Beispiel #1
0
/* Return a new DEK object using the string-to-key specifier S2K.  Use
   KEYID and PUBKEY_ALGO to prompt the user.  Returns NULL is the user
   selected to cancel the passphrase entry and if CANCELED is not
   NULL, sets it to true.

   MODE 0:  Allow cached passphrase
        1:  Ignore cached passphrase
        2:  Ditto, but create a new key
        3:  Allow cached passphrase; use the S2K salt as the cache ID
        4:  Ditto, but create a new key
*/
DEK *
passphrase_to_dek_ext (u32 *keyid, int pubkey_algo,
                       int cipher_algo, STRING2KEY *s2k, int mode,
                       const char *tryagain_text,
                       const char *custdesc, const char *custprompt,
                       int *canceled)
{
  char *pw = NULL;
  DEK *dek;
  STRING2KEY help_s2k;
  int dummy_canceled;
  char s2k_cacheidbuf[1+16+1], *s2k_cacheid = NULL;

  if (!canceled)
    canceled = &dummy_canceled;
  *canceled = 0;

  if ( !s2k )
    {
      log_assert (mode != 3 && mode != 4);
      /* This is used for the old rfc1991 mode
       * Note: This must match the code in encode.c with opt.rfc1991 set */
      s2k = &help_s2k;
      s2k->mode = 0;
      s2k->hash_algo = S2K_DIGEST_ALGO;
    }

  /* Create a new salt or what else to be filled into the s2k for a
     new key.  */
  if ((mode == 2 || mode == 4) && (s2k->mode == 1 || s2k->mode == 3))
    {
      gcry_randomize (s2k->salt, 8, GCRY_STRONG_RANDOM);
      if ( s2k->mode == 3 )
        {
          /* We delay the encoding until it is really needed.  This is
             if we are going to dynamically calibrate it, we need to
             call out to gpg-agent and that should not be done during
             option processing in main().  */
          if (!opt.s2k_count)
            opt.s2k_count = encode_s2k_iterations (0);
          s2k->count = opt.s2k_count;
        }
    }

  /* If we do not have a passphrase available in NEXT_PW and status
     information are request, we print them now. */
  if ( !next_pw && is_status_enabled() )
    {
      char buf[50];

      if ( keyid )
        {
          emit_status_need_passphrase (keyid,
                                       keyid[2] && keyid[3]? keyid+2:NULL,
                                       pubkey_algo);
	}
      else
        {
          snprintf (buf, sizeof buf -1, "%d %d %d",
                    cipher_algo, s2k->mode, s2k->hash_algo );
          write_status_text ( STATUS_NEED_PASSPHRASE_SYM, buf );
	}
    }

  /* If we do have a keyID, we do not have a passphrase available in
     NEXT_PW, we are not running in batch mode and we do not want to
     ignore the passphrase cache (mode!=1), print a prompt with
     information on that key. */
  if ( keyid && !opt.batch && !next_pw && mode!=1 )
    {
      PKT_public_key *pk = xmalloc_clear( sizeof *pk );
      char *p;

      p = get_user_id_native(keyid);
      tty_printf ("\n");
      tty_printf (_("You need a passphrase to unlock the secret key for\n"
                    "user: \"%s\"\n"),p);
      xfree(p);

      if ( !get_pubkey( pk, keyid ) )
        {
          const char *s = openpgp_pk_algo_name ( pk->pubkey_algo );

          tty_printf (_("%u-bit %s key, ID %s, created %s"),
                      nbits_from_pk( pk ), s?s:"?", keystr(keyid),
                      strtimestamp(pk->timestamp) );
          if ( keyid[2] && keyid[3]
               && keyid[0] != keyid[2] && keyid[1] != keyid[3] )
            {
              if ( keystrlen () > 10 )
                {
                  tty_printf ("\n");
                  tty_printf (_("         (subkey on main key ID %s)"),
                              keystr(&keyid[2]) );
                }
              else
                tty_printf ( _(" (main key ID %s)"), keystr(&keyid[2]) );
            }
          tty_printf("\n");
	}

      tty_printf("\n");
      free_public_key (pk);
    }

  if ( next_pw )
    {
      /* Simply return the passphrase we already have in NEXT_PW. */
      pw = next_pw;
      next_pw = NULL;
    }
  else if ( have_static_passphrase () )
    {
      /* Return the passphrase we have stored in FD_PASSWD. */
      pw = xmalloc_secure ( strlen(fd_passwd)+1 );
      strcpy ( pw, fd_passwd );
    }
  else
    {
      if ((mode == 3 || mode == 4) && (s2k->mode == 1 || s2k->mode == 3))
	{
	  memset (s2k_cacheidbuf, 0, sizeof s2k_cacheidbuf);
	  *s2k_cacheidbuf = 'S';
	  bin2hex (s2k->salt, 8, s2k_cacheidbuf + 1);
	  s2k_cacheid = s2k_cacheidbuf;
	}

      if (opt.pinentry_mode == PINENTRY_MODE_LOOPBACK)
        {
          char buf[32];

          snprintf (buf, sizeof (buf), "%u", 100);
          write_status_text (STATUS_INQUIRE_MAXLEN, buf);
        }

      /* Divert to the gpg-agent. */
      pw = passphrase_get (keyid, mode == 2, s2k_cacheid,
                           (mode == 2 || mode == 4)? opt.passphrase_repeat : 0,
                           tryagain_text, custdesc, custprompt, canceled);
      if (*canceled)
        {
          xfree (pw);
	  write_status( STATUS_MISSING_PASSPHRASE );
          return NULL;
        }
    }

  if ( !pw || !*pw )
    write_status( STATUS_MISSING_PASSPHRASE );

  /* Hash the passphrase and store it in a newly allocated DEK object.
     Keep a copy of the passphrase in LAST_PW for use by
     get_last_passphrase(). */
  dek = xmalloc_secure_clear ( sizeof *dek );
  dek->algo = cipher_algo;
  if ( (!pw || !*pw) && (mode == 2 || mode == 4))
    dek->keylen = 0;
  else
    {
      gpg_error_t err;

      dek->keylen = openpgp_cipher_get_algo_keylen (dek->algo);
      if (!(dek->keylen > 0 && dek->keylen <= DIM(dek->key)))
        BUG ();
      err = gcry_kdf_derive (pw, strlen (pw),
                             s2k->mode == 3? GCRY_KDF_ITERSALTED_S2K :
                             s2k->mode == 1? GCRY_KDF_SALTED_S2K :
                             /* */           GCRY_KDF_SIMPLE_S2K,
                             s2k->hash_algo, s2k->salt, 8,
                             S2K_DECODE_COUNT(s2k->count),
                             dek->keylen, dek->key);
      if (err)
        {
          log_error ("gcry_kdf_derive failed: %s", gpg_strerror (err));
          xfree (pw);
          xfree (dek);
	  write_status( STATUS_MISSING_PASSPHRASE );
          return NULL;
        }
    }
  if (s2k_cacheid)
    memcpy (dek->s2k_cacheid, s2k_cacheid, sizeof dek->s2k_cacheid);
  xfree(last_pw);
  last_pw = pw;
  return dek;
}
Beispiel #2
0
/****************
 * Protect the secret key with the passphrase from DEK
 */
int
protect_secret_key( PKT_secret_key *sk, DEK *dek )
{
    int i,j, rc = 0;
    byte *buffer;
    size_t nbytes;
    u16 csum;

    if( !dek )
	return 0;
    if( !sk->is_protected ) { /* okay, apply the protection */
	gcry_cipher_hd_t cipher_hd=NULL;
	if ( openpgp_cipher_test_algo ( sk->protect.algo ) ) {
            /* Unsupport protection algorithm. */
            rc = gpg_error (GPG_ERR_CIPHER_ALGO);
        }
	else {

	    print_cipher_algo_note( sk->protect.algo );

	    if ( openpgp_cipher_open (&cipher_hd, sk->protect.algo,
				      GCRY_CIPHER_MODE_CFB,
				      (GCRY_CIPHER_SECURE
				       | (sk->protect.algo >= 100 ?
					  0 : GCRY_CIPHER_ENABLE_SYNC))) )
              BUG();
	    if ( gcry_cipher_setkey ( cipher_hd, dek->key, dek->keylen ) )
		log_info(_("WARNING: Weak key detected"
			   " - please change passphrase again.\n"));
	    sk->protect.ivlen = openpgp_cipher_get_algo_blklen (sk->protect.algo);
	    assert( sk->protect.ivlen <= DIM(sk->protect.iv) );
	    if( sk->protect.ivlen != 8 && sk->protect.ivlen != 16 )
		BUG(); /* yes, we are very careful */
	    gcry_create_nonce (sk->protect.iv, sk->protect.ivlen);
	    gcry_cipher_setiv (cipher_hd, sk->protect.iv, sk->protect.ivlen);

	    if( sk->version >= 4 ) {
                byte *bufarr[PUBKEY_MAX_NSKEY];
		size_t narr[PUBKEY_MAX_NSKEY];
		unsigned int nbits[PUBKEY_MAX_NSKEY];
		int ndata=0;
		byte *p, *data;

		for (j=0, i = pubkey_get_npkey(sk->pubkey_algo);
			i < pubkey_get_nskey(sk->pubkey_algo); i++, j++ )
                  {
		    assert (!gcry_mpi_get_flag (sk->skey[i],
                                                GCRYMPI_FLAG_OPAQUE));
		    if (gcry_mpi_aprint (GCRYMPI_FMT_USG, bufarr+j,
                                         narr+j, sk->skey[i]))
                      BUG();
		    nbits[j] = gcry_mpi_get_nbits (sk->skey[i]);
		    ndata += narr[j] + 2;
                  }
		for ( ; j < PUBKEY_MAX_NSKEY; j++ )
                  bufarr[j] = NULL;

		ndata += opt.simple_sk_checksum? 2 : 20; /* for checksum */

		data = xmalloc_secure( ndata );
		p = data;
		for(j=0; j < PUBKEY_MAX_NSKEY && bufarr[j]; j++ ) {
		    p[0] = nbits[j] >> 8 ;
		    p[1] = nbits[j];
		    p += 2;
		    memcpy(p, bufarr[j], narr[j] );
		    p += narr[j];
		    xfree(bufarr[j]);
		}

                if (opt.simple_sk_checksum) {
                    log_info (_("generating the deprecated 16-bit checksum"
                              " for secret key protection\n"));
                    csum = checksum( data, ndata-2);
                    sk->csum = csum;
                    *p++ =	csum >> 8;
                    *p++ =	csum;
                    sk->protect.sha1chk = 0;
                }
                else {
Beispiel #3
0
static int
xxxx_do_check( PKT_secret_key *sk, const char *tryagain_text, int mode,
               int *canceled )
{
    gpg_error_t err;
    byte *buffer;
    u16 csum=0;
    int i, res;
    size_t nbytes;

    if( sk->is_protected ) { /* remove the protection */
	DEK *dek = NULL;
	u32 keyid[4]; /* 4! because we need two of them */
	gcry_cipher_hd_t cipher_hd=NULL;
	PKT_secret_key *save_sk;

	if( sk->protect.s2k.mode == 1001 ) {
	    log_info(_("secret key parts are not available\n"));
	    return GPG_ERR_UNUSABLE_SECKEY;
	}
	if( sk->protect.algo == CIPHER_ALGO_NONE )
	    BUG();
	if( openpgp_cipher_test_algo( sk->protect.algo ) ) {
	    log_info(_("protection algorithm %d%s is not supported\n"),
			sk->protect.algo,sk->protect.algo==1?" (IDEA)":"" );
	    return GPG_ERR_CIPHER_ALGO;
	}
	if(gcry_md_test_algo (sk->protect.s2k.hash_algo))
	  {
	    log_info(_("protection digest %d is not supported\n"),
		     sk->protect.s2k.hash_algo);
	    return GPG_ERR_DIGEST_ALGO;
	  }
	keyid_from_sk( sk, keyid );
	keyid[2] = keyid[3] = 0;
	if (!sk->flags.primary)
          {
            keyid[2] = sk->main_keyid[0];
            keyid[3] = sk->main_keyid[1];
          }
	dek = passphrase_to_dek( keyid, sk->pubkey_algo, sk->protect.algo,
				 &sk->protect.s2k, mode,
                                 tryagain_text, canceled );
        if (!dek && canceled && *canceled)
	    return GPG_ERR_CANCELED;


	err = openpgp_cipher_open (&cipher_hd, sk->protect.algo,
				   GCRY_CIPHER_MODE_CFB,
				   (GCRY_CIPHER_SECURE
				    | (sk->protect.algo >= 100 ?
				       0 : GCRY_CIPHER_ENABLE_SYNC)));
        if (err)
          log_fatal ("cipher open failed: %s\n", gpg_strerror (err) );

	err = gcry_cipher_setkey (cipher_hd, dek->key, dek->keylen);
        if (err)
          log_fatal ("set key failed: %s\n", gpg_strerror (err) );

	xfree(dek);
	save_sk = copy_secret_key( NULL, sk );

	gcry_cipher_setiv ( cipher_hd, sk->protect.iv, sk->protect.ivlen );

	csum = 0;
	if( sk->version >= 4 ) {
            int ndata;
	    unsigned int ndatabits;
	    byte *p, *data;
            u16 csumc = 0;

	    i = pubkey_get_npkey(sk->pubkey_algo);

            assert ( gcry_mpi_get_flag (sk->skey[i], GCRYMPI_FLAG_OPAQUE ));
            p = gcry_mpi_get_opaque ( sk->skey[i], &ndatabits );
            ndata = (ndatabits+7)/8;

            if ( ndata > 1 )
              csumc = buf16_to_u16 (p+ndata-2);
	    data = xmalloc_secure ( ndata );
	    gcry_cipher_decrypt ( cipher_hd, data, ndata, p, ndata );
	    gcry_mpi_release (sk->skey[i]); sk->skey[i] = NULL ;

	    p = data;
            if (sk->protect.sha1chk) {
                /* This is the new SHA1 checksum method to detect
                   tampering with the key as used by the Klima/Rosa
                   attack */
                sk->csum = 0;
                csum = 1;
                if( ndata < 20 )
                    log_error("not enough bytes for SHA-1 checksum\n");
                else {
                    gcry_md_hd_t h;

                    if ( gcry_md_open (&h, DIGEST_ALGO_SHA1, 1))
                        BUG(); /* Algo not available. */
                    gcry_md_write (h, data, ndata - 20);
                    gcry_md_final (h);
                    if (!memcmp (gcry_md_read (h, DIGEST_ALGO_SHA1),
                                 data + ndata - 20, 20) )
                      {
                        /* Digest does match.  We have to keep the old
                           style checksum in sk->csum, so that the
                           test used for unprotected keys does work.
                           This test gets used when we are adding new
                           keys. */
                        sk->csum = csum = checksum (data, ndata-20);
                      }
                    gcry_md_close (h);
                }
            }
            else {
                if( ndata < 2 ) {
                    log_error("not enough bytes for checksum\n");
                    sk->csum = 0;
                    csum = 1;
                }
                else {
                    csum = checksum( data, ndata-2);
                    sk->csum = data[ndata-2] << 8 | data[ndata-1];
                    if ( sk->csum != csum ) {
                        /* This is a PGP 7.0.0 workaround */
                        sk->csum = csumc; /* take the encrypted one */
                    }
                }
            }

            /* Must check it here otherwise the mpi_read_xx would fail
               because the length may have an arbitrary value */
            if( sk->csum == csum ) {
                for( ; i < pubkey_get_nskey(sk->pubkey_algo); i++ ) {
                    if ( gcry_mpi_scan( &sk->skey[i], GCRYMPI_FMT_PGP,
                                        p, ndata, &nbytes))
                      {
                        /* Checksum was okay, but not correctly
                           decrypted.  */
                        sk->csum = 0;
                        csum = 1;
                        break;
                      }
                    ndata -= nbytes;
                    p += nbytes;
                }
                /* Note: at this point ndata should be 2 for a simple
                   checksum or 20 for the sha1 digest */
            }
	    xfree(data);
	}
	else {
	    for(i=pubkey_get_npkey(sk->pubkey_algo);
		    i < pubkey_get_nskey(sk->pubkey_algo); i++ ) {
                byte *p;
                size_t ndata;
                unsigned int ndatabits;

                assert (gcry_mpi_get_flag (sk->skey[i], GCRYMPI_FLAG_OPAQUE));
                p = gcry_mpi_get_opaque (sk->skey[i], &ndatabits);
                ndata = (ndatabits+7)/8;
                assert (ndata >= 2);
                assert (ndata == ((p[0] << 8 | p[1]) + 7)/8 + 2);
                buffer = xmalloc_secure (ndata);
		gcry_cipher_sync (cipher_hd);
                buffer[0] = p[0];
                buffer[1] = p[1];
                gcry_cipher_decrypt (cipher_hd, buffer+2, ndata-2,
                                     p+2, ndata-2);
                csum += checksum (buffer, ndata);
                gcry_mpi_release (sk->skey[i]);

		err = gcry_mpi_scan( &sk->skey[i], GCRYMPI_FMT_PGP,
				     buffer, ndata, &ndata );
		xfree (buffer);
                if (err)
                  {
                    /* Checksum was okay, but not correctly
                       decrypted.  */
                    sk->csum = 0;
                    csum = 1;
                    break;
                  }
/*  		csum += checksum_mpi (sk->skey[i]); */
	    }
	}
	gcry_cipher_close ( cipher_hd );

	/* Now let's see whether we have used the correct passphrase. */
	if( csum != sk->csum ) {
	    copy_secret_key( sk, save_sk );
            passphrase_clear_cache ( keyid, NULL, sk->pubkey_algo );
	    free_secret_key( save_sk );
	    return gpg_error (GPG_ERR_BAD_PASSPHRASE);
	}

	/* The checksum may fail, so we also check the key itself. */
	res = pk_check_secret_key ( sk->pubkey_algo, sk->skey );
	if( res ) {
	    copy_secret_key( sk, save_sk );
            passphrase_clear_cache ( keyid, NULL, sk->pubkey_algo );
	    free_secret_key( save_sk );
	    return gpg_error (GPG_ERR_BAD_PASSPHRASE);
	}
	free_secret_key( save_sk );
	sk->is_protected = 0;
    }
    else { /* not protected, assume it is okay if the checksum is okay */
	csum = 0;
	for(i=pubkey_get_npkey(sk->pubkey_algo);
		i < pubkey_get_nskey(sk->pubkey_algo); i++ ) {
	    csum += checksum_mpi( sk->skey[i] );
	}
	if( csum != sk->csum )
	    return GPG_ERR_CHECKSUM;
    }

    return 0;
}
Beispiel #4
0
/* Return a new DEK object using the string-to-key specifier S2K.
 * Returns NULL if the user canceled the passphrase entry and if
 * CANCELED is not NULL, sets it to true.
 *
 * If CREATE is true a new passphrase sll be created.  If NOCACHE is
 * true the symmetric key caching will not be used.  */
DEK *
passphrase_to_dek (int cipher_algo, STRING2KEY *s2k,
                   int create, int nocache,
                   const char *tryagain_text, int *canceled)
{
  char *pw = NULL;
  DEK *dek;
  STRING2KEY help_s2k;
  int dummy_canceled;
  char s2k_cacheidbuf[1+16+1];
  char *s2k_cacheid = NULL;

  if (!canceled)
    canceled = &dummy_canceled;
  *canceled = 0;

  if ( !s2k )
    {
      log_assert (create && !nocache);
      /* This is used for the old rfc1991 mode
       * Note: This must match the code in encode.c with opt.rfc1991 set */
      memset (&help_s2k, 0, sizeof (help_s2k));
      s2k = &help_s2k;
      s2k->hash_algo = S2K_DIGEST_ALGO;
    }

  /* Create a new salt or what else to be filled into the s2k for a
     new key.  */
  if (create && (s2k->mode == 1 || s2k->mode == 3))
    {
      gcry_randomize (s2k->salt, 8, GCRY_STRONG_RANDOM);
      if ( s2k->mode == 3 )
        {
          /* We delay the encoding until it is really needed.  This is
             if we are going to dynamically calibrate it, we need to
             call out to gpg-agent and that should not be done during
             option processing in main().  */
          if (!opt.s2k_count)
            opt.s2k_count = encode_s2k_iterations (0);
          s2k->count = opt.s2k_count;
        }
    }

  /* If we do not have a passphrase available in NEXT_PW and status
     information are request, we print them now. */
  if ( !next_pw && is_status_enabled() )
    {
      char buf[50];

      snprintf (buf, sizeof buf, "%d %d %d",
                cipher_algo, s2k->mode, s2k->hash_algo );
      write_status_text ( STATUS_NEED_PASSPHRASE_SYM, buf );
    }

  if ( next_pw )
    {
      /* Simply return the passphrase we already have in NEXT_PW. */
      pw = next_pw;
      next_pw = NULL;
    }
  else if ( have_static_passphrase () )
    {
      /* Return the passphrase we have stored in FD_PASSWD. */
      pw = xmalloc_secure ( strlen(fd_passwd)+1 );
      strcpy ( pw, fd_passwd );
    }
  else
    {
      if (!nocache && (s2k->mode == 1 || s2k->mode == 3))
	{
	  memset (s2k_cacheidbuf, 0, sizeof s2k_cacheidbuf);
	  *s2k_cacheidbuf = 'S';
	  bin2hex (s2k->salt, 8, s2k_cacheidbuf + 1);
	  s2k_cacheid = s2k_cacheidbuf;
	}

      if (opt.pinentry_mode == PINENTRY_MODE_LOOPBACK)
        {
          char buf[32];

          snprintf (buf, sizeof (buf), "%u", 100);
          write_status_text (STATUS_INQUIRE_MAXLEN, buf);
        }

      /* Divert to the gpg-agent. */
      pw = passphrase_get (create && nocache, s2k_cacheid,
                           create? opt.passphrase_repeat : 0,
                           tryagain_text, canceled);
      if (*canceled)
        {
          xfree (pw);
	  write_status( STATUS_MISSING_PASSPHRASE );
          return NULL;
        }
    }

  if ( !pw || !*pw )
    write_status( STATUS_MISSING_PASSPHRASE );

  /* Hash the passphrase and store it in a newly allocated DEK object.
     Keep a copy of the passphrase in LAST_PW for use by
     get_last_passphrase(). */
  dek = xmalloc_secure_clear ( sizeof *dek );
  dek->algo = cipher_algo;
  if ( (!pw || !*pw) && create)
    dek->keylen = 0;
  else
    {
      gpg_error_t err;

      dek->keylen = openpgp_cipher_get_algo_keylen (dek->algo);
      if (!(dek->keylen > 0 && dek->keylen <= DIM(dek->key)))
        BUG ();
      err = gcry_kdf_derive (pw, strlen (pw),
                             s2k->mode == 3? GCRY_KDF_ITERSALTED_S2K :
                             s2k->mode == 1? GCRY_KDF_SALTED_S2K :
                             /* */           GCRY_KDF_SIMPLE_S2K,
                             s2k->hash_algo, s2k->salt, 8,
                             S2K_DECODE_COUNT(s2k->count),
                             dek->keylen, dek->key);
      if (err)
        {
          log_error ("gcry_kdf_derive failed: %s", gpg_strerror (err));
          xfree (pw);
          xfree (dek);
	  write_status( STATUS_MISSING_PASSPHRASE );
          return NULL;
        }
    }
  if (s2k_cacheid)
    memcpy (dek->s2k_cacheid, s2k_cacheid, sizeof dek->s2k_cacheid);
  xfree(last_pw);
  last_pw = pw;
  return dek;
}