Beispiel #1
0
STATIC int
xfs_sync_fsdata(
	struct xfs_mount	*mp)
{
	struct xfs_buf		*bp;
	int			error;

	/*
	 * If the buffer is pinned then push on the log so we won't get stuck
	 * waiting in the write for someone, maybe ourselves, to flush the log.
	 *
	 * Even though we just pushed the log above, we did not have the
	 * superblock buffer locked at that point so it can become pinned in
	 * between there and here.
	 */
	bp = xfs_getsb(mp, 0);
	if (xfs_buf_ispinned(bp))
		xfs_log_force(mp, 0);
	error = xfs_bwrite(bp);
	xfs_buf_relse(bp);
	return error;
}
STATIC void
xfs_sync_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_sync_work);
	int		error;

	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
		
		if (mp->m_super->s_frozen == SB_UNFROZEN &&
		    xfs_log_need_covered(mp))
			error = xfs_fs_log_dummy(mp);
		else
			xfs_log_force(mp, 0);

		
		xfs_ail_push_all(mp->m_ail);
	}

	
	xfs_syncd_queue_sync(mp);
}
/*
 * This is called to wait for the given dquot to be unpinned.
 * Most of these pin/unpin routines are plagiarized from inode code.
 */
void
xfs_qm_dqunpin_wait(
	xfs_dquot_t	*dqp)
{
	SPLDECL(s);

	ASSERT(XFS_DQ_IS_LOCKED(dqp));
	if (dqp->q_pincount == 0) {
		return;
	}

	/*
	 * Give the log a push so we don't wait here too long.
	 */
	xfs_log_force(dqp->q_mount, (xfs_lsn_t)0, XFS_LOG_FORCE);
	s = XFS_DQ_PINLOCK(dqp);
	if (dqp->q_pincount == 0) {
		XFS_DQ_PINUNLOCK(dqp, s);
		return;
	}
	sv_wait(&(dqp->q_pinwait), PINOD,
		&(XFS_DQ_TO_QINF(dqp)->qi_pinlock), s);
}
STATIC int
xfs_commit_dummy_trans(
	struct xfs_mount	*mp,
	uint			flags)
{
	struct xfs_inode	*ip = mp->m_rootip;
	struct xfs_trans	*tp;
	int			error;
	int			log_flags = XFS_LOG_FORCE;

	if (flags & SYNC_WAIT)
		log_flags |= XFS_LOG_SYNC;

	/*
	 * Put a dummy transaction in the log to tell recovery
	 * that all others are OK.
	 */
	tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
	error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
	if (error) {
		xfs_trans_cancel(tp, 0);
		return error;
	}

	xfs_ilock(ip, XFS_ILOCK_EXCL);

	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
	xfs_trans_ihold(tp, ip);
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	error = xfs_trans_commit(tp, 0);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

	/* the log force ensures this transaction is pushed to disk */
	xfs_log_force(mp, 0, log_flags);
	return error;
}
/*
 * Every sync period we need to unpin all items, reclaim inodes and sync
 * disk quotas.  We might need to cover the log to indicate that the
 * filesystem is idle and not frozen.
 */
STATIC void
xfs_sync_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_sync_work);
	int		error;

	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
		/* dgc: errors ignored here */
		if (mp->m_super->s_frozen == SB_UNFROZEN &&
		    xfs_log_need_covered(mp))
			error = xfs_fs_log_dummy(mp);
		else
			xfs_log_force(mp, 0);
		error = xfs_qm_sync(mp, SYNC_TRYLOCK);

		/* start pushing all the metadata that is currently dirty */
		xfs_ail_push_all(mp->m_ail);
	}

	/* queue us up again */
	xfs_syncd_queue_sync(mp);
}
/* PRIVATE, debugging */
int
xfs_qm_internalqcheck(
	xfs_mount_t	*mp)
{
	xfs_ino_t	lastino;
	int		done, count;
	int		i;
	xfs_dqtest_t	*d, *e;
	xfs_dqhash_t	*h1;
	int		error;

	lastino = 0;
	qmtest_hashmask = 32;
	count = 5;
	done = 0;
	qmtest_nfails = 0;

	if (! XFS_IS_QUOTA_ON(mp))
		return XFS_ERROR(ESRCH);

	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
	XFS_bflush(mp->m_ddev_targp);
	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
	XFS_bflush(mp->m_ddev_targp);

	mutex_lock(&qcheck_lock);
	/* There should be absolutely no quota activity while this
	   is going on. */
	qmtest_udqtab = kmem_zalloc(qmtest_hashmask *
				    sizeof(xfs_dqhash_t), KM_SLEEP);
	qmtest_gdqtab = kmem_zalloc(qmtest_hashmask *
				    sizeof(xfs_dqhash_t), KM_SLEEP);
	do {
		/*
		 * Iterate thru all the inodes in the file system,
		 * adjusting the corresponding dquot counters
		 */
		if ((error = xfs_bulkstat(mp, &lastino, &count,
				 xfs_qm_internalqcheck_adjust, NULL,
				 0, NULL, BULKSTAT_FG_IGET, &done))) {
			break;
		}
	} while (! done);
	if (error) {
		cmn_err(CE_DEBUG, "Bulkstat returned error 0x%x", error);
	}
	cmn_err(CE_DEBUG, "Checking results against system dquots");
	for (i = 0; i < qmtest_hashmask; i++) {
		h1 = &qmtest_udqtab[i];
		for (d = (xfs_dqtest_t *) h1->qh_next; d != NULL; ) {
			xfs_dqtest_cmp(d);
			e = (xfs_dqtest_t *) d->HL_NEXT;
			kmem_free(d, sizeof(xfs_dqtest_t));
			d = e;
		}
		h1 = &qmtest_gdqtab[i];
		for (d = (xfs_dqtest_t *) h1->qh_next; d != NULL; ) {
			xfs_dqtest_cmp(d);
			e = (xfs_dqtest_t *) d->HL_NEXT;
			kmem_free(d, sizeof(xfs_dqtest_t));
			d = e;
		}
	}

	if (qmtest_nfails) {
		cmn_err(CE_DEBUG, "******** quotacheck failed  ********");
		cmn_err(CE_DEBUG, "failures = %d", qmtest_nfails);
	} else {
		cmn_err(CE_DEBUG, "******** quotacheck successful! ********");
	}
	kmem_free(qmtest_udqtab, qmtest_hashmask * sizeof(xfs_dqhash_t));
	kmem_free(qmtest_gdqtab, qmtest_hashmask * sizeof(xfs_dqhash_t));
	mutex_unlock(&qcheck_lock);
	return (qmtest_nfails);
}
Beispiel #7
0
ssize_t				/* bytes written, or (-) error */
xfs_write(
	bhv_desc_t      *bdp,
	struct file	*file,
	const char	*buf,
	size_t		size,
	loff_t		*offset,
	int		ioflags,
	cred_t          *credp)
{
	xfs_inode_t	*xip;
	xfs_mount_t	*mp;
	ssize_t		ret;
	int		error = 0;
	xfs_fsize_t     isize, new_size;
	xfs_fsize_t	n, limit;
	xfs_iocore_t    *io;
	vnode_t		*vp;
	int		iolock;
	int		eventsent = 0;
	vrwlock_t	locktype;

	XFS_STATS_INC(xs_write_calls);

	vp = BHV_TO_VNODE(bdp);
	xip = XFS_BHVTOI(bdp);

	if (size == 0)
		return 0;

	io = &xip->i_iocore;
	mp = io->io_mount;

	fs_check_frozen(vp->v_vfsp, SB_FREEZE_WRITE);

	if (XFS_FORCED_SHUTDOWN(xip->i_mount)) {
		return -EIO;
	}

	if (unlikely(ioflags & IO_ISDIRECT)) {
		if (((__psint_t)buf & BBMASK) ||
		    (*offset & mp->m_blockmask) ||
		    (size  & mp->m_blockmask)) {
			return XFS_ERROR(-EINVAL);
		}
		iolock = XFS_IOLOCK_SHARED;
		locktype = VRWLOCK_WRITE_DIRECT;
	} else {
		iolock = XFS_IOLOCK_EXCL;
		locktype = VRWLOCK_WRITE;
	}

	if (ioflags & IO_ISLOCKED)
		iolock = 0;

	xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);

	isize = xip->i_d.di_size;
	limit = XFS_MAXIOFFSET(mp);

	if (file->f_flags & O_APPEND)
		*offset = isize;

start:
	n = limit - *offset;
	if (n <= 0) {
		xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
		return -EFBIG;
	}
	if (n < size)
		size = n;

	new_size = *offset + size;
	if (new_size > isize) {
		io->io_new_size = new_size;
	}

	if ((DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_WRITE) &&
	    !(ioflags & IO_INVIS) && !eventsent)) {
		loff_t		savedsize = *offset;
		int dmflags = FILP_DELAY_FLAG(file) | DM_SEM_FLAG_RD(ioflags);

		xfs_iunlock(xip, XFS_ILOCK_EXCL);
		error = XFS_SEND_DATA(xip->i_mount, DM_EVENT_WRITE, vp,
				      *offset, size,
				      dmflags, &locktype);
		if (error) {
			if (iolock) xfs_iunlock(xip, iolock);
			return -error;
		}
		xfs_ilock(xip, XFS_ILOCK_EXCL);
		eventsent = 1;

		/*
		 * The iolock was dropped and reaquired in XFS_SEND_DATA
		 * so we have to recheck the size when appending.
		 * We will only "goto start;" once, since having sent the
		 * event prevents another call to XFS_SEND_DATA, which is
		 * what allows the size to change in the first place.
		 */
		if ((file->f_flags & O_APPEND) &&
		    savedsize != xip->i_d.di_size) {
			*offset = isize = xip->i_d.di_size;
			goto start;
		}
	}

	/*
	 * If the offset is beyond the size of the file, we have a couple
	 * of things to do. First, if there is already space allocated
	 * we need to either create holes or zero the disk or ...
	 *
	 * If there is a page where the previous size lands, we need
	 * to zero it out up to the new size.
	 */

	if (!(ioflags & IO_ISDIRECT) && (*offset > isize && isize)) {
		error = xfs_zero_eof(BHV_TO_VNODE(bdp), io, *offset,
			isize, *offset + size);
		if (error) {
			xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
			return(-error);
		}
	}
	xfs_iunlock(xip, XFS_ILOCK_EXCL);

	/*
	 * If we're writing the file then make sure to clear the
	 * setuid and setgid bits if the process is not being run
	 * by root.  This keeps people from modifying setuid and
	 * setgid binaries.
	 */

	if (((xip->i_d.di_mode & S_ISUID) ||
	    ((xip->i_d.di_mode & (S_ISGID | S_IXGRP)) ==
		(S_ISGID | S_IXGRP))) &&
	     !capable(CAP_FSETID)) {
		error = xfs_write_clear_setuid(xip);
		if (error) {
			xfs_iunlock(xip, iolock);
			return -error;
		}
	}


	if ((ssize_t) size < 0) {
		ret = -EINVAL;
		goto error;
	}

	if (!access_ok(VERIFY_READ, buf, size)) {
		ret = -EINVAL;
		goto error;
	}

retry:
	if (unlikely(ioflags & IO_ISDIRECT)) {
		xfs_inval_cached_pages(vp, io, *offset, 1, 1);
		xfs_rw_enter_trace(XFS_DIOWR_ENTER,
					io, buf, size, *offset, ioflags);
		ret = do_generic_direct_write(file, buf, size, offset);
	} else {
		xfs_rw_enter_trace(XFS_WRITE_ENTER,
					io, buf, size, *offset, ioflags);
		ret = do_generic_file_write(file, buf, size, offset);
	}

	if (unlikely(ioflags & IO_INVIS)) {
		/* generic_file_write updates the mtime/ctime but we need
		 * to undo that because this I/O was supposed to be
		 * invisible.
		 */
		struct inode	*inode = LINVFS_GET_IP(vp);
		inode->i_mtime = xip->i_d.di_mtime.t_sec;
		inode->i_ctime = xip->i_d.di_ctime.t_sec;
	} else {
		xfs_ichgtime(xip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	}

	if ((ret == -ENOSPC) &&
	    DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_NOSPACE) &&
	    !(ioflags & IO_INVIS)) {

		xfs_rwunlock(bdp, locktype);
		error = XFS_SEND_NAMESP(xip->i_mount, DM_EVENT_NOSPACE, vp,
				DM_RIGHT_NULL, vp, DM_RIGHT_NULL, NULL, NULL,
				0, 0, 0); /* Delay flag intentionally  unused */
		if (error)
			return -error;
		xfs_rwlock(bdp, locktype);
		*offset = xip->i_d.di_size;
		goto retry;
	}

error:
	if (ret <= 0) {
		if (iolock)
			xfs_rwunlock(bdp, locktype);
		return ret;
	}

	XFS_STATS_ADD(xs_write_bytes, ret);

	if (*offset > xip->i_d.di_size) {
		xfs_ilock(xip, XFS_ILOCK_EXCL);
		if (*offset > xip->i_d.di_size) {
			struct inode	*inode = LINVFS_GET_IP(vp);

			xip->i_d.di_size = *offset;
			i_size_write(inode, *offset);
			xip->i_update_core = 1;
			xip->i_update_size = 1;
			mark_inode_dirty_sync(inode);
		}
		xfs_iunlock(xip, XFS_ILOCK_EXCL);
	}

	/* Handle various SYNC-type writes */
	if ((file->f_flags & O_SYNC) || IS_SYNC(file->f_dentry->d_inode)) {

		/*
		 * If we're treating this as O_DSYNC and we have not updated the
		 * size, force the log.
		 */

		if (!(mp->m_flags & XFS_MOUNT_OSYNCISOSYNC)
			&& !(xip->i_update_size)) {
			/*
			 * If an allocation transaction occurred
			 * without extending the size, then we have to force
			 * the log up the proper point to ensure that the
			 * allocation is permanent.  We can't count on
			 * the fact that buffered writes lock out direct I/O
			 * writes - the direct I/O write could have extended
			 * the size nontransactionally, then finished before
			 * we started.  xfs_write_file will think that the file
			 * didn't grow but the update isn't safe unless the
			 * size change is logged.
			 *
			 * Force the log if we've committed a transaction
			 * against the inode or if someone else has and
			 * the commit record hasn't gone to disk (e.g.
			 * the inode is pinned).  This guarantees that
			 * all changes affecting the inode are permanent
			 * when we return.
			 */

			xfs_inode_log_item_t *iip;
			xfs_lsn_t lsn;

			iip = xip->i_itemp;
			if (iip && iip->ili_last_lsn) {
				lsn = iip->ili_last_lsn;
				xfs_log_force(mp, lsn,
						XFS_LOG_FORCE | XFS_LOG_SYNC);
			} else if (xfs_ipincount(xip) > 0) {
				xfs_log_force(mp, (xfs_lsn_t)0,
						XFS_LOG_FORCE | XFS_LOG_SYNC);
			}

		} else {
			xfs_trans_t	*tp;

			/*
			 * O_SYNC or O_DSYNC _with_ a size update are handled
			 * the same way.
			 *
			 * If the write was synchronous then we need to make
			 * sure that the inode modification time is permanent.
			 * We'll have updated the timestamp above, so here
			 * we use a synchronous transaction to log the inode.
			 * It's not fast, but it's necessary.
			 *
			 * If this a dsync write and the size got changed
			 * non-transactionally, then we need to ensure that
			 * the size change gets logged in a synchronous
			 * transaction.
			 */

			tp = xfs_trans_alloc(mp, XFS_TRANS_WRITE_SYNC);
			if ((error = xfs_trans_reserve(tp, 0,
						      XFS_SWRITE_LOG_RES(mp),
						      0, 0, 0))) {
				/* Transaction reserve failed */
				xfs_trans_cancel(tp, 0);
			} else {
				/* Transaction reserve successful */
				xfs_ilock(xip, XFS_ILOCK_EXCL);
				xfs_trans_ijoin(tp, xip, XFS_ILOCK_EXCL);
				xfs_trans_ihold(tp, xip);
				xfs_trans_log_inode(tp, xip, XFS_ILOG_CORE);
				xfs_trans_set_sync(tp);
				error = xfs_trans_commit(tp, 0, NULL);
				xfs_iunlock(xip, XFS_ILOCK_EXCL);
			}
		}
	} /* (ioflags & O_SYNC) */

	/*
	 * If we are coming from an nfsd thread then insert into the
	 * reference cache.
	 */

	if (!strcmp(current->comm, "nfsd"))
		xfs_refcache_insert(xip);

	/* Drop lock this way - the old refcache release is in here */
	if (iolock)
		xfs_rwunlock(bdp, locktype);

	return(ret);
}
/*
 * Write a modified dquot to disk.
 * The dquot must be locked and the flush lock too taken by caller.
 * The flush lock will not be unlocked until the dquot reaches the disk,
 * but the dquot is free to be unlocked and modified by the caller
 * in the interim. Dquot is still locked on return. This behavior is
 * identical to that of inodes.
 */
int
xfs_qm_dqflush(
	xfs_dquot_t		*dqp,
	uint			flags)
{
	xfs_mount_t		*mp;
	xfs_buf_t		*bp;
	xfs_disk_dquot_t	*ddqp;
	int			error;
	SPLDECL(s);

	ASSERT(XFS_DQ_IS_LOCKED(dqp));
	ASSERT(XFS_DQ_IS_FLUSH_LOCKED(dqp));
	xfs_dqtrace_entry(dqp, "DQFLUSH");

	/*
	 * If not dirty, nada.
	 */
	if (!XFS_DQ_IS_DIRTY(dqp)) {
		xfs_dqfunlock(dqp);
		return (0);
	}

	/*
	 * Cant flush a pinned dquot. Wait for it.
	 */
	xfs_qm_dqunpin_wait(dqp);

	/*
	 * This may have been unpinned because the filesystem is shutting
	 * down forcibly. If that's the case we must not write this dquot
	 * to disk, because the log record didn't make it to disk!
	 */
	if (XFS_FORCED_SHUTDOWN(dqp->q_mount)) {
		dqp->dq_flags &= ~(XFS_DQ_DIRTY);
		xfs_dqfunlock(dqp);
		return XFS_ERROR(EIO);
	}

	/*
	 * Get the buffer containing the on-disk dquot
	 * We don't need a transaction envelope because we know that the
	 * the ondisk-dquot has already been allocated for.
	 */
	if ((error = xfs_qm_dqtobp(NULL, dqp, &ddqp, &bp, XFS_QMOPT_DOWARN))) {
		xfs_dqtrace_entry(dqp, "DQTOBP FAIL");
		ASSERT(error != ENOENT);
		/*
		 * Quotas could have gotten turned off (ESRCH)
		 */
		xfs_dqfunlock(dqp);
		return (error);
	}

	if (xfs_qm_dqcheck(&dqp->q_core, be32_to_cpu(ddqp->d_id),
			   0, XFS_QMOPT_DOWARN, "dqflush (incore copy)")) {
		xfs_force_shutdown(dqp->q_mount, XFS_CORRUPT_INCORE);
		return XFS_ERROR(EIO);
	}

	/* This is the only portion of data that needs to persist */
	memcpy(ddqp, &(dqp->q_core), sizeof(xfs_disk_dquot_t));

	/*
	 * Clear the dirty field and remember the flush lsn for later use.
	 */
	dqp->dq_flags &= ~(XFS_DQ_DIRTY);
	mp = dqp->q_mount;

	/* lsn is 64 bits */
	AIL_LOCK(mp, s);
	dqp->q_logitem.qli_flush_lsn = dqp->q_logitem.qli_item.li_lsn;
	AIL_UNLOCK(mp, s);

	/*
	 * Attach an iodone routine so that we can remove this dquot from the
	 * AIL and release the flush lock once the dquot is synced to disk.
	 */
	xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t *, xfs_log_item_t *))
			      xfs_qm_dqflush_done, &(dqp->q_logitem.qli_item));
	/*
	 * If the buffer is pinned then push on the log so we won't
	 * get stuck waiting in the write for too long.
	 */
	if (XFS_BUF_ISPINNED(bp)) {
		xfs_dqtrace_entry(dqp, "DQFLUSH LOG FORCE");
		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
	}

	if (flags & XFS_QMOPT_DELWRI) {
		xfs_bdwrite(mp, bp);
	} else if (flags & XFS_QMOPT_ASYNC) {
		xfs_bawrite(mp, bp);
	} else {
		error = xfs_bwrite(mp, bp);
	}
	xfs_dqtrace_entry(dqp, "DQFLUSH END");
	/*
	 * dqp is still locked, but caller is free to unlock it now.
	 */
	return (error);

}
Beispiel #9
0
/*
 * This is called when IOP_TRYLOCK returns XFS_ITEM_PUSHBUF to indicate that
 * the dquot is locked by us, but the flush lock isn't. So, here we are
 * going to see if the relevant dquot buffer is incore, waiting on DELWRI.
 * If so, we want to push it out to help us take this item off the AIL as soon
 * as possible.
 *
 * We must not be holding the AIL lock at this point. Calling incore() to
 * search the buffer cache can be a time consuming thing, and AIL lock is a
 * spinlock.
 */
STATIC void
xfs_qm_dquot_logitem_pushbuf(
	xfs_dq_logitem_t    *qip)
{
	xfs_dquot_t	*dqp;
	xfs_mount_t	*mp;
	xfs_buf_t	*bp;
	uint		dopush;

	dqp = qip->qli_dquot;
	ASSERT(XFS_DQ_IS_LOCKED(dqp));

	/*
	 * The qli_pushbuf_flag keeps others from
	 * trying to duplicate our effort.
	 */
	ASSERT(qip->qli_pushbuf_flag != 0);
	ASSERT(qip->qli_push_owner == current_pid());

	/*
	 * If flushlock isn't locked anymore, chances are that the
	 * inode flush completed and the inode was taken off the AIL.
	 * So, just get out.
	 */
	if (!issemalocked(&(dqp->q_flock))  ||
	    ((qip->qli_item.li_flags & XFS_LI_IN_AIL) == 0)) {
		qip->qli_pushbuf_flag = 0;
		xfs_dqunlock(dqp);
		return;
	}
	mp = dqp->q_mount;
	bp = xfs_incore(mp->m_ddev_targp, qip->qli_format.qlf_blkno,
		    XFS_QI_DQCHUNKLEN(mp),
		    XFS_INCORE_TRYLOCK);
	if (bp != NULL) {
		if (XFS_BUF_ISDELAYWRITE(bp)) {
			dopush = ((qip->qli_item.li_flags & XFS_LI_IN_AIL) &&
				  issemalocked(&(dqp->q_flock)));
			qip->qli_pushbuf_flag = 0;
			xfs_dqunlock(dqp);

			if (XFS_BUF_ISPINNED(bp)) {
				xfs_log_force(mp, (xfs_lsn_t)0,
					      XFS_LOG_FORCE);
			}
			if (dopush) {
				int	error;
#ifdef XFSRACEDEBUG
				delay_for_intr();
				delay(300);
#endif
				error = xfs_bawrite(mp, bp);
				if (error)
					xfs_fs_cmn_err(CE_WARN, mp,
	"xfs_qm_dquot_logitem_pushbuf: pushbuf error %d on qip %p, bp %p",
							error, qip, bp);
			} else {
				xfs_buf_relse(bp);
			}
		} else {
			qip->qli_pushbuf_flag = 0;
			xfs_dqunlock(dqp);
			xfs_buf_relse(bp);
		}
		return;
	}

	qip->qli_pushbuf_flag = 0;
	xfs_dqunlock(dqp);
}
Beispiel #10
0
ssize_t				/* bytes written, or (-) error */
xfs_write(
	bhv_desc_t		*bdp,
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned int		nsegs,
	loff_t			*offset,
	int			ioflags,
	cred_t			*credp)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	unsigned long		segs = nsegs;
	xfs_inode_t		*xip;
	xfs_mount_t		*mp;
	ssize_t			ret = 0, error = 0;
	xfs_fsize_t		isize, new_size;
	xfs_iocore_t		*io;
	vnode_t			*vp;
	unsigned long		seg;
	int			iolock;
	int			eventsent = 0;
	vrwlock_t		locktype;
	size_t			ocount = 0, count;
	loff_t			pos;
	int			need_isem = 1, need_flush = 0;

	XFS_STATS_INC(xs_write_calls);

	vp = BHV_TO_VNODE(bdp);
	xip = XFS_BHVTOI(bdp);

	for (seg = 0; seg < segs; seg++) {
		const struct iovec *iv = &iovp[seg];

		/*
		 * If any segment has a negative length, or the cumulative
		 * length ever wraps negative then return -EINVAL.
		 */
		ocount += iv->iov_len;
		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
			return -EINVAL;
		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
			continue;
		if (seg == 0)
			return -EFAULT;
		segs = seg;
		ocount -= iv->iov_len;  /* This segment is no good */
		break;
	}

	count = ocount;
	pos = *offset;

	if (count == 0)
		return 0;

	io = &xip->i_iocore;
	mp = io->io_mount;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	if (ioflags & IO_ISDIRECT) {
		xfs_buftarg_t	*target =
			(xip->i_d.di_flags & XFS_DIFLAG_REALTIME) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;

		if ((pos & target->pbr_smask) || (count & target->pbr_smask))
			return XFS_ERROR(-EINVAL);

		if (!VN_CACHED(vp) && pos < i_size_read(inode))
			need_isem = 0;

		if (VN_CACHED(vp))
			need_flush = 1;
	}

relock:
	if (need_isem) {
		iolock = XFS_IOLOCK_EXCL;
		locktype = VRWLOCK_WRITE;

		down(&inode->i_sem);
	} else {
		iolock = XFS_IOLOCK_SHARED;
		locktype = VRWLOCK_WRITE_DIRECT;
	}

	xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);

	isize = i_size_read(inode);

	if (file->f_flags & O_APPEND)
		*offset = isize;

start:
	error = -generic_write_checks(file, &pos, &count,
					S_ISBLK(inode->i_mode));
	if (error) {
		xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
		goto out_unlock_isem;
	}

	new_size = pos + count;
	if (new_size > isize)
		io->io_new_size = new_size;

	if ((DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_WRITE) &&
	    !(ioflags & IO_INVIS) && !eventsent)) {
		loff_t		savedsize = pos;
		int		dmflags = FILP_DELAY_FLAG(file);

		if (need_isem)
			dmflags |= DM_FLAGS_ISEM;

		xfs_iunlock(xip, XFS_ILOCK_EXCL);
		error = XFS_SEND_DATA(xip->i_mount, DM_EVENT_WRITE, vp,
				      pos, count,
				      dmflags, &locktype);
		if (error) {
			xfs_iunlock(xip, iolock);
			goto out_unlock_isem;
		}
		xfs_ilock(xip, XFS_ILOCK_EXCL);
		eventsent = 1;

		/*
		 * The iolock was dropped and reaquired in XFS_SEND_DATA
		 * so we have to recheck the size when appending.
		 * We will only "goto start;" once, since having sent the
		 * event prevents another call to XFS_SEND_DATA, which is
		 * what allows the size to change in the first place.
		 */
		if ((file->f_flags & O_APPEND) && savedsize != isize) {
			pos = isize = xip->i_d.di_size;
			goto start;
		}
	}

	/*
	 * On Linux, generic_file_write updates the times even if
	 * no data is copied in so long as the write had a size.
	 *
	 * We must update xfs' times since revalidate will overcopy xfs.
	 */
	if (!(ioflags & IO_INVIS)) {
		xfs_ichgtime(xip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
		inode_update_time(inode, 1);
	}

	/*
	 * If the offset is beyond the size of the file, we have a couple
	 * of things to do. First, if there is already space allocated
	 * we need to either create holes or zero the disk or ...
	 *
	 * If there is a page where the previous size lands, we need
	 * to zero it out up to the new size.
	 */

	if (pos > isize) {
		error = xfs_zero_eof(BHV_TO_VNODE(bdp), io, pos,
					isize, pos + count);
		if (error) {
			xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
			goto out_unlock_isem;
		}
	}
	xfs_iunlock(xip, XFS_ILOCK_EXCL);

	/*
	 * If we're writing the file then make sure to clear the
	 * setuid and setgid bits if the process is not being run
	 * by root.  This keeps people from modifying setuid and
	 * setgid binaries.
	 */

	if (((xip->i_d.di_mode & S_ISUID) ||
	    ((xip->i_d.di_mode & (S_ISGID | S_IXGRP)) ==
		(S_ISGID | S_IXGRP))) &&
	     !capable(CAP_FSETID)) {
		error = xfs_write_clear_setuid(xip);
		if (likely(!error))
			error = -remove_suid(file->f_dentry);
		if (unlikely(error)) {
			xfs_iunlock(xip, iolock);
			goto out_unlock_isem;
		}
	}

retry:
	/* We can write back this queue in page reclaim */
	current->backing_dev_info = mapping->backing_dev_info;

	if ((ioflags & IO_ISDIRECT)) {
		if (need_flush) {
			xfs_inval_cached_trace(io, pos, -1,
					ctooff(offtoct(pos)), -1);
			VOP_FLUSHINVAL_PAGES(vp, ctooff(offtoct(pos)),
					-1, FI_REMAPF_LOCKED);
		}

		if (need_isem) {
			/* demote the lock now the cached pages are gone */
			XFS_ILOCK_DEMOTE(mp, io, XFS_IOLOCK_EXCL);
			up(&inode->i_sem);

			iolock = XFS_IOLOCK_SHARED;
			locktype = VRWLOCK_WRITE_DIRECT;
			need_isem = 0;
		}

 		xfs_rw_enter_trace(XFS_DIOWR_ENTER, io, (void *)iovp, segs,
				*offset, ioflags);
		ret = generic_file_direct_write(iocb, iovp,
				&segs, pos, offset, count, ocount);

		/*
		 * direct-io write to a hole: fall through to buffered I/O
		 * for completing the rest of the request.
		 */
		if (ret >= 0 && ret != count) {
			XFS_STATS_ADD(xs_write_bytes, ret);

			pos += ret;
			count -= ret;

			need_isem = 1;
			ioflags &= ~IO_ISDIRECT;
			xfs_iunlock(xip, iolock);
			goto relock;
		}
	} else {
		xfs_rw_enter_trace(XFS_WRITE_ENTER, io, (void *)iovp, segs,
				*offset, ioflags);
		ret = generic_file_buffered_write(iocb, iovp, segs,
				pos, offset, count, ret);
	}

	current->backing_dev_info = NULL;

	if (ret == -EIOCBQUEUED)
		ret = wait_on_sync_kiocb(iocb);

	if ((ret == -ENOSPC) &&
	    DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_NOSPACE) &&
	    !(ioflags & IO_INVIS)) {

		xfs_rwunlock(bdp, locktype);
		error = XFS_SEND_NAMESP(xip->i_mount, DM_EVENT_NOSPACE, vp,
				DM_RIGHT_NULL, vp, DM_RIGHT_NULL, NULL, NULL,
				0, 0, 0); /* Delay flag intentionally  unused */
		if (error)
			goto out_unlock_isem;
		xfs_rwlock(bdp, locktype);
		pos = xip->i_d.di_size;
		goto retry;
	}

	if (*offset > xip->i_d.di_size) {
		xfs_ilock(xip, XFS_ILOCK_EXCL);
		if (*offset > xip->i_d.di_size) {
			xip->i_d.di_size = *offset;
			i_size_write(inode, *offset);
			xip->i_update_core = 1;
			xip->i_update_size = 1;
		}
		xfs_iunlock(xip, XFS_ILOCK_EXCL);
	}

	error = -ret;
	if (ret <= 0)
		goto out_unlock_internal;

	XFS_STATS_ADD(xs_write_bytes, ret);

	/* Handle various SYNC-type writes */
	if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) {
		/*
		 * If we're treating this as O_DSYNC and we have not updated the
		 * size, force the log.
		 */
		if (!(mp->m_flags & XFS_MOUNT_OSYNCISOSYNC) &&
		    !(xip->i_update_size)) {
			xfs_inode_log_item_t	*iip = xip->i_itemp;

			/*
			 * If an allocation transaction occurred
			 * without extending the size, then we have to force
			 * the log up the proper point to ensure that the
			 * allocation is permanent.  We can't count on
			 * the fact that buffered writes lock out direct I/O
			 * writes - the direct I/O write could have extended
			 * the size nontransactionally, then finished before
			 * we started.  xfs_write_file will think that the file
			 * didn't grow but the update isn't safe unless the
			 * size change is logged.
			 *
			 * Force the log if we've committed a transaction
			 * against the inode or if someone else has and
			 * the commit record hasn't gone to disk (e.g.
			 * the inode is pinned).  This guarantees that
			 * all changes affecting the inode are permanent
			 * when we return.
			 */
			if (iip && iip->ili_last_lsn) {
				xfs_log_force(mp, iip->ili_last_lsn,
						XFS_LOG_FORCE | XFS_LOG_SYNC);
			} else if (xfs_ipincount(xip) > 0) {
				xfs_log_force(mp, (xfs_lsn_t)0,
						XFS_LOG_FORCE | XFS_LOG_SYNC);
			}

		} else {
			xfs_trans_t	*tp;

			/*
			 * O_SYNC or O_DSYNC _with_ a size update are handled
			 * the same way.
			 *
			 * If the write was synchronous then we need to make
			 * sure that the inode modification time is permanent.
			 * We'll have updated the timestamp above, so here
			 * we use a synchronous transaction to log the inode.
			 * It's not fast, but it's necessary.
			 *
			 * If this a dsync write and the size got changed
			 * non-transactionally, then we need to ensure that
			 * the size change gets logged in a synchronous
			 * transaction.
			 */

			tp = xfs_trans_alloc(mp, XFS_TRANS_WRITE_SYNC);
			if ((error = xfs_trans_reserve(tp, 0,
						      XFS_SWRITE_LOG_RES(mp),
						      0, 0, 0))) {
				/* Transaction reserve failed */
				xfs_trans_cancel(tp, 0);
			} else {
				/* Transaction reserve successful */
				xfs_ilock(xip, XFS_ILOCK_EXCL);
				xfs_trans_ijoin(tp, xip, XFS_ILOCK_EXCL);
				xfs_trans_ihold(tp, xip);
				xfs_trans_log_inode(tp, xip, XFS_ILOG_CORE);
				xfs_trans_set_sync(tp);
				error = xfs_trans_commit(tp, 0, NULL);
				xfs_iunlock(xip, XFS_ILOCK_EXCL);
				if (error)
					goto out_unlock_internal;
			}
		}
	
		xfs_rwunlock(bdp, locktype);
		if (need_isem)
			up(&inode->i_sem);

		error = sync_page_range(inode, mapping, pos, ret);
		if (!error)
			error = ret;
		return error;
	}

 out_unlock_internal:
	xfs_rwunlock(bdp, locktype);
 out_unlock_isem:
	if (need_isem)
		up(&inode->i_sem);
	return -error;
}
/*
 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
 * failed to get the inode flush lock but did get the inode locked SHARED.
 * Here we're trying to see if the inode buffer is incore, and if so whether it's
 * marked delayed write. If that's the case, we'll initiate a bawrite on that
 * buffer to expedite the process.
 *
 * We aren't holding the AIL lock (or the flush lock) when this gets called,
 * so it is inherently race-y.
 */
STATIC void
xfs_inode_item_pushbuf(
	xfs_inode_log_item_t	*iip)
{
	xfs_inode_t	*ip;
	xfs_mount_t	*mp;
	xfs_buf_t	*bp;
	uint		dopush;

	ip = iip->ili_inode;

	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));

	/*
	 * The ili_pushbuf_flag keeps others from
	 * trying to duplicate our effort.
	 */
	ASSERT(iip->ili_pushbuf_flag != 0);
	ASSERT(iip->ili_push_owner == current_pid());

	/*
	 * If a flush is not in progress anymore, chances are that the
	 * inode was taken off the AIL. So, just get out.
	 */
	if (completion_done(&ip->i_flush) ||
	    ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
		iip->ili_pushbuf_flag = 0;
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
		return;
	}

	mp = ip->i_mount;
	bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
		    iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);

	if (bp != NULL) {
		if (XFS_BUF_ISDELAYWRITE(bp)) {
			/*
			 * We were racing with iflush because we don't hold
			 * the AIL lock or the flush lock. However, at this point,
			 * we have the buffer, and we know that it's dirty.
			 * So, it's possible that iflush raced with us, and
			 * this item is already taken off the AIL.
			 * If not, we can flush it async.
			 */
			dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
				  !completion_done(&ip->i_flush));
			iip->ili_pushbuf_flag = 0;
			xfs_iunlock(ip, XFS_ILOCK_SHARED);
			xfs_buftrace("INODE ITEM PUSH", bp);
			if (XFS_BUF_ISPINNED(bp)) {
				xfs_log_force(mp, (xfs_lsn_t)0,
					      XFS_LOG_FORCE);
			}
			if (dopush) {
				int	error;
				error = xfs_bawrite(mp, bp);
				if (error)
					xfs_fs_cmn_err(CE_WARN, mp,
		"xfs_inode_item_pushbuf: pushbuf error %d on iip %p, bp %p",
							error, iip, bp);
			} else {
				xfs_buf_relse(bp);
			}
		} else {
			iip->ili_pushbuf_flag = 0;
			xfs_iunlock(ip, XFS_ILOCK_SHARED);
			xfs_buf_relse(bp);
		}
		return;
	}
	/*
	 * We have to be careful about resetting pushbuf flag too early (above).
	 * Even though in theory we can do it as soon as we have the buflock,
	 * we don't want others to be doing work needlessly. They'll come to
	 * this function thinking that pushing the buffer is their
	 * responsibility only to find that the buffer is still locked by
	 * another doing the same thing
	 */
	iip->ili_pushbuf_flag = 0;
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
	return;
}
STATIC int
xfs_trim_extents(
    struct xfs_mount	*mp,
    xfs_agnumber_t		agno,
    xfs_fsblock_t		start,
    xfs_fsblock_t		len,
    xfs_fsblock_t		minlen,
    __uint64_t		*blocks_trimmed)
{
    struct block_device	*bdev = mp->m_ddev_targp->bt_bdev;
    struct xfs_btree_cur	*cur;
    struct xfs_buf		*agbp;
    struct xfs_perag	*pag;
    int			error;
    int			i;

    pag = xfs_perag_get(mp, agno);

    error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agbp);
    if (error || !agbp)
        goto out_put_perag;

    cur = xfs_allocbt_init_cursor(mp, NULL, agbp, agno, XFS_BTNUM_CNT);

    /*
     * Force out the log.  This means any transactions that might have freed
     * space before we took the AGF buffer lock are now on disk, and the
     * volatile disk cache is flushed.
     */
    xfs_log_force(mp, XFS_LOG_SYNC);

    /*
     * Look up the longest btree in the AGF and start with it.
     */
    error = xfs_alloc_lookup_le(cur, 0,
                                XFS_BUF_TO_AGF(agbp)->agf_longest, &i);
    if (error)
        goto out_del_cursor;

    /*
     * Loop until we are done with all extents that are large
     * enough to be worth discarding.
     */
    while (i) {
        xfs_agblock_t fbno;
        xfs_extlen_t flen;

        error = xfs_alloc_get_rec(cur, &fbno, &flen, &i);
        if (error)
            goto out_del_cursor;
        XFS_WANT_CORRUPTED_GOTO(i == 1, out_del_cursor);
        ASSERT(flen <= XFS_BUF_TO_AGF(agbp)->agf_longest);

        /*
         * Too small?  Give up.
         */
        if (flen < minlen) {
            trace_xfs_discard_toosmall(mp, agno, fbno, flen);
            goto out_del_cursor;
        }

        /*
         * If the extent is entirely outside of the range we are
         * supposed to discard skip it.  Do not bother to trim
         * down partially overlapping ranges for now.
         */
        if (XFS_AGB_TO_FSB(mp, agno, fbno) + flen < start ||
                XFS_AGB_TO_FSB(mp, agno, fbno) >= start + len) {
            trace_xfs_discard_exclude(mp, agno, fbno, flen);
            goto next_extent;
        }

        /*
         * If any blocks in the range are still busy, skip the
         * discard and try again the next time.
         */
        if (xfs_alloc_busy_search(mp, agno, fbno, flen)) {
            trace_xfs_discard_busy(mp, agno, fbno, flen);
            goto next_extent;
        }

        trace_xfs_discard_extent(mp, agno, fbno, flen);
        error = -blkdev_issue_discard(bdev,
                                      XFS_AGB_TO_DADDR(mp, agno, fbno),
                                      XFS_FSB_TO_BB(mp, flen),
                                      GFP_NOFS, 0);
        if (error)
            goto out_del_cursor;
        *blocks_trimmed += flen;

next_extent:
        error = xfs_btree_decrement(cur, 0, &i);
        if (error)
            goto out_del_cursor;
    }

out_del_cursor:
    xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
    xfs_buf_relse(agbp);
out_put_perag:
    xfs_perag_put(pag);
    return error;
}
Beispiel #13
0
ssize_t				/* bytes written, or (-) error */
xfs_write(
	bhv_desc_t		*bdp,
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned int		segs,
	loff_t			*offset,
	int			ioflags,
	cred_t			*credp)
{
	struct file		*file = iocb->ki_filp;
	size_t			size = 0;
	xfs_inode_t		*xip;
	xfs_mount_t		*mp;
	ssize_t			ret;
	int			error = 0;
	xfs_fsize_t		isize, new_size;
	xfs_fsize_t		n, limit;
	xfs_iocore_t		*io;
	vnode_t			*vp;
	unsigned long		seg;
	int			iolock;
	int			eventsent = 0;
	vrwlock_t		locktype;

	XFS_STATS_INC(xs_write_calls);

	vp = BHV_TO_VNODE(bdp);
	vn_trace_entry(vp, "xfs_write", (inst_t *)__return_address);
	xip = XFS_BHVTOI(bdp);

	/* START copy & waste from filemap.c */
	for (seg = 0; seg < segs; seg++) {
		const struct iovec *iv = &iovp[seg];

		/*
		 * If any segment has a negative length, or the cumulative
		 * length ever wraps negative then return -EINVAL.
		 */
		size += iv->iov_len;
		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
			return XFS_ERROR(-EINVAL);
	}
	/* END copy & waste from filemap.c */

	if (size == 0)
		return 0;

	io = &(xip->i_iocore);
	mp = io->io_mount;

	xfs_check_frozen(mp, bdp, XFS_FREEZE_WRITE);

	if (XFS_FORCED_SHUTDOWN(mp)) {
		return -EIO;
	}

	if (ioflags & IO_ISDIRECT) {
		pb_target_t	*target =
			(xip->i_d.di_flags & XFS_DIFLAG_REALTIME) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;

		if ((*offset & target->pbr_smask) ||
		    (size & target->pbr_smask)) {
			return XFS_ERROR(-EINVAL);
		}
		iolock = XFS_IOLOCK_SHARED;
		locktype = VRWLOCK_WRITE_DIRECT;
	} else {
		iolock = XFS_IOLOCK_EXCL;
		locktype = VRWLOCK_WRITE;
	}

	xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);

	isize = xip->i_d.di_size;
	limit = XFS_MAXIOFFSET(mp);

	if (file->f_flags & O_APPEND)
		*offset = isize;

start:
	n = limit - *offset;
	if (n <= 0) {
		xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
		return -EFBIG;
	}

	if (n < size)
		size = n;

	new_size = *offset + size;
	if (new_size > isize) {
		io->io_new_size = new_size;
	}

	if ((DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_WRITE) &&
	    !(ioflags & IO_INVIS) && !eventsent)) {
		loff_t		savedsize = *offset;

		xfs_iunlock(xip, XFS_ILOCK_EXCL);
		error = XFS_SEND_DATA(xip->i_mount, DM_EVENT_WRITE, vp,
				      *offset, size,
				      FILP_DELAY_FLAG(file), &locktype);
		if (error) {
			xfs_iunlock(xip, iolock);
			return -error;
		}
		xfs_ilock(xip, XFS_ILOCK_EXCL);
		eventsent = 1;

		/*
		 * The iolock was dropped and reaquired in XFS_SEND_DATA
		 * so we have to recheck the size when appending.
		 * We will only "goto start;" once, since having sent the
		 * event prevents another call to XFS_SEND_DATA, which is
		 * what allows the size to change in the first place.
		 */
		if ((file->f_flags & O_APPEND) &&
		    savedsize != xip->i_d.di_size) {
			*offset = isize = xip->i_d.di_size;
			goto start;
		}
	}

	/*
	 * On Linux, generic_file_write updates the times even if
	 * no data is copied in so long as the write had a size.
	 *
	 * We must update xfs' times since revalidate will overcopy xfs.
	 */
	if (size && !(ioflags & IO_INVIS))
		xfs_ichgtime(xip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);

	/*
	 * If the offset is beyond the size of the file, we have a couple
	 * of things to do. First, if there is already space allocated
	 * we need to either create holes or zero the disk or ...
	 *
	 * If there is a page where the previous size lands, we need
	 * to zero it out up to the new size.
	 */

	if (!(ioflags & IO_ISDIRECT) && (*offset > isize && isize)) {
		error = xfs_zero_eof(BHV_TO_VNODE(bdp), io, *offset,
			isize, *offset + size);
		if (error) {
			xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
			return(-error);
		}
	}
	xfs_iunlock(xip, XFS_ILOCK_EXCL);

	/*
	 * If we're writing the file then make sure to clear the
	 * setuid and setgid bits if the process is not being run
	 * by root.  This keeps people from modifying setuid and
	 * setgid binaries.
	 */

	if (((xip->i_d.di_mode & S_ISUID) ||
	    ((xip->i_d.di_mode & (S_ISGID | S_IXGRP)) ==
		(S_ISGID | S_IXGRP))) &&
	     !capable(CAP_FSETID)) {
		error = xfs_write_clear_setuid(xip);
		if (error) {
			xfs_iunlock(xip, iolock);
			return -error;
		}
	}

retry:
	if (ioflags & IO_ISDIRECT) {
		xfs_inval_cached_pages(vp, &xip->i_iocore, *offset, 1, 1);
	}

	ret = generic_file_aio_write_nolock(iocb, iovp, segs, offset);

	if ((ret == -ENOSPC) &&
	    DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_NOSPACE) &&
	    !(ioflags & IO_INVIS)) {

		xfs_rwunlock(bdp, locktype);
		error = XFS_SEND_NAMESP(xip->i_mount, DM_EVENT_NOSPACE, vp,
				DM_RIGHT_NULL, vp, DM_RIGHT_NULL, NULL, NULL,
				0, 0, 0); /* Delay flag intentionally  unused */
		if (error)
			return -error;
		xfs_rwlock(bdp, locktype);
		*offset = xip->i_d.di_size;
		goto retry;

	}

	if (*offset > xip->i_d.di_size) {
		xfs_ilock(xip, XFS_ILOCK_EXCL);
		if (*offset > xip->i_d.di_size) {
			struct inode	*inode = LINVFS_GET_IP(vp);

			xip->i_d.di_size = *offset;
			i_size_write(inode, *offset);
			xip->i_update_core = 1;
			xip->i_update_size = 1;
		}
		xfs_iunlock(xip, XFS_ILOCK_EXCL);
	}

	if (ret <= 0) {
		xfs_rwunlock(bdp, locktype);
		return ret;
	}

	XFS_STATS_ADD(xs_write_bytes, ret);

	/* Handle various SYNC-type writes */
	if ((file->f_flags & O_SYNC) || IS_SYNC(file->f_dentry->d_inode)) {

		/*
		 * If we're treating this as O_DSYNC and we have not updated the
		 * size, force the log.
		 */

		if (!(mp->m_flags & XFS_MOUNT_OSYNCISOSYNC)
			&& !(xip->i_update_size)) {
			/*
			 * If an allocation transaction occurred
			 * without extending the size, then we have to force
			 * the log up the proper point to ensure that the
			 * allocation is permanent.  We can't count on
			 * the fact that buffered writes lock out direct I/O
			 * writes - the direct I/O write could have extended
			 * the size nontransactionally, then finished before
			 * we started.  xfs_write_file will think that the file
			 * didn't grow but the update isn't safe unless the
			 * size change is logged.
			 *
			 * Force the log if we've committed a transaction
			 * against the inode or if someone else has and
			 * the commit record hasn't gone to disk (e.g.
			 * the inode is pinned).  This guarantees that
			 * all changes affecting the inode are permanent
			 * when we return.
			 */

			xfs_inode_log_item_t *iip;
			xfs_lsn_t lsn;

			iip = xip->i_itemp;
			if (iip && iip->ili_last_lsn) {
				lsn = iip->ili_last_lsn;
				xfs_log_force(mp, lsn,
						XFS_LOG_FORCE | XFS_LOG_SYNC);
			} else if (xfs_ipincount(xip) > 0) {
				xfs_log_force(mp, (xfs_lsn_t)0,
						XFS_LOG_FORCE | XFS_LOG_SYNC);
			}

		} else {
			xfs_trans_t	*tp;

			/*
			 * O_SYNC or O_DSYNC _with_ a size update are handled
			 * the same way.
			 *
			 * If the write was synchronous then we need to make
			 * sure that the inode modification time is permanent.
			 * We'll have updated the timestamp above, so here
			 * we use a synchronous transaction to log the inode.
			 * It's not fast, but it's necessary.
			 *
			 * If this a dsync write and the size got changed
			 * non-transactionally, then we need to ensure that
			 * the size change gets logged in a synchronous
			 * transaction.
			 */

			tp = xfs_trans_alloc(mp, XFS_TRANS_WRITE_SYNC);
			if ((error = xfs_trans_reserve(tp, 0,
						      XFS_SWRITE_LOG_RES(mp),
						      0, 0, 0))) {
				/* Transaction reserve failed */
				xfs_trans_cancel(tp, 0);
			} else {
				/* Transaction reserve successful */
				xfs_ilock(xip, XFS_ILOCK_EXCL);
				xfs_trans_ijoin(tp, xip, XFS_ILOCK_EXCL);
				xfs_trans_ihold(tp, xip);
				xfs_trans_log_inode(tp, xip, XFS_ILOG_CORE);
				xfs_trans_set_sync(tp);
				error = xfs_trans_commit(tp, 0, (xfs_lsn_t)0);
				xfs_iunlock(xip, XFS_ILOCK_EXCL);
			}
		}
	} /* (ioflags & O_SYNC) */

	xfs_rwunlock(bdp, locktype);
	return(ret);
}
Beispiel #14
0
 /*ARGSUSED*/
int
xfs_trans_commit(
	xfs_trans_t	*tp,
	uint		flags,
	xfs_lsn_t	*commit_lsn_p)
{
	xfs_log_iovec_t		*log_vector;
	int			nvec;
	xfs_mount_t		*mp;
	xfs_lsn_t		commit_lsn;
	/* REFERENCED */
	int			error;
	int			log_flags;
	int			sync;
#define	XFS_TRANS_LOGVEC_COUNT	16
	xfs_log_iovec_t		log_vector_fast[XFS_TRANS_LOGVEC_COUNT];
#if defined(XLOG_NOLOG) || defined(DEBUG)
	static xfs_lsn_t	trans_lsn = 1;
#endif
	void			*commit_iclog;
	int			shutdown;

	commit_lsn = -1;

	/*
	 * Determine whether this commit is releasing a permanent
	 * log reservation or not.
	 */
	if (flags & XFS_TRANS_RELEASE_LOG_RES) {
		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
		log_flags = XFS_LOG_REL_PERM_RESERV;
	} else {
		log_flags = 0;
	}
	mp = tp->t_mountp;

	/*
	 * If there is nothing to be logged by the transaction,
	 * then unlock all of the items associated with the
	 * transaction and free the transaction structure.
	 * Also make sure to return any reserved blocks to
	 * the free pool.
	 */
shut_us_down:
	shutdown = XFS_FORCED_SHUTDOWN(mp) ? EIO : 0;
	if (!(tp->t_flags & XFS_TRANS_DIRTY) || shutdown) {
		xfs_trans_unreserve_and_mod_sb(tp);
		/*
		 * It is indeed possible for the transaction to be
		 * not dirty but the dqinfo portion to be. All that
		 * means is that we have some (non-persistent) quota
		 * reservations that need to be unreserved.
		 */
		XFS_TRANS_UNRESERVE_AND_MOD_DQUOTS(mp, tp);
		if (tp->t_ticket) {
			commit_lsn = xfs_log_done(mp, tp->t_ticket,
							NULL, log_flags);
			if (commit_lsn == -1 && !shutdown)
				shutdown = XFS_ERROR(EIO);
		}
                PFLAGS_RESTORE_FSTRANS(&tp->t_pflags);
		xfs_trans_free_items(tp, shutdown? XFS_TRANS_ABORT : 0);
		xfs_trans_free_busy(tp);
		xfs_trans_free(tp);
		XFS_STATS_INC(xs_trans_empty);
		if (commit_lsn_p)
			*commit_lsn_p = commit_lsn;
		return (shutdown);
	}
#if defined(XLOG_NOLOG) || defined(DEBUG)
	ASSERT(!xlog_debug || tp->t_ticket != NULL);
#else
	ASSERT(tp->t_ticket != NULL);
#endif

	/*
	 * If we need to update the superblock, then do it now.
	 */
	if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
		xfs_trans_apply_sb_deltas(tp);
	}
	XFS_TRANS_APPLY_DQUOT_DELTAS(mp, tp);

	/*
	 * Ask each log item how many log_vector entries it will
	 * need so we can figure out how many to allocate.
	 * Try to avoid the kmem_alloc() call in the common case
	 * by using a vector from the stack when it fits.
	 */
	nvec = xfs_trans_count_vecs(tp);

	if (nvec == 0) {
		xfs_force_shutdown(mp, XFS_LOG_IO_ERROR);
		goto shut_us_down;
	}


	if (nvec <= XFS_TRANS_LOGVEC_COUNT) {
		log_vector = log_vector_fast;
	} else {
		log_vector = (xfs_log_iovec_t *)kmem_alloc(nvec *
						   sizeof(xfs_log_iovec_t),
						   KM_SLEEP);
	}

	/*
	 * Fill in the log_vector and pin the logged items, and
	 * then write the transaction to the log.
	 */
	xfs_trans_fill_vecs(tp, log_vector);

	/*
	 * Ignore errors here. xfs_log_done would do the right thing.
	 * We need to put the ticket, etc. away.
	 */
	error = xfs_log_write(mp, log_vector, nvec, tp->t_ticket,
			     &(tp->t_lsn));

#if defined(XLOG_NOLOG) || defined(DEBUG)
	if (xlog_debug) {
		commit_lsn = xfs_log_done(mp, tp->t_ticket,
					  &commit_iclog, log_flags);
	} else {
		commit_lsn = 0;
		tp->t_lsn = trans_lsn++;
	}
#else
	/*
	 * This is the regular case.  At this point (after the call finishes),
	 * the transaction is committed incore and could go out to disk at
	 * any time.  However, all the items associated with the transaction
	 * are still locked and pinned in memory.
	 */
	commit_lsn = xfs_log_done(mp, tp->t_ticket, &commit_iclog, log_flags);
#endif

	tp->t_commit_lsn = commit_lsn;
	if (nvec > XFS_TRANS_LOGVEC_COUNT) {
		kmem_free(log_vector, nvec * sizeof(xfs_log_iovec_t));
	}

	if (commit_lsn_p)
		*commit_lsn_p = commit_lsn;

	/*
	 * If we got a log write error. Unpin the logitems that we
	 * had pinned, clean up, free trans structure, and return error.
	 */
	if (error || commit_lsn == -1) {
                PFLAGS_RESTORE_FSTRANS(&tp->t_pflags);
		xfs_trans_uncommit(tp, flags|XFS_TRANS_ABORT);
		return XFS_ERROR(EIO);
	}

	/*
	 * Once the transaction has committed, unused
	 * reservations need to be released and changes to
	 * the superblock need to be reflected in the in-core
	 * version.  Do that now.
	 */
	xfs_trans_unreserve_and_mod_sb(tp);

	sync = tp->t_flags & XFS_TRANS_SYNC;

	/*
	 * Tell the LM to call the transaction completion routine
	 * when the log write with LSN commit_lsn completes (e.g.
	 * when the transaction commit really hits the on-disk log).
	 * After this call we cannot reference tp, because the call
	 * can happen at any time and the call will free the transaction
	 * structure pointed to by tp.  The only case where we call
	 * the completion routine (xfs_trans_committed) directly is
	 * if the log is turned off on a debug kernel or we're
	 * running in simulation mode (the log is explicitly turned
	 * off).
	 */
	tp->t_logcb.cb_func = (void(*)(void*, int))xfs_trans_committed;
	tp->t_logcb.cb_arg = tp;

	/*
	 * We need to pass the iclog buffer which was used for the
	 * transaction commit record into this function, and attach
	 * the callback to it. The callback must be attached before
	 * the items are unlocked to avoid racing with other threads
	 * waiting for an item to unlock.
	 */
	shutdown = xfs_log_notify(mp, commit_iclog, &(tp->t_logcb));

	/*
	 * Mark this thread as no longer being in a transaction
	 */
	PFLAGS_RESTORE_FSTRANS(&tp->t_pflags);

	/*
	 * Once all the items of the transaction have been copied
	 * to the in core log and the callback is attached, the
	 * items can be unlocked.
	 *
	 * This will free descriptors pointing to items which were
	 * not logged since there is nothing more to do with them.
	 * For items which were logged, we will keep pointers to them
	 * so they can be unpinned after the transaction commits to disk.
	 * This will also stamp each modified meta-data item with
	 * the commit lsn of this transaction for dependency tracking
	 * purposes.
	 */
	xfs_trans_unlock_items(tp, commit_lsn);

	/*
	 * If we detected a log error earlier, finish committing
	 * the transaction now (unpin log items, etc).
	 *
	 * Order is critical here, to avoid using the transaction
	 * pointer after its been freed (by xfs_trans_committed
	 * either here now, or as a callback).  We cannot do this
	 * step inside xfs_log_notify as was done earlier because
	 * of this issue.
	 */
	if (shutdown)
		xfs_trans_committed(tp, XFS_LI_ABORTED);

	/*
	 * Now that the xfs_trans_committed callback has been attached,
	 * and the items are released we can finally allow the iclog to
	 * go to disk.
	 */
	error = xfs_log_release_iclog(mp, commit_iclog);

	/*
	 * If the transaction needs to be synchronous, then force the
	 * log out now and wait for it.
	 */
	if (sync) {
		if (!error)
			error = xfs_log_force(mp, commit_lsn,
				      XFS_LOG_FORCE | XFS_LOG_SYNC);
		XFS_STATS_INC(xs_trans_sync);
	} else {
		XFS_STATS_INC(xs_trans_async);
	}

	return (error);
}
Beispiel #15
0
/*
 * Write a modified dquot to disk.
 * The dquot must be locked and the flush lock too taken by caller.
 * The flush lock will not be unlocked until the dquot reaches the disk,
 * but the dquot is free to be unlocked and modified by the caller
 * in the interim. Dquot is still locked on return. This behavior is
 * identical to that of inodes.
 */
int
xfs_qm_dqflush(
	struct xfs_dquot	*dqp,
	struct xfs_buf		**bpp)
{
	struct xfs_mount	*mp = dqp->q_mount;
	struct xfs_buf		*bp;
	struct xfs_disk_dquot	*ddqp;
	int			error;

	ASSERT(XFS_DQ_IS_LOCKED(dqp));
	ASSERT(!completion_done(&dqp->q_flush));

	trace_xfs_dqflush(dqp);

	*bpp = NULL;

	xfs_qm_dqunpin_wait(dqp);

	/*
	 * This may have been unpinned because the filesystem is shutting
	 * down forcibly. If that's the case we must not write this dquot
	 * to disk, because the log record didn't make it to disk.
	 *
	 * We also have to remove the log item from the AIL in this case,
	 * as we wait for an emptry AIL as part of the unmount process.
	 */
	if (XFS_FORCED_SHUTDOWN(mp)) {
		struct xfs_log_item	*lip = &dqp->q_logitem.qli_item;
		dqp->dq_flags &= ~XFS_DQ_DIRTY;

		spin_lock(&mp->m_ail->xa_lock);
		if (lip->li_flags & XFS_LI_IN_AIL)
			xfs_trans_ail_delete(mp->m_ail, lip,
					     SHUTDOWN_CORRUPT_INCORE);
		else
			spin_unlock(&mp->m_ail->xa_lock);
		error = XFS_ERROR(EIO);
		goto out_unlock;
	}

	/*
	 * Get the buffer containing the on-disk dquot
	 */
	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno,
				   mp->m_quotainfo->qi_dqchunklen, 0, &bp, NULL);
	if (error)
		goto out_unlock;

	/*
	 * Calculate the location of the dquot inside the buffer.
	 */
	ddqp = bp->b_addr + dqp->q_bufoffset;

	/*
	 * A simple sanity check in case we got a corrupted dquot..
	 */
	error = xfs_dqcheck(mp, &dqp->q_core, be32_to_cpu(ddqp->d_id), 0,
			   XFS_QMOPT_DOWARN, "dqflush (incore copy)");
	if (error) {
		xfs_buf_relse(bp);
		xfs_dqfunlock(dqp);
		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
		return XFS_ERROR(EIO);
	}

	/* This is the only portion of data that needs to persist */
	memcpy(ddqp, &dqp->q_core, sizeof(xfs_disk_dquot_t));

	/*
	 * Clear the dirty field and remember the flush lsn for later use.
	 */
	dqp->dq_flags &= ~XFS_DQ_DIRTY;

	xfs_trans_ail_copy_lsn(mp->m_ail, &dqp->q_logitem.qli_flush_lsn,
					&dqp->q_logitem.qli_item.li_lsn);

	/*
	 * copy the lsn into the on-disk dquot now while we have the in memory
	 * dquot here. This can't be done later in the write verifier as we
	 * can't get access to the log item at that point in time.
	 *
	 * We also calculate the CRC here so that the on-disk dquot in the
	 * buffer always has a valid CRC. This ensures there is no possibility
	 * of a dquot without an up-to-date CRC getting to disk.
	 */
	if (xfs_sb_version_hascrc(&mp->m_sb)) {
		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddqp;

		dqb->dd_lsn = cpu_to_be64(dqp->q_logitem.qli_item.li_lsn);
		xfs_update_cksum((char *)dqb, sizeof(struct xfs_dqblk),
				 XFS_DQUOT_CRC_OFF);
	}

	/*
	 * Attach an iodone routine so that we can remove this dquot from the
	 * AIL and release the flush lock once the dquot is synced to disk.
	 */
	xfs_buf_attach_iodone(bp, xfs_qm_dqflush_done,
				  &dqp->q_logitem.qli_item);

	/*
	 * If the buffer is pinned then push on the log so we won't
	 * get stuck waiting in the write for too long.
	 */
	if (xfs_buf_ispinned(bp)) {
		trace_xfs_dqflush_force(dqp);
		xfs_log_force(mp, 0);
	}

	trace_xfs_dqflush_done(dqp);
	*bpp = bp;
	return 0;

out_unlock:
	xfs_dqfunlock(dqp);
	return XFS_ERROR(EIO);
}
/*
 * xfs_trans_push_ail
 *
 * This routine is called to move the tail of the AIL
 * forward.  It does this by trying to flush items in the AIL
 * whose lsns are below the given threshold_lsn.
 *
 * The routine returns the lsn of the tail of the log.
 */
xfs_lsn_t
xfs_trans_push_ail(
	xfs_mount_t		*mp,
	xfs_lsn_t		threshold_lsn)
{
	xfs_lsn_t		lsn;
	xfs_log_item_t		*lip;
	int			gen;
	int			restarts;
	int			lock_result;
	int			flush_log;
	SPLDECL(s);

#define	XFS_TRANS_PUSH_AIL_RESTARTS	10

	AIL_LOCK(mp,s);
	lip = xfs_trans_first_ail(mp, &gen);
	if (lip == NULL || XFS_FORCED_SHUTDOWN(mp)) {
		/*
		 * Just return if the AIL is empty.
		 */
		AIL_UNLOCK(mp, s);
		return (xfs_lsn_t)0;
	}

	XFS_STATS_INC(xs_push_ail);

	/*
	 * While the item we are looking at is below the given threshold
	 * try to flush it out.  Make sure to limit the number of times
	 * we allow xfs_trans_next_ail() to restart scanning from the
	 * beginning of the list.  We'd like not to stop until we've at least
	 * tried to push on everything in the AIL with an LSN less than
	 * the given threshold. However, we may give up before that if
	 * we realize that we've been holding the AIL_LOCK for 'too long',
	 * blocking interrupts. Currently, too long is < 500us roughly.
	 */
	flush_log = 0;
	restarts = 0;
	while (((restarts < XFS_TRANS_PUSH_AIL_RESTARTS) &&
		(XFS_LSN_CMP(lip->li_lsn, threshold_lsn) < 0))) {
		/*
		 * If we can lock the item without sleeping, unlock
		 * the AIL lock and flush the item.  Then re-grab the
		 * AIL lock so we can look for the next item on the
		 * AIL.  Since we unlock the AIL while we flush the
		 * item, the next routine may start over again at the
		 * the beginning of the list if anything has changed.
		 * That is what the generation count is for.
		 *
		 * If we can't lock the item, either its holder will flush
		 * it or it is already being flushed or it is being relogged.
		 * In any of these case it is being taken care of and we
		 * can just skip to the next item in the list.
		 */
		lock_result = IOP_TRYLOCK(lip);
		switch (lock_result) {
		      case XFS_ITEM_SUCCESS:
			AIL_UNLOCK(mp, s);
			XFS_STATS_INC(xs_push_ail_success);
			IOP_PUSH(lip);
			AIL_LOCK(mp,s);
			break;

		      case XFS_ITEM_PUSHBUF:
			AIL_UNLOCK(mp, s);
			XFS_STATS_INC(xs_push_ail_pushbuf);
#ifdef XFSRACEDEBUG
			delay_for_intr();
			delay(300);
#endif
			ASSERT(lip->li_ops->iop_pushbuf);
			ASSERT(lip);
			IOP_PUSHBUF(lip);
			AIL_LOCK(mp,s);
			break;

		      case XFS_ITEM_PINNED:
			XFS_STATS_INC(xs_push_ail_pinned);
			flush_log = 1;
			break;

		      case XFS_ITEM_LOCKED:
			XFS_STATS_INC(xs_push_ail_locked);
			break;

		      case XFS_ITEM_FLUSHING:
			XFS_STATS_INC(xs_push_ail_flushing);
			break;

		      default:
			ASSERT(0);
			break;
		}

		lip = xfs_trans_next_ail(mp, lip, &gen, &restarts);
		if (lip == NULL) {
			break;
		}
		if (XFS_FORCED_SHUTDOWN(mp)) {
			/*
			 * Just return if we shut down during the last try.
			 */
			AIL_UNLOCK(mp, s);
			return (xfs_lsn_t)0;
		}

	}

	if (flush_log) {
		/*
		 * If something we need to push out was pinned, then
		 * push out the log so it will become unpinned and
		 * move forward in the AIL.
		 */
		AIL_UNLOCK(mp, s);
		XFS_STATS_INC(xs_push_ail_flush);
		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
		AIL_LOCK(mp, s);
	}

	lip = xfs_ail_min(&(mp->m_ail));
	if (lip == NULL) {
		lsn = (xfs_lsn_t)0;
	} else {
		lsn = lip->li_lsn;
	}

	AIL_UNLOCK(mp, s);
	return lsn;
}	/* xfs_trans_push_ail */
/*
 * Write a modified dquot to disk.
 * The dquot must be locked and the flush lock too taken by caller.
 * The flush lock will not be unlocked until the dquot reaches the disk,
 * but the dquot is free to be unlocked and modified by the caller
 * in the interim. Dquot is still locked on return. This behavior is
 * identical to that of inodes.
 */
int
xfs_qm_dqflush(
	xfs_dquot_t		*dqp,
	uint			flags)
{
	struct xfs_mount	*mp = dqp->q_mount;
	struct xfs_buf		*bp;
	struct xfs_disk_dquot	*ddqp;
	int			error;

	ASSERT(XFS_DQ_IS_LOCKED(dqp));
	ASSERT(!completion_done(&dqp->q_flush));

	trace_xfs_dqflush(dqp);

	/*
	 * If not dirty, or it's pinned and we are not supposed to block, nada.
	 */
	if (!XFS_DQ_IS_DIRTY(dqp) ||
	    ((flags & SYNC_TRYLOCK) && atomic_read(&dqp->q_pincount) > 0)) {
		xfs_dqfunlock(dqp);
		return 0;
	}
	xfs_qm_dqunpin_wait(dqp);

	/*
	 * This may have been unpinned because the filesystem is shutting
	 * down forcibly. If that's the case we must not write this dquot
	 * to disk, because the log record didn't make it to disk!
	 */
	if (XFS_FORCED_SHUTDOWN(mp)) {
		dqp->dq_flags &= ~XFS_DQ_DIRTY;
		xfs_dqfunlock(dqp);
		return XFS_ERROR(EIO);
	}

	/*
	 * Get the buffer containing the on-disk dquot
	 */
	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno,
				   mp->m_quotainfo->qi_dqchunklen, 0, &bp);
	if (error) {
		ASSERT(error != ENOENT);
		xfs_dqfunlock(dqp);
		return error;
	}

	/*
	 * Calculate the location of the dquot inside the buffer.
	 */
	ddqp = bp->b_addr + dqp->q_bufoffset;

	/*
	 * A simple sanity check in case we got a corrupted dquot..
	 */
	error = xfs_qm_dqcheck(mp, &dqp->q_core, be32_to_cpu(ddqp->d_id), 0,
			   XFS_QMOPT_DOWARN, "dqflush (incore copy)");
	if (error) {
		xfs_buf_relse(bp);
		xfs_dqfunlock(dqp);
		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
		return XFS_ERROR(EIO);
	}

	/* This is the only portion of data that needs to persist */
	memcpy(ddqp, &dqp->q_core, sizeof(xfs_disk_dquot_t));

	/*
	 * Clear the dirty field and remember the flush lsn for later use.
	 */
	dqp->dq_flags &= ~XFS_DQ_DIRTY;

	xfs_trans_ail_copy_lsn(mp->m_ail, &dqp->q_logitem.qli_flush_lsn,
					&dqp->q_logitem.qli_item.li_lsn);

	/*
	 * Attach an iodone routine so that we can remove this dquot from the
	 * AIL and release the flush lock once the dquot is synced to disk.
	 */
	xfs_buf_attach_iodone(bp, xfs_qm_dqflush_done,
				  &dqp->q_logitem.qli_item);

	/*
	 * If the buffer is pinned then push on the log so we won't
	 * get stuck waiting in the write for too long.
	 */
	if (xfs_buf_ispinned(bp)) {
		trace_xfs_dqflush_force(dqp);
		xfs_log_force(mp, 0);
	}

	if (flags & SYNC_WAIT)
		error = xfs_bwrite(bp);
	else
		xfs_buf_delwri_queue(bp);

	xfs_buf_relse(bp);

	trace_xfs_dqflush_done(dqp);

	/*
	 * dqp is still locked, but caller is free to unlock it now.
	 */
	return error;

}
Beispiel #18
0
/*
 * Function that does the work of pushing on the AIL
 */
long
xfsaild_push(
	xfs_mount_t	*mp,
	xfs_lsn_t	*last_lsn)
{
	long		tout = 1000; /* milliseconds */
	xfs_lsn_t	last_pushed_lsn = *last_lsn;
	xfs_lsn_t	target =  mp->m_ail.xa_target;
	xfs_lsn_t	lsn;
	xfs_log_item_t	*lip;
	int		gen;
	int		restarts;
	int		flush_log, count, stuck;

#define	XFS_TRANS_PUSH_AIL_RESTARTS	10

	spin_lock(&mp->m_ail_lock);
	lip = xfs_trans_first_push_ail(mp, &gen, *last_lsn);
	if (!lip || XFS_FORCED_SHUTDOWN(mp)) {
		/*
		 * AIL is empty or our push has reached the end.
		 */
		spin_unlock(&mp->m_ail_lock);
		last_pushed_lsn = 0;
		goto out;
	}

	XFS_STATS_INC(xs_push_ail);

	/*
	 * While the item we are looking at is below the given threshold
	 * try to flush it out. We'd like not to stop until we've at least
	 * tried to push on everything in the AIL with an LSN less than
	 * the given threshold.
	 *
	 * However, we will stop after a certain number of pushes and wait
	 * for a reduced timeout to fire before pushing further. This
	 * prevents use from spinning when we can't do anything or there is
	 * lots of contention on the AIL lists.
	 */
	tout = 10;
	lsn = lip->li_lsn;
	flush_log = stuck = count = restarts = 0;
	while ((XFS_LSN_CMP(lip->li_lsn, target) < 0)) {
		int	lock_result;
		/*
		 * If we can lock the item without sleeping, unlock the AIL
		 * lock and flush the item.  Then re-grab the AIL lock so we
		 * can look for the next item on the AIL. List changes are
		 * handled by the AIL lookup functions internally
		 *
		 * If we can't lock the item, either its holder will flush it
		 * or it is already being flushed or it is being relogged.  In
		 * any of these case it is being taken care of and we can just
		 * skip to the next item in the list.
		 */
		lock_result = IOP_TRYLOCK(lip);
		spin_unlock(&mp->m_ail_lock);
		switch (lock_result) {
		case XFS_ITEM_SUCCESS:
			XFS_STATS_INC(xs_push_ail_success);
			IOP_PUSH(lip);
			last_pushed_lsn = lsn;
			break;

		case XFS_ITEM_PUSHBUF:
			XFS_STATS_INC(xs_push_ail_pushbuf);
			IOP_PUSHBUF(lip);
			last_pushed_lsn = lsn;
			break;

		case XFS_ITEM_PINNED:
			XFS_STATS_INC(xs_push_ail_pinned);
			stuck++;
			flush_log = 1;
			break;

		case XFS_ITEM_LOCKED:
			XFS_STATS_INC(xs_push_ail_locked);
			last_pushed_lsn = lsn;
			stuck++;
			break;

		case XFS_ITEM_FLUSHING:
			XFS_STATS_INC(xs_push_ail_flushing);
			last_pushed_lsn = lsn;
			stuck++;
			break;

		default:
			ASSERT(0);
			break;
		}

		spin_lock(&mp->m_ail_lock);
		/* should we bother continuing? */
		if (XFS_FORCED_SHUTDOWN(mp))
			break;
		ASSERT(mp->m_log);

		count++;

		/*
		 * Are there too many items we can't do anything with?
		 * If we we are skipping too many items because we can't flush
		 * them or they are already being flushed, we back off and
		 * given them time to complete whatever operation is being
		 * done. i.e. remove pressure from the AIL while we can't make
		 * progress so traversals don't slow down further inserts and
		 * removals to/from the AIL.
		 *
		 * The value of 100 is an arbitrary magic number based on
		 * observation.
		 */
		if (stuck > 100)
			break;

		lip = xfs_trans_next_ail(mp, lip, &gen, &restarts);
		if (lip == NULL)
			break;
		if (restarts > XFS_TRANS_PUSH_AIL_RESTARTS)
			break;
		lsn = lip->li_lsn;
	}
	spin_unlock(&mp->m_ail_lock);

	if (flush_log) {
		/*
		 * If something we need to push out was pinned, then
		 * push out the log so it will become unpinned and
		 * move forward in the AIL.
		 */
		XFS_STATS_INC(xs_push_ail_flush);
		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
	}

	if (!count) {
		/* We're past our target or empty, so idle */
		tout = 1000;
	} else if (XFS_LSN_CMP(lsn, target) >= 0) {
		/*
		 * We reached the target so wait a bit longer for I/O to
		 * complete and remove pushed items from the AIL before we
		 * start the next scan from the start of the AIL.
		 */
		tout += 20;
		last_pushed_lsn = 0;
	} else if ((restarts > XFS_TRANS_PUSH_AIL_RESTARTS) ||
		   ((stuck * 100) / count > 90)) {
		/*
		 * Either there is a lot of contention on the AIL or we
		 * are stuck due to operations in progress. "Stuck" in this
		 * case is defined as >90% of the items we tried to push
		 * were stuck.
		 *
		 * Backoff a bit more to allow some I/O to complete before
		 * continuing from where we were.
		 */
		tout += 10;
	}
out:
	*last_lsn = last_pushed_lsn;
	return tout;
}	/* xfsaild_push */
Beispiel #19
0
ssize_t				/* bytes written, or (-) error */
xfs_write(
	bhv_desc_t      *bdp,
	uio_t		*uio,
	int		ioflag,
	cred_t          *credp)
{
	xfs_inode_t	*xip;
	xfs_mount_t	*mp;
	ssize_t		ret = 0;
	int		error = 0;
	xfs_fsize_t     isize, new_size;
	xfs_fsize_t	n, limit;
	xfs_fsize_t	size;
	xfs_iocore_t    *io;
	xfs_vnode_t	*vp;
	int		iolock;
	//int		eventsent = 0;
	vrwlock_t	locktype;
	xfs_off_t	offset_c;
	xfs_off_t	*offset;
	xfs_off_t	pos;

	XFS_STATS_INC(xs_write_calls);

	vp = BHV_TO_VNODE(bdp);
	xip = XFS_BHVTOI(bdp);

	io = &xip->i_iocore;
	mp = io->io_mount;

	if (XFS_FORCED_SHUTDOWN(xip->i_mount)) {
		return EIO;
	}

	size = uio->uio_resid;
	pos = offset_c = uio->uio_offset;
	offset = &offset_c;

	if (unlikely(ioflag & IO_ISDIRECT)) {
		if (((__psint_t)buf & BBMASK) ||
		    (*offset & mp->m_blockmask) ||
		    (size  & mp->m_blockmask)) {
			return EINVAL;
		}
		iolock = XFS_IOLOCK_SHARED;
		locktype = VRWLOCK_WRITE_DIRECT;
	} else {
		if (io->io_flags & XFS_IOCORE_RT)
			return EINVAL;
		iolock = XFS_IOLOCK_EXCL;
		locktype = VRWLOCK_WRITE;
	}

	iolock = XFS_IOLOCK_EXCL;
	locktype = VRWLOCK_WRITE;

	xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);

	isize = xip->i_d.di_size;
	limit = XFS_MAXIOFFSET(mp);

	if (ioflag & O_APPEND)
		*offset = isize;

//start:
	n = limit - *offset;
	if (n <= 0) {
		xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
		return EFBIG;
	}
	if (n < size)
		size = n;

	new_size = *offset + size;
	if (new_size > isize) {
		io->io_new_size = new_size;
	}

#ifdef RMC
	/* probably be a long time before if ever that we do dmapi */
	if ((DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_WRITE) &&
	    !(ioflags & IO_INVIS) && !eventsent)) {
		loff_t		savedsize = *offset;
		int dmflags = FILP_DELAY_FLAG(file) | DM_SEM_FLAG_RD(ioflags);

		xfs_iunlock(xip, XFS_ILOCK_EXCL);
		error = XFS_SEND_DATA(xip->i_mount, DM_EVENT_WRITE, vp,
				      *offset, size,
				      dmflags, &locktype);
		if (error) {
			if (iolock) xfs_iunlock(xip, iolock);
			return -error;
		}
		xfs_ilock(xip, XFS_ILOCK_EXCL);
		eventsent = 1;

		/*
		 * The iolock was dropped and reaquired in XFS_SEND_DATA
		 * so we have to recheck the size when appending.
		 * We will only "goto start;" once, since having sent the
		 * event prevents another call to XFS_SEND_DATA, which is
		 * what allows the size to change in the first place.
		 */
		if ((file->f_flags & O_APPEND) &&
		    savedsize != xip->i_d.di_size) {
			*offset = isize = xip->i_d.di_size;
			goto start;
		}
	}
#endif

	/*
	 * If the offset is beyond the size of the file, we have a couple
	 * of things to do. First, if there is already space allocated
	 * we need to either create holes or zero the disk or ...
	 *
	 * If there is a page where the previous size lands, we need
	 * to zero it out up to the new size.
	 */

	if (!(ioflag & IO_ISDIRECT) && (*offset > isize && isize)) {
		error = xfs_zero_eof(BHV_TO_VNODE(bdp), io, *offset,
			isize, *offset + size);
		if (error) {
			xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
			return(-error);
		}
	}
	xfs_iunlock(xip, XFS_ILOCK_EXCL);

#if 0
	/*
	 * If we're writing the file then make sure to clear the
	 * setuid and setgid bits if the process is not being run
	 * by root.  This keeps people from modifying setuid and
	 * setgid binaries.
	 */

	if (((xip->i_d.di_mode & S_ISUID) ||
	    ((xip->i_d.di_mode & (S_ISGID | S_IXGRP)) ==
		(S_ISGID | S_IXGRP))) &&
	     !capable(CAP_FSETID)) {
		error = xfs_write_clear_setuid(xip);
		if (likely(!error))
			error = -remove_suid(file->f_dentry);
		if (unlikely(error)) {
			xfs_iunlock(xip, iolock);
			goto out_unlock_mutex;
		}
	}
#endif


//retry:
	if (unlikely(ioflag & IO_ISDIRECT)) {

#ifdef RMC
		xfs_off_t	pos = *offset;
		struct address_space *mapping = file->f_dentry->d_inode->i_mapping;
		struct inode    *inode = mapping->host;

		ret = precheck_file_write(file, inode, &size,  &pos);
		if (ret || size == 0)
			goto error;

		xfs_inval_cached_pages(vp, io, pos, 1, 1);
		inode->i_ctime = inode->i_mtime = CURRENT_TIME;
		/* mark_inode_dirty_sync(inode); - we do this later */

		xfs_rw_enter_trace(XFS_DIOWR_ENTER, io, buf, size, pos, ioflags);
		ret = generic_file_direct_IO(WRITE, file, (char *)buf, size, pos);
		xfs_inval_cached_pages(vp, io, pos, 1, 1);
		if (ret > 0)
			*offset += ret;
#endif
	} else {
		xfs_rw_enter_trace(XFS_WRITE_ENTER, io, buf, size, *offset, ioflags);
		ret = xfs_write_file(xip,uio,ioflag);
	}

	xfs_ichgtime(xip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);


//error:
	if (ret <= 0) {
		if (iolock)
			xfs_rwunlock(bdp, locktype);
		return ret;
	}

	XFS_STATS_ADD(xs_write_bytes, ret);

	if (*offset > xip->i_d.di_size) {
		xfs_ilock(xip, XFS_ILOCK_EXCL);
		if (*offset > xip->i_d.di_size) {
			printf("xfs_write look at doing more here %s:%d\n",__FILE__,__LINE__);
#ifdef RMC
			struct inode	*inode = LINVFS_GET_IP(vp);
			i_size_write(inode, *offset);
			mark_inode_dirty_sync(inode);
#endif

			xip->i_d.di_size = *offset;
			xip->i_update_core = 1;
			xip->i_update_size = 1;
		}
		xfs_iunlock(xip, XFS_ILOCK_EXCL);
	}

	/* Handle various SYNC-type writes */
#if 0
//	if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) {
#endif
	if (ioflag & IO_SYNC) {
		/*
		 * If we're treating this as O_DSYNC and we have not updated the
		 * size, force the log.
		 */
		if (!(mp->m_flags & XFS_MOUNT_OSYNCISOSYNC) &&
		    !(xip->i_update_size)) {
			xfs_inode_log_item_t	*iip = xip->i_itemp;

			/*
			 * If an allocation transaction occurred
			 * without extending the size, then we have to force
			 * the log up the proper point to ensure that the
			 * allocation is permanent.  We can't count on
			 * the fact that buffered writes lock out direct I/O
			 * writes - the direct I/O write could have extended
			 * the size nontransactionally, then finished before
			 * we started.  xfs_write_file will think that the file
			 * didn't grow but the update isn't safe unless the
			 * size change is logged.
			 *
			 * Force the log if we've committed a transaction
			 * against the inode or if someone else has and
			 * the commit record hasn't gone to disk (e.g.
			 * the inode is pinned).  This guarantees that
			 * all changes affecting the inode are permanent
			 * when we return.
			 */
			if (iip && iip->ili_last_lsn) {
				xfs_log_force(mp, iip->ili_last_lsn,
						XFS_LOG_FORCE | XFS_LOG_SYNC);
			} else if (xfs_ipincount(xip) > 0) {
				xfs_log_force(mp, (xfs_lsn_t)0,
						XFS_LOG_FORCE | XFS_LOG_SYNC);
			}

		} else {
			xfs_trans_t	*tp;

			/*
			 * O_SYNC or O_DSYNC _with_ a size update are handled
			 * the same way.
			 *
			 * If the write was synchronous then we need to make
			 * sure that the inode modification time is permanent.
			 * We'll have updated the timestamp above, so here
			 * we use a synchronous transaction to log the inode.
			 * It's not fast, but it's necessary.
			 *
			 * If this a dsync write and the size got changed
			 * non-transactionally, then we need to ensure that
			 * the size change gets logged in a synchronous
			 * transaction.
			 */

			tp = xfs_trans_alloc(mp, XFS_TRANS_WRITE_SYNC);
			if ((error = xfs_trans_reserve(tp, 0,
						      XFS_SWRITE_LOG_RES(mp),
						      0, 0, 0))) {
				/* Transaction reserve failed */
				xfs_trans_cancel(tp, 0);
			} else {
				/* Transaction reserve successful */
				xfs_ilock(xip, XFS_ILOCK_EXCL);
				xfs_trans_ijoin(tp, xip, XFS_ILOCK_EXCL);
				xfs_trans_ihold(tp, xip);
				xfs_trans_log_inode(tp, xip, XFS_ILOG_CORE);
				xfs_trans_set_sync(tp);
				error = xfs_trans_commit(tp, 0, NULL);
				xfs_iunlock(xip, XFS_ILOCK_EXCL);
			}
			if (error)
				goto out_unlock_internal;
		}

		xfs_rwunlock(bdp, locktype);
		return ret;

	} /* (ioflags & O_SYNC) */

out_unlock_internal:
	xfs_rwunlock(bdp, locktype);
#if 0
out_unlock_mutex:
	if (need_i_mutex)
		mutex_unlock(&inode->i_mutex);
#endif
 //out_nounlocks:
	return -error;
}
Beispiel #20
0
/*
 * Handle logging requirements of various synchronous types of write.
 */
int
xfs_write_sync_logforce(
	xfs_mount_t	*mp,
	xfs_inode_t	*ip)
{
	int		error = 0;

	/*
	 * If we're treating this as O_DSYNC and we have not updated the
	 * size, force the log.
	 */
	if (!(mp->m_flags & XFS_MOUNT_OSYNCISOSYNC) &&
	    !(ip->i_update_size)) {
		xfs_inode_log_item_t	*iip = ip->i_itemp;

		/*
		 * If an allocation transaction occurred
		 * without extending the size, then we have to force
		 * the log up the proper point to ensure that the
		 * allocation is permanent.  We can't count on
		 * the fact that buffered writes lock out direct I/O
		 * writes - the direct I/O write could have extended
		 * the size nontransactionally, then finished before
		 * we started.  xfs_write_file will think that the file
		 * didn't grow but the update isn't safe unless the
		 * size change is logged.
		 *
		 * Force the log if we've committed a transaction
		 * against the inode or if someone else has and
		 * the commit record hasn't gone to disk (e.g.
		 * the inode is pinned).  This guarantees that
		 * all changes affecting the inode are permanent
		 * when we return.
		 */
		if (iip && iip->ili_last_lsn) {
			xfs_log_force(mp, iip->ili_last_lsn,
					XFS_LOG_FORCE | XFS_LOG_SYNC);
		} else if (xfs_ipincount(ip) > 0) {
			xfs_log_force(mp, (xfs_lsn_t)0,
					XFS_LOG_FORCE | XFS_LOG_SYNC);
		}

	} else {
		xfs_trans_t	*tp;

		/*
		 * O_SYNC or O_DSYNC _with_ a size update are handled
		 * the same way.
		 *
		 * If the write was synchronous then we need to make
		 * sure that the inode modification time is permanent.
		 * We'll have updated the timestamp above, so here
		 * we use a synchronous transaction to log the inode.
		 * It's not fast, but it's necessary.
		 *
		 * If this a dsync write and the size got changed
		 * non-transactionally, then we need to ensure that
		 * the size change gets logged in a synchronous
		 * transaction.
		 */
		tp = xfs_trans_alloc(mp, XFS_TRANS_WRITE_SYNC);
		if ((error = xfs_trans_reserve(tp, 0,
						XFS_SWRITE_LOG_RES(mp),
						0, 0, 0))) {
			/* Transaction reserve failed */
			xfs_trans_cancel(tp, 0);
		} else {
			/* Transaction reserve successful */
			xfs_ilock(ip, XFS_ILOCK_EXCL);
			xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
			xfs_trans_ihold(tp, ip);
			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
			xfs_trans_set_sync(tp);
			error = xfs_trans_commit(tp, 0, NULL);
			xfs_iunlock(ip, XFS_ILOCK_EXCL);
		}
	}

	return error;
}
Beispiel #21
0
/*
 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
 * failed to get the inode flush lock but did get the inode locked SHARED.
 * Here we're trying to see if the inode buffer is incore, and if so whether it's
 * marked delayed write. If that's the case, we'll initiate a bawrite on that
 * buffer to expedite the process.
 *
 * We aren't holding the AIL_LOCK (or the flush lock) when this gets called,
 * so it is inherently race-y.
 */
STATIC void
xfs_inode_item_pushbuf(
	xfs_inode_log_item_t	*iip)
{
	xfs_inode_t	*ip;
	xfs_mount_t 	*mp;
	xfs_buf_t		*bp;
	uint		dopush;

	ip = iip->ili_inode;
	
	ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));

	/*
	 * The ili_pushbuf_flag keeps others from
	 * trying to duplicate our effort.
	 */
	ASSERT(iip->ili_pushbuf_flag != 0);
	ASSERT(iip->ili_push_owner == get_thread_id());

	/*
	 * If flushlock isn't locked anymore, chances are that the
	 * inode flush completed and the inode was taken off the AIL.
	 * So, just get out.
	 */
	if ((valusema(&(ip->i_flock)) > 0)  ||
	    ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
		iip->ili_pushbuf_flag = 0;
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
	    	return;
	}
	
	mp = ip->i_mount;
	bp = xfs_incore(mp->m_ddev_targ, iip->ili_format.ilf_blkno,
		    iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);

	if (bp != NULL) {
		if (XFS_BUF_ISDELAYWRITE(bp)) {
			/*
			 * We were racing with iflush because we don't hold
			 * the AIL_LOCK or the flush lock. However, at this point,
			 * we have the buffer, and we know that it's dirty.
			 * So, it's possible that iflush raced with us, and
			 * this item is already taken off the AIL.
			 * If not, we can flush it async.
			 */
			dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) && 
				  (valusema(&(ip->i_flock)) <= 0));
			iip->ili_pushbuf_flag = 0;
			xfs_iunlock(ip, XFS_ILOCK_SHARED);
			xfs_buftrace("INODE ITEM PUSH", bp);
			if (XFS_BUF_ISPINNED(bp)) {
				xfs_log_force(mp, (xfs_lsn_t)0,
					      XFS_LOG_FORCE);
			}
			if (dopush) {
				xfs_bawrite(mp, bp);
			} else {
				xfs_buf_relse(bp);
			}
		} else {
			iip->ili_pushbuf_flag = 0;
			xfs_iunlock(ip, XFS_ILOCK_SHARED); 
			xfs_buf_relse(bp);
		}
		return;
	}
	/*
	 * We have to be careful about resetting pushbuf flag too early (above).
	 * Eventhough in theory we can do it as soon as we have the buflock,
	 * we don't want others to be doing work needlessly. They'll come to
	 * this function thinking that pushing the buffer is there responsibility
	 * only to find that the buffer is still locked by another doing the
	 * same thing.XXX
	 */
	iip->ili_pushbuf_flag = 0;
	xfs_iunlock(ip, XFS_ILOCK_SHARED); 
	return;
}