Beispiel #1
0
bool
ImageBuf::write (ImageOutput *out,
                 ProgressCallback progress_callback,
                 void *progress_callback_data) const
{
    stride_t as = AutoStride;
    bool ok = true;
    if (m_localpixels) {
        // In-core pixel buffer for the whole image
        ok = out->write_image (m_spec.format, m_localpixels, as, as, as,
                               progress_callback, progress_callback_data);
    } else if (deep()) {
        // Deep image record
        ok = out->write_deep_image (m_deepdata);
    } else {
        // Backed by ImageCache
        std::vector<char> tmp (m_spec.image_bytes());
        get_pixels (xbegin(), xend(), ybegin(), yend(), zbegin(), zend(),
                    m_spec.format, &tmp[0]);
        ok = out->write_image (m_spec.format, &tmp[0], as, as, as,
                               progress_callback, progress_callback_data);
        // FIXME -- not good for huge images.  Instead, we should read
        // little bits at a time (scanline or tile blocks).
    }
    if (! ok)
        error ("%s", out->geterror ());
    return ok;
}
Beispiel #2
0
bool
ImageBuf::write (ImageOutput *out,
                 ProgressCallback progress_callback,
                 void *progress_callback_data) const
{
    stride_t as = AutoStride;
    bool ok = true;
    if (m_localpixels) {
        ok = out->write_image (m_spec.format, &m_pixels[0], as, as, as,
                               progress_callback, progress_callback_data);
    } else {
        std::vector<char> tmp (m_spec.image_bytes());
        copy_pixels (xbegin(), xend(), ybegin(), yend(), m_spec.format,
                     &tmp[0]);
        ok = out->write_image (m_spec.format, &tmp[0], as, as, as,
                               progress_callback, progress_callback_data);
        // FIXME -- not good for huge images.  Instead, we should read
        // little bits at a time (scanline or tile blocks).
    }
    if (! ok)
        m_err = out->geterror ();
    return ok;
}
Beispiel #3
0
void function_minimizer::shmc_mcmc_routine(int nmcmc,int iseed0,double dscale,
					  int restart_flag) {

  if (nmcmc<=0)
    {
      cerr << endl << "Error: Negative iterations for MCMC not meaningful" << endl;
      ad_exit(1);
    }

  uostream * pofs_psave=NULL;
  if (mcmc2_flag==1)
    {
      initial_params::restore_start_phase();
    }
  initial_params::set_inactive_random_effects();
  initial_params::set_active_random_effects();
  int nvar_re=initial_params::nvarcalc();
  int nvar=initial_params::nvarcalc(); // get the number of active parameters
  if (mcmc2_flag==0)
    {
      initial_params::set_inactive_random_effects();
      nvar=initial_params::nvarcalc(); // get the number of active parameters
    }
  initial_params::restore_start_phase();

  independent_variables parsave(1,nvar_re);
  // dvector x(1,nvar);
  // initial_params::xinit(x);
  // dvector pen_vector(1,nvar);
  // {
  //   initial_params::reset(dvar_vector(x),pen_vector);
  // }
  initial_params::mc_phase=1;

  int old_Hybrid_bounded_flag=-1;
  int on,nopt = 0;

  //// ------------------------------ Parse input options
  // Step size. If not specified, will be adapted. If specified must be >0
  // and will not be adapted.
  double eps=0.1;
  double _eps=-1.0;
  int useDA=1; 			// whether to adapt step size
  if ( (on=option_match(ad_comm::argc,ad_comm::argv,"-hyeps",nopt))>-1)
    {
      if (!nopt) // not specified means to adapt, using function below to find reasonable one
	{
	  cerr << "Warning: No step size given after -hyeps, ignoring" << endl;
	  useDA=1;
	}
      else			// read in specified value and do not adapt
	{
	  istringstream ist(ad_comm::argv[on+1]);
	  ist >> _eps;
	  if (_eps<=0)
	    {
	      cerr << "Error: step size (-hyeps argument) needs positive number";
	      ad_exit(1);
	    }
	  else
	    {
	      eps=_eps;
	      useDA=0;
	    }
	}
    }
  // Chain number -- for console display purposes only
  int chain=1;
  if ( (on=option_match(ad_comm::argc,ad_comm::argv,"-chain",nopt))>-1) {
    if (nopt) {
      int iii=atoi(ad_comm::argv[on+1]);
      if (iii <1) {
	cerr << "Error: chain must be >= 1" << endl;
	ad_exit(1);
      } else {
	chain=iii;
      }
    }
  }
  // Number of leapfrog steps. Defaults to 10.
  int L=10;
  if ( (on=option_match(ad_comm::argc,ad_comm::argv,"-hynstep",nopt))>-1)
    {
      if (nopt)
	{
	  int _L=atoi(ad_comm::argv[on+1]);
	  if (_L < 1 )
	    {
	      cerr << "Error: hynstep argument must be integer > 0 " << endl;
	      ad_exit(1);
	    }
	  else
	    {
	      L=_L;
	    }
	}
    }

  // Number of warmup samples if using adaptation of step size. Defaults to
  // half of iterations.
  int nwarmup= (int)nmcmc/2;
  if ( (on=option_match(ad_comm::argc,ad_comm::argv,"-nwarmup",nopt))>-1)
    {
      if (nopt)
        {
          int iii=atoi(ad_comm::argv[on+1]);
          if (iii <=0 || iii > nmcmc)
	    {
	      cerr << "Error: nwarmup must be 0 < nwarmup < nmcmc" << endl;
	      ad_exit(1);
	    }
          else
	    {
	      nwarmup=iii;
	    }
        }
    }

  // Target acceptance rate for step size adaptation. Must be
  // 0<adapt_delta<1. Defaults to 0.8.
  double adapt_delta=0.8; // target acceptance rate specified by the user
  if ( (on=option_match(ad_comm::argc,ad_comm::argv,"-adapt_delta",nopt))>-1)
    {
      if (nopt)
	{
	  istringstream ist(ad_comm::argv[on+1]);
	  double _adapt_delta;
	  ist >> _adapt_delta;
	  if (_adapt_delta < 0 || _adapt_delta > 1 )
	    {
	      cerr << "Error: adapt_delta must be between 0 and 1"
		" using default of 0.8" << endl;
	    }
	  else
	    {
	      adapt_delta=_adapt_delta;
	    }
	}
    }
  // Use diagnoal covariance (identity mass matrix)
  int diag_option=0;
  if ( (on=option_match(ad_comm::argc,ad_comm::argv,"-mcdiag"))>-1)
    {
      diag_option=1;
      cout << " Setting covariance matrix to diagonal with entries " << dscale
	   << endl;
    }
  // Restart chain from previous run?
  int mcrestart_flag=option_match(ad_comm::argc,ad_comm::argv,"-mcr");
  if(mcrestart_flag > -1){
    cerr << endl << "Error: -mcr option not implemented for HMC" << endl;
    ad_exit(1);
  }

  if ( (on=option_match(ad_comm::argc,ad_comm::argv,"-mcec"))>-1)
    {
      cerr << endl << "Error: -mcec option not yet implemented with HMC" << endl;
      ad_exit(1);
      // use_empirical_flag=1;
      // read_empirical_covariance_matrix(nvar,S,ad_comm::adprogram_name);
    }

  // Prepare the mass matrix for use. Depends on many factors below.
  dmatrix S(1,nvar,1,nvar);
  dvector old_scale(1,nvar);
  int old_nvar;
  // Need to grab old_scale values still, since it is scaled below
  read_covariance_matrix(S,nvar,old_Hybrid_bounded_flag,old_scale);
  if (diag_option)		// set covariance to be diagonal
    {
      S.initialize();
      for (int i=1;i<=nvar;i++)
	{
	  S(i,i)=dscale;
	}
    }

  // How much to thin, for now fixed at 1.
  if ( (on=option_match(ad_comm::argc,ad_comm::argv,"-mcsave"))>-1)
    {
      cerr << "Option -mcsave does not currently work with HMC -- every iteration is saved" << endl;
      ad_exit(1);
    }
  //// ------------------------------ End of input processing


  //// Setup more inputs and outputs
  pofs_psave=
    new uostream((char*)(ad_comm::adprogram_name + adstring(".psv")));
  if (!pofs_psave|| !(*pofs_psave))
    {
      cerr << "Error trying to open file" <<
	ad_comm::adprogram_name + adstring(".psv") << endl;
      ad_exit(1);
    }
  if (mcrestart_flag == -1 )
    {
      (*pofs_psave) << nvar;
    }
  // need to rescale the hessian
  // get the current scale
  dvector x0(1,nvar);
  dvector current_scale(1,nvar);
  initial_params::xinit(x0);
  int mctmp=initial_params::mc_phase;
  initial_params::mc_phase=0;
  initial_params::stddev_scale(current_scale,x0);
  initial_params::mc_phase=mctmp;
  // cout << "old scale=" <<  old_scale << endl;
  // cout << "current scale=" << current_scale << endl;
  // cout << "S before=" << S << endl;
  // I think this is only needed if mcmc2 is used??
  // for (int i=1;i<=nvar;i++)
  //   {
  //     for (int j=1;j<=nvar;j++)
  // 	{
  // 	  S(i,j)*=old_scale(i)*old_scale(j);
  // 	}
  //   }
  if(diag_option){
    for (int i=1;i<=nvar;i++)
      {
	for (int j=1;j<=nvar;j++)
	  {
	    S(i,j)*=current_scale(i)*current_scale(j);
	  }
      }
  }
  //  cout << "S after=" << S << endl;
  gradient_structure::set_NO_DERIVATIVES();
  if (mcmc2_flag==0)
    {
      initial_params::set_inactive_random_effects();
    }
  // Setup random number generator, based on seed passed
  int iseed=2197;
  if (iseed0) iseed=iseed0;
  random_number_generator rng(iseed);
  gradient_structure::set_YES_DERIVATIVES();
  initial_params::xinit(x0);

  // Dual averaging components
  dvector epsvec(1,nmcmc+1), epsbar(1,nmcmc+1), Hbar(1,nmcmc+1);
  epsvec.initialize(); epsbar.initialize(); Hbar.initialize();
  double time_warmup=0;
  double time_total=0;
  std::clock_t start = clock();
  time_t now = time(0);
  tm* localtm = localtime(&now);
  cout << endl << "Starting static HMC for model '" << ad_comm::adprogram_name <<
    "' at " << asctime(localtm);
  // write sampler parameters
  ofstream adaptation("adaptation.csv", ios::trunc);
  adaptation << "accept_stat__,stepsize__,int_time__,energy__,lp__" << endl;

  // Declare and initialize the variables needed for the algorithm
  dmatrix chd = choleski_decomp(S); // cholesky decomp of mass matrix
  dvector y(1,nvar); // unbounded parameters
  y.initialize();
  // transformed params
  independent_variables z(1,nvar); z=chd*y;
  dvector gr(1,nvar);		// gradients in unbounded space
  // Need to run this to fill gr with current gradients and initial NLL.
  double nllbegin=get_hybrid_monte_carlo_value(nvar,z,gr);
  if(std::isnan(nllbegin)){
    cerr << "Starting MCMC trajectory at NaN -- something is wrong!" << endl;
    ad_exit(1);
  }
  // initial rotated gradient
  dvector gr2(1,nvar); gr2=gr*chd;
  dvector p(1,nvar);		// momentum vector
  p.fill_randn(rng);
  // Copy initial value to parsave in case first trajectory rejected
  initial_params::copy_all_values(parsave,1.0);
  double iaccept=0.0;
  // The gradient and params at beginning of trajectory, in case rejected.
  dvector gr2begin(1,nvar); gr2begin=gr2;
  dvector ybegin(1,nvar); ybegin=y;
  double nll=nllbegin;
  // if(useDA){
  //   eps=find_reasonable_stepsize(nvar,y,p,chd);
  //   epsvec(1)=eps; epsbar(1)=eps; Hbar(1)=0;
  // }
  double mu=log(10*eps);

  // Start of MCMC chain
  for (int is=1;is<=nmcmc;is++) {
    // Random momentum for next iteration, only affects Ham values
    p.fill_randn(rng);
    double H0=nll+0.5*norm2(p);

    // Generate trajectory
    int divergence=0;
    for (int i=1;i<=L;i++) {
      // leapfrog updates gr, p, y, and gr2 by reference
      nll=leapfrog(nvar, gr, chd, eps, p, y, gr2);
      // Break trajectory early if a divergence occurs to save computation
      if(std::isnan(nll)){
	divergence=1; break;
      }
    } // end of trajectory

    // Test whether to accept the proposed state
    double Ham=nll+0.5*norm2(p); // Update Hamiltonian for proposed set
    double alpha=min(1.0, exp(H0-Ham)); // acceptance ratio
    double rr=randu(rng);	   // Runif(1)
    if (rr<alpha && !divergence){ // accept
      iaccept++;
      // Update for next iteration: params, Hamiltonian and gr2
      ybegin=y;
      gr2begin=gr2;
      nllbegin=nll;
      initial_params::copy_all_values(parsave,1.0);
    } else {
      // Reject and don't update anything to reuse initials for next trajectory
      y=ybegin;
      gr2=gr2begin;
      nll=nllbegin;
    }
    // Save parameters to psv file, duplicated if rejected
    (*pofs_psave) << parsave;

    // Adaptation of step size (eps).
    if(useDA && is <= nwarmup){
      eps=adapt_eps(is, eps,  alpha, adapt_delta, mu, epsvec, epsbar, Hbar);
    }
    adaptation << alpha << "," <<  eps << "," << eps*L << "," << H0 << "," << -nll << endl;
    if(is ==nwarmup) time_warmup = ( std::clock()-start)/(double) CLOCKS_PER_SEC;
    print_mcmc_progress(is, nmcmc, nwarmup, chain);
  } // end of MCMC chain

  // This final ratio should closely match adapt_delta
  if(useDA){
    cout << "Final acceptance ratio=" << iaccept/nmcmc << " and target is " << adapt_delta<<endl;
    cout << "Final step size=" << eps << "; after " << nwarmup << " warmup iterations"<< endl;
  } else {
    cout << "Final acceptance ratio=" << iaccept/nmcmc << endl;
  }

  time_total = ( std::clock() - start ) / (double) CLOCKS_PER_SEC;
  print_mcmc_timing(time_warmup, time_total);

  // I assume this closes the connection to the file??
  if (pofs_psave)
    {
      delete pofs_psave;
      pofs_psave=NULL;
    }
} // end of HMC function