INSERT(ip, mp); } /* * Drop the inode lock since we can't hold it * across calls to the buffer cache. */ xfs_iunlock(ip, XFS_ILOCK_SHARED); VOP_FLUSH_PAGES(vp, (xfs_off_t)0, -1, fflag, FI_NONE, error); xfs_ilock(ip, XFS_ILOCK_SHARED); } } if (flags & SYNC_BDFLUSH) { if ((flags & SYNC_ATTR) && ((ip->i_update_core) || ((ip->i_itemp != NULL) && (ip->i_itemp->ili_format.ilf_fields != 0)))) { /* Insert marker and drop lock if not already * done. */ if (mount_locked) { IPOINTER_INSERT(ip, mp); } /* * We don't want the periodic flushing of the * inodes by vfs_sync() to interfere with * I/O to the file, especially read I/O * where it is only the access time stamp * that is being flushed out. To prevent * long periods where we have both inode * locks held shared here while reading the * inode's buffer in from disk, we drop the * inode lock while reading in the inode * buffer. We have to release the buffer * and reacquire the inode lock so that they * are acquired in the proper order (inode * locks first). The buffer will go at the * end of the lru chain, though, so we can * expect it to still be there when we go * for it again in xfs_iflush(). */ if ((xfs_ipincount(ip) == 0) && xfs_iflock_nowait(ip)) { xfs_ifunlock(ip); xfs_iunlock(ip, XFS_ILOCK_SHARED); error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0); if (!error) { xfs_buf_relse(bp); } else { /* Bailing out, remove the * marker and free it. */ XFS_MOUNT_ILOCK(mp); IPOINTER_REMOVE(ip, mp); XFS_MOUNT_IUNLOCK(mp); ASSERT(!(lock_flags & XFS_IOLOCK_SHARED)); kmem_free(ipointer, sizeof(xfs_iptr_t)); return (0); } /* * Since we dropped the inode lock, * the inode may have been reclaimed. * Therefore, we reacquire the mount * lock and check to see if we were the * inode reclaimed. If this happened * then the ipointer marker will no * longer point back at us. In this * case, move ip along to the inode * after the marker, remove the marker * and continue. */ XFS_MOUNT_ILOCK(mp); mount_locked = B_TRUE; if (ip != ipointer->ip_mprev) { IPOINTER_REMOVE(ip, mp); ASSERT(!vnode_refed); ASSERT(!(lock_flags & XFS_IOLOCK_SHARED)); continue; } ASSERT(ip->i_mount == mp); if (xfs_ilock_nowait(ip, XFS_ILOCK_SHARED) == 0) { ASSERT(ip->i_mount == mp); /* * We failed to reacquire * the inode lock without * sleeping, so just skip * the inode for now. We * clear the ILOCK bit from * the lock_flags so that we * won't try to drop a lock * we don't hold below. */ lock_flags &= ~XFS_ILOCK_SHARED; IPOINTER_REMOVE(ip_next, mp); } else if ((xfs_ipincount(ip) == 0) && xfs_iflock_nowait(ip)) { ASSERT(ip->i_mount == mp); /* * Since this is vfs_sync() * calling we only flush the * inode out if we can lock * it without sleeping and * it is not pinned. Drop * the mount lock here so * that we don't hold it for * too long. We already have * a marker in the list here. */ XFS_MOUNT_IUNLOCK(mp); mount_locked = B_FALSE; error = xfs_iflush(ip, XFS_IFLUSH_DELWRI); } else { ASSERT(ip->i_mount == mp); IPOINTER_REMOVE(ip_next, mp); } } } } else { if ((flags & SYNC_ATTR) && ((ip->i_update_core) || ((ip->i_itemp != NULL) && (ip->i_itemp->ili_format.ilf_fields != 0)))) { if (mount_locked) { IPOINTER_INSERT(ip, mp); } if (flags & SYNC_WAIT) { xfs_iflock(ip); error = xfs_iflush(ip, XFS_IFLUSH_SYNC); } else { /* * If we can't acquire the flush * lock, then the inode is already * being flushed so don't bother * waiting. If we can lock it then * do a delwri flush so we can * combine multiple inode flushes * in each disk write. */ if (xfs_iflock_nowait(ip)) { error = xfs_iflush(ip, XFS_IFLUSH_DELWRI); } else if (bypassed) (*bypassed)++; } } } if (lock_flags != 0) { xfs_iunlock(ip, lock_flags); } if (vnode_refed) { /* * If we had to take a reference on the vnode * above, then wait until after we've unlocked * the inode to release the reference. This is * because we can be already holding the inode * lock when VN_RELE() calls xfs_inactive(). * * Make sure to drop the mount lock before calling * VN_RELE() so that we don't trip over ourselves if * we have to go for the mount lock again in the * inactive code. */ if (mount_locked) { IPOINTER_INSERT(ip, mp); } VN_RELE(vp); vnode_refed = B_FALSE; } if (error) { last_error = error; } /* * bail out if the filesystem is corrupted. */ if (error == EFSCORRUPTED) { if (!mount_locked) { XFS_MOUNT_ILOCK(mp); IPOINTER_REMOVE(ip, mp); } XFS_MOUNT_IUNLOCK(mp); ASSERT(ipointer_in == B_FALSE); kmem_free(ipointer, sizeof(xfs_iptr_t)); return XFS_ERROR(error); } /* Let other threads have a chance at the mount lock * if we have looped many times without dropping the * lock. */ if ((++preempt & XFS_PREEMPT_MASK) == 0) { if (mount_locked) { IPOINTER_INSERT(ip, mp); } } if (mount_locked == B_FALSE) { XFS_MOUNT_ILOCK(mp); mount_locked = B_TRUE; IPOINTER_REMOVE(ip, mp); continue; } ASSERT(ipointer_in == B_FALSE); ip = ip->i_mnext; } while (ip != mp->m_inodes); XFS_MOUNT_IUNLOCK(mp); ASSERT(ipointer_in == B_FALSE); kmem_free(ipointer, sizeof(xfs_iptr_t)); return XFS_ERROR(last_error); }
STATIC int xfs_reclaim_inode( struct xfs_inode *ip, struct xfs_perag *pag, int sync_mode) { int error; restart: error = 0; xfs_ilock(ip, XFS_ILOCK_EXCL); if (!xfs_iflock_nowait(ip)) { if (!(sync_mode & SYNC_WAIT)) goto out; xfs_promote_inode(ip); xfs_iflock(ip); } if (is_bad_inode(VFS_I(ip))) goto reclaim; if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { xfs_iunpin_wait(ip); goto reclaim; } if (xfs_ipincount(ip)) { if (!(sync_mode & SYNC_WAIT)) { xfs_ifunlock(ip); goto out; } xfs_iunpin_wait(ip); } if (xfs_iflags_test(ip, XFS_ISTALE)) goto reclaim; if (xfs_inode_clean(ip)) goto reclaim; error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode); if (sync_mode & SYNC_WAIT) { if (error == EAGAIN) { xfs_iunlock(ip, XFS_ILOCK_EXCL); delay(2); goto restart; } xfs_iflock(ip); goto reclaim; } if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) { xfs_warn(ip->i_mount, "inode 0x%llx background reclaim flush failed with %d", (long long)ip->i_ino, error); } out: xfs_iflags_clear(ip, XFS_IRECLAIM); xfs_iunlock(ip, XFS_ILOCK_EXCL); return 0; reclaim: xfs_ifunlock(ip); xfs_iunlock(ip, XFS_ILOCK_EXCL); XFS_STATS_INC(xs_ig_reclaims); spin_lock(&pag->pag_ici_lock); if (!radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) ASSERT(0); __xfs_inode_clear_reclaim(pag, ip); spin_unlock(&pag->pag_ici_lock); xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_qm_dqdetach(ip); xfs_iunlock(ip, XFS_ILOCK_EXCL); xfs_inode_free(ip); return error; }
/* * Sync all the inodes in the given AG according to the * direction given by the flags. */ STATIC int xfs_sync_inodes_ag( xfs_mount_t *mp, int ag, int flags) { xfs_perag_t *pag = &mp->m_perag[ag]; int nr_found; uint32_t first_index = 0; int error = 0; int last_error = 0; int fflag = XFS_B_ASYNC; if (flags & SYNC_DELWRI) fflag = XFS_B_DELWRI; if (flags & SYNC_WAIT) fflag = 0; /* synchronous overrides all */ do { struct inode *inode; xfs_inode_t *ip = NULL; int lock_flags = XFS_ILOCK_SHARED; /* * use a gang lookup to find the next inode in the tree * as the tree is sparse and a gang lookup walks to find * the number of objects requested. */ read_lock(&pag->pag_ici_lock); nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)&ip, first_index, 1); if (!nr_found) { read_unlock(&pag->pag_ici_lock); break; } /* * Update the index for the next lookup. Catch overflows * into the next AG range which can occur if we have inodes * in the last block of the AG and we are currently * pointing to the last inode. */ first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) { read_unlock(&pag->pag_ici_lock); break; } /* nothing to sync during shutdown */ if (XFS_FORCED_SHUTDOWN(mp)) { read_unlock(&pag->pag_ici_lock); return 0; } /* * If we can't get a reference on the inode, it must be * in reclaim. Leave it for the reclaim code to flush. */ inode = VFS_I(ip); if (!igrab(inode)) { read_unlock(&pag->pag_ici_lock); continue; } read_unlock(&pag->pag_ici_lock); /* avoid new or bad inodes */ if (is_bad_inode(inode) || xfs_iflags_test(ip, XFS_INEW)) { IRELE(ip); continue; } /* * If we have to flush data or wait for I/O completion * we need to hold the iolock. */ if ((flags & SYNC_DELWRI) && VN_DIRTY(inode)) { xfs_ilock(ip, XFS_IOLOCK_SHARED); lock_flags |= XFS_IOLOCK_SHARED; error = xfs_flush_pages(ip, 0, -1, fflag, FI_NONE); if (flags & SYNC_IOWAIT) xfs_ioend_wait(ip); } xfs_ilock(ip, XFS_ILOCK_SHARED); if ((flags & SYNC_ATTR) && !xfs_inode_clean(ip)) { if (flags & SYNC_WAIT) { xfs_iflock(ip); if (!xfs_inode_clean(ip)) error = xfs_iflush(ip, XFS_IFLUSH_SYNC); else xfs_ifunlock(ip); } else if (xfs_iflock_nowait(ip)) { if (!xfs_inode_clean(ip)) error = xfs_iflush(ip, XFS_IFLUSH_DELWRI); else xfs_ifunlock(ip); } } xfs_iput(ip, lock_flags); if (error) last_error = error; /* * bail out if the filesystem is corrupted. */ if (error == EFSCORRUPTED) return XFS_ERROR(error); } while (nr_found); return last_error; }