char * userboot_fmtdev(void *vdev) { struct disk_devdesc *dev = (struct disk_devdesc *)vdev; static char buf[128]; /* XXX device length constant? */ switch(dev->d_type) { case DEVT_NONE: strcpy(buf, "(no device)"); break; case DEVT_CD: sprintf(buf, "%s%d:", dev->d_dev->dv_name, dev->d_unit); break; case DEVT_DISK: return (disk_fmtdev(vdev)); case DEVT_NET: sprintf(buf, "%s%d:", dev->d_dev->dv_name, dev->d_unit); break; case DEVT_ZFS: #if defined(USERBOOT_ZFS_SUPPORT) return (zfs_fmtdev(vdev)); #else sprintf(buf, "%s%d:", dev->d_dev->dv_name, dev->d_unit); #endif break; } return(buf); }
char * efi_fmtdev(void *vdev) { struct devdesc *dev = (struct devdesc *)vdev; static char buf[SPECNAMELEN + 1]; switch(dev->d_type) { case DEVT_NONE: strcpy(buf, "(no device)"); break; case DEVT_DISK: return (disk_fmtdev(vdev)); #ifdef EFI_ZFS_BOOT case DEVT_ZFS: return (zfs_fmtdev(dev)); #endif default: sprintf(buf, "%s%d:", dev->d_dev->dv_name, dev->d_unit); break; } return (buf); }
/* * Set the 'current device' by (if possible) recovering the boot device as * supplied by the initial bootstrap. */ static void extract_currdev(void) { struct disk_devdesc dev; //bzero(&dev, sizeof(dev)); #if defined(USERBOOT_ZFS_SUPPORT) if (userboot_zfs_found) { struct zfs_devdesc zdev; /* Leave the pool/root guid's unassigned */ bzero(&zdev, sizeof(zdev)); zdev.d_dev = &zfs_dev; zdev.d_type = zdev.d_dev->dv_type; dev = *(struct disk_devdesc *)&zdev; init_zfs_bootenv(zfs_fmtdev(&dev)); } else #endif if (userboot_disk_maxunit > 0) { dev.d_dev = &userboot_disk; dev.d_type = dev.d_dev->dv_type; dev.d_unit = 0; dev.d_slice = 0; dev.d_partition = 0; /* * If we cannot auto-detect the partition type then * access the disk as a raw device. */ if (dev.d_dev->dv_open(NULL, &dev)) { dev.d_slice = -1; dev.d_partition = -1; } } else { dev.d_dev = &host_dev; dev.d_type = dev.d_dev->dv_type; dev.d_unit = 0; } env_setenv("currdev", EV_VOLATILE, userboot_fmtdev(&dev), userboot_setcurrdev, env_nounset); env_setenv("loaddev", EV_VOLATILE, userboot_fmtdev(&dev), env_noset, env_nounset); }
char * i386_fmtdev(void *vdev) { struct i386_devdesc *dev = (struct i386_devdesc *)vdev; static char buf[128]; /* XXX device length constant? */ char *cp; switch(dev->d_type) { case DEVT_NONE: strcpy(buf, "(no device)"); break; case DEVT_CD: sprintf(buf, "%s%d:", dev->d_dev->dv_name, dev->d_unit); break; case DEVT_DISK: cp = buf; cp += sprintf(cp, "%s%d", dev->d_dev->dv_name, dev->d_unit); #ifdef LOADER_GPT_SUPPORT if (dev->d_kind.biosdisk.partition == 0xff) { cp += sprintf(cp, "p%d", dev->d_kind.biosdisk.slice); } else { #endif if (dev->d_kind.biosdisk.slice > 0) cp += sprintf(cp, "s%d", dev->d_kind.biosdisk.slice); if (dev->d_kind.biosdisk.partition >= 0) cp += sprintf(cp, "%c", dev->d_kind.biosdisk.partition + 'a'); #ifdef LOADER_GPT_SUPPORT } #endif strcat(cp, ":"); break; case DEVT_NET: sprintf(buf, "%s%d:", dev->d_dev->dv_name, dev->d_unit); break; case DEVT_ZFS: return(zfs_fmtdev(vdev)); } return(buf); }
char * i386_fmtdev(void *vdev) { struct i386_devdesc *dev = (struct i386_devdesc *)vdev; static char buf[128]; /* XXX device length constant? */ switch(dev->d_type) { case DEVT_NONE: strcpy(buf, "(no device)"); break; case DEVT_CD: case DEVT_NET: sprintf(buf, "%s%d:", dev->d_dev->dv_name, dev->d_unit); break; case DEVT_DISK: return (disk_fmtdev(vdev)); case DEVT_ZFS: return(zfs_fmtdev(vdev)); } return(buf); }
EFI_STATUS main(int argc, CHAR16 *argv[]) { char var[128]; EFI_LOADED_IMAGE *img; EFI_GUID *guid; int i, j, vargood, unit, howto; struct devsw *dev; uint64_t pool_guid; UINTN k; int has_kbd; archsw.arch_autoload = efi_autoload; archsw.arch_getdev = efi_getdev; archsw.arch_copyin = efi_copyin; archsw.arch_copyout = efi_copyout; archsw.arch_readin = efi_readin; #ifdef EFI_ZFS_BOOT /* Note this needs to be set before ZFS init. */ archsw.arch_zfs_probe = efi_zfs_probe; #endif has_kbd = has_keyboard(); /* * XXX Chicken-and-egg problem; we want to have console output * early, but some console attributes may depend on reading from * eg. the boot device, which we can't do yet. We can use * printf() etc. once this is done. */ cons_probe(); /* * Initialise the block cache. Set the upper limit. */ bcache_init(32768, 512); /* * Parse the args to set the console settings, etc * boot1.efi passes these in, if it can read /boot.config or /boot/config * or iPXE may be setup to pass these in. * * Loop through the args, and for each one that contains an '=' that is * not the first character, add it to the environment. This allows * loader and kernel env vars to be passed on the command line. Convert * args from UCS-2 to ASCII (16 to 8 bit) as they are copied. */ howto = 0; for (i = 1; i < argc; i++) { if (argv[i][0] == '-') { for (j = 1; argv[i][j] != 0; j++) { int ch; ch = argv[i][j]; switch (ch) { case 'a': howto |= RB_ASKNAME; break; case 'd': howto |= RB_KDB; break; case 'D': howto |= RB_MULTIPLE; break; case 'h': howto |= RB_SERIAL; break; case 'm': howto |= RB_MUTE; break; case 'p': howto |= RB_PAUSE; break; case 'P': if (!has_kbd) howto |= RB_SERIAL | RB_MULTIPLE; break; case 'r': howto |= RB_DFLTROOT; break; case 's': howto |= RB_SINGLE; break; case 'S': if (argv[i][j + 1] == 0) { if (i + 1 == argc) { setenv("comconsole_speed", "115200", 1); } else { cp16to8(&argv[i + 1][0], var, sizeof(var)); setenv("comconsole_speedspeed", var, 1); } i++; break; } else { cp16to8(&argv[i][j + 1], var, sizeof(var)); setenv("comconsole_speed", var, 1); break; } case 'v': howto |= RB_VERBOSE; break; } } } else { vargood = 0; for (j = 0; argv[i][j] != 0; j++) { if (j == sizeof(var)) { vargood = 0; break; } if (j > 0 && argv[i][j] == '=') vargood = 1; var[j] = (char)argv[i][j]; } if (vargood) { var[j] = 0; putenv(var); } } } for (i = 0; howto_names[i].ev != NULL; i++) if (howto & howto_names[i].mask) setenv(howto_names[i].ev, "YES", 1); if (howto & RB_MULTIPLE) { if (howto & RB_SERIAL) setenv("console", "comconsole efi" , 1); else setenv("console", "efi comconsole" , 1); } else if (howto & RB_SERIAL) { setenv("console", "comconsole" , 1); } if (efi_copy_init()) { printf("failed to allocate staging area\n"); return (EFI_BUFFER_TOO_SMALL); } /* * March through the device switch probing for things. */ for (i = 0; devsw[i] != NULL; i++) if (devsw[i]->dv_init != NULL) (devsw[i]->dv_init)(); /* Get our loaded image protocol interface structure. */ BS->HandleProtocol(IH, &imgid, (VOID**)&img); printf("Command line arguments:"); for (i = 0; i < argc; i++) { printf(" "); print_str16(argv[i]); } printf("\n"); printf("Image base: 0x%lx\n", (u_long)img->ImageBase); printf("EFI version: %d.%02d\n", ST->Hdr.Revision >> 16, ST->Hdr.Revision & 0xffff); printf("EFI Firmware: "); /* printf doesn't understand EFI Unicode */ ST->ConOut->OutputString(ST->ConOut, ST->FirmwareVendor); printf(" (rev %d.%02d)\n", ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff); printf("\n"); printf("%s, Revision %s\n", bootprog_name, bootprog_rev); printf("(%s, %s)\n", bootprog_maker, bootprog_date); /* * Disable the watchdog timer. By default the boot manager sets * the timer to 5 minutes before invoking a boot option. If we * want to return to the boot manager, we have to disable the * watchdog timer and since we're an interactive program, we don't * want to wait until the user types "quit". The timer may have * fired by then. We don't care if this fails. It does not prevent * normal functioning in any way... */ BS->SetWatchdogTimer(0, 0, 0, NULL); if (efi_handle_lookup(img->DeviceHandle, &dev, &unit, &pool_guid) != 0) return (EFI_NOT_FOUND); switch (dev->dv_type) { #ifdef EFI_ZFS_BOOT case DEVT_ZFS: { struct zfs_devdesc currdev; currdev.d_dev = dev; currdev.d_unit = unit; currdev.d_type = currdev.d_dev->dv_type; currdev.d_opendata = NULL; currdev.pool_guid = pool_guid; currdev.root_guid = 0; env_setenv("currdev", EV_VOLATILE, efi_fmtdev(&currdev), efi_setcurrdev, env_nounset); env_setenv("loaddev", EV_VOLATILE, efi_fmtdev(&currdev), env_noset, env_nounset); init_zfs_bootenv(zfs_fmtdev(&currdev)); break; } #endif default: { struct devdesc currdev; currdev.d_dev = dev; currdev.d_unit = unit; currdev.d_opendata = NULL; currdev.d_type = currdev.d_dev->dv_type; env_setenv("currdev", EV_VOLATILE, efi_fmtdev(&currdev), efi_setcurrdev, env_nounset); env_setenv("loaddev", EV_VOLATILE, efi_fmtdev(&currdev), env_noset, env_nounset); break; } } setenv("LINES", "24", 1); /* optional */ for (k = 0; k < ST->NumberOfTableEntries; k++) { guid = &ST->ConfigurationTable[k].VendorGuid; if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) { smbios_detect(ST->ConfigurationTable[k].VendorTable); break; } } interact(NULL); /* doesn't return */ return (EFI_SUCCESS); /* keep compiler happy */ }