Beispiel #1
0
main(int argc, char *argv[])
{
    SuperMatrix A;
    NCformat *Astore;
    doublecomplex   *a;
    int      *asub, *xa;
    int      *perm_c; /* column permutation vector */
    int      *perm_r; /* row permutations from partial pivoting */
    SuperMatrix L;      /* factor L */
    SCformat *Lstore;
    SuperMatrix U;      /* factor U */
    NCformat *Ustore;
    SuperMatrix B;
    int      nrhs, ldx, info, m, n, nnz;
    doublecomplex   *xact, *rhs;
    mem_usage_t   mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    
#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Set the default input options:
	options.Fact = DOFACT;
        options.Equil = YES;
    	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 1.0;
    	options.Trans = NOTRANS;
    	options.IterRefine = NOREFINE;
    	options.SymmetricMode = NO;
    	options.PivotGrowth = NO;
    	options.ConditionNumber = NO;
    	options.PrintStat = YES;
     */
    set_default_options(&options);

    /* Now we modify the default options to use the symmetric mode. */
    options.SymmetricMode = YES;
    options.ColPerm = MMD_AT_PLUS_A;
    options.DiagPivotThresh = 0.001;

    /* Read the matrix in Harwell-Boeing format. */
    zreadhb(&m, &n, &nnz, &a, &asub, &xa);

    zCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_Z, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    nrhs   = 1;
    if ( !(rhs = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhs[].");
    zCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_Z, SLU_GE);
    xact = doublecomplexMalloc(n * nrhs);
    ldx = n;
    zGenXtrue(n, nrhs, xact, ldx);
    zFillRHS(options.Trans, nrhs, xact, ldx, &A, &B);

    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");

    /* Initialize the statistics variables. */
    StatInit(&stat);
    
    zgssv(&options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info);
    
    if ( info == 0 ) {

	/* This is how you could access the solution matrix. */
        doublecomplex *sol = (doublecomplex*) ((DNformat*) B.Store)->nzval; 

	 /* Compute the infinity norm of the error. */
	zinf_norm_error(nrhs, &B, xact);

	Lstore = (SCformat *) L.Store;
	Ustore = (NCformat *) U.Store;
    	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
	
	zQuerySpace(&L, &U, &mem_usage);
	printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
	       mem_usage.expansions);
	
    } else {
	printf("zgssv() error returns INFO= %d\n", info);
	if ( info <= n ) { /* factorization completes */
	    zQuerySpace(&L, &U, &mem_usage);
	    printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
		   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
		   mem_usage.expansions);
	}
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhs);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperNode_Matrix(&L);
    Destroy_CompCol_Matrix(&U);

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}
main(int argc, char *argv[])
{
    SuperMatrix A;
    NCformat *Astore;
    doublecomplex   *a;
    int      *asub, *xa;
    int      *perm_r; /* row permutations from partial pivoting */
    int      *perm_c; /* column permutation vector */
    SuperMatrix L;      /* factor L */
    SCformat *Lstore;
    SuperMatrix U;      /* factor U */
    NCformat *Ustore;
    SuperMatrix B;
    int      nrhs, ldx, info, panel_size, m, n, nnz, permc_spec;
    char     trans[1];
    doublecomplex   *xact, *rhs;
    mem_usage_t   mem_usage;

    nrhs   = 1;
    *trans = 'N';
    
    zreadhb(&m, &n, &nnz, &a, &asub, &xa);

    zCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_Z, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    if ( !(rhs = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhs[].");
    zCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_Z, SLU_GE);
    xact = doublecomplexMalloc(n * nrhs);
    ldx = n;
    zGenXtrue(n, nrhs, xact, ldx);
    zFillRHS(trans, nrhs, xact, ldx, &A, &B);

    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");

    /*
     * Get column permutation vector perm_c[], according to permc_spec:
     *   permc_spec = 0: natural ordering 
     *   permc_spec = 1: minimum degree on structure of A'*A
     *   permc_spec = 2: minimum degree on structure of A'+A
     *   permc_spec = 3: approximate minimum degree for unsymmetric matrices
     */    	
    permc_spec = 1;
    get_perm_c(permc_spec, &A, perm_c);

    panel_size = sp_ienv(1);
    
    zgssv(&A, perm_c, perm_r, &L, &U, &B, &info);
    
    if ( info == 0 ) {

	zinf_norm_error(nrhs, &B, xact); /* Inf. norm of the error */

	Lstore = (SCformat *) L.Store;
	Ustore = (NCformat *) U.Store;
    	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
	
	zQuerySpace(&L, &U, panel_size, &mem_usage);
	printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
	       mem_usage.expansions);
	
    } else {
	printf("zgssv() error returns INFO= %d\n", info);
	if ( info <= n ) { /* factorization completes */
	    zQuerySpace(&L, &U, panel_size, &mem_usage);
	    printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
		   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
		   mem_usage.expansions);
	}
    }

    SUPERLU_FREE (rhs);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperNode_Matrix(&L);
    Destroy_CompCol_Matrix(&U);
}
	static void
	gssv (superlu_options_t *p1, SuperMatrix *p2, int *p3, int *p4, SuperMatrix *p5,
	      SuperMatrix *p6, SuperMatrix *p7, SuperLUStat_t *p8, int *p9)
	{zgssv(p1, p2, p3, p4, p5, p6, p7, p8, p9);}
Beispiel #4
0
main(int argc, char *argv[])
{
/*
 * Purpose
 * =======
 *
 * ZDRIVE is the main test program for the DOUBLE COMPLEX linear
 * equation driver routines ZGSSV and ZGSSVX.
 *
 * The program is invoked by a shell script file -- ztest.csh.
 * The output from the tests are written into a file -- ztest.out.
 *
 * =====================================================================
 */
    doublecomplex         *a, *a_save;
    int            *asub, *asub_save;
    int            *xa, *xa_save;
    SuperMatrix  A, B, X, L, U;
    SuperMatrix  ASAV, AC;
    mem_usage_t    mem_usage;
    int            *perm_r; /* row permutation from partial pivoting */
    int            *perm_c, *pc_save; /* column permutation */
    int            *etree;
    doublecomplex  zero = {0.0, 0.0};
    double         *R, *C;
    double         *ferr, *berr;
    double         *rwork;
    doublecomplex          *wwork;
    void           *work;
    int            info, lwork, nrhs, panel_size, relax;
    int            m, n, nnz;
    doublecomplex         *xact;
    doublecomplex         *rhsb, *solx, *bsav;
    int            ldb, ldx;
    double         rpg, rcond;
    int            i, j, k1;
    double         rowcnd, colcnd, amax;
    int            maxsuper, rowblk, colblk;
    int            prefact, nofact, equil, iequed;
    int            nt, nrun, nfail, nerrs, imat, fimat, nimat;
    int            nfact, ifact, itran;
    int            kl, ku, mode, lda;
    int            zerot, izero, ioff;
    double         u;
    double         anorm, cndnum;
    doublecomplex         *Afull;
    double         result[NTESTS];
    superlu_options_t options;
    fact_t         fact;
    trans_t        trans;
    SuperLUStat_t  stat;
    static char    matrix_type[8];
    static char    equed[1], path[4], sym[1], dist[1];

    /* Fixed set of parameters */
    int            iseed[]  = {1988, 1989, 1990, 1991};
    static char    equeds[]  = {'N', 'R', 'C', 'B'};
    static fact_t  facts[] = {FACTORED, DOFACT, SamePattern,
                              SamePattern_SameRowPerm};
    static trans_t transs[]  = {NOTRANS, TRANS, CONJ};

    /* Some function prototypes */
    extern int zgst01(int, int, SuperMatrix *, SuperMatrix *,
                      SuperMatrix *, int *, int *, double *);
    extern int zgst02(trans_t, int, int, int, SuperMatrix *, doublecomplex *,
                      int, doublecomplex *, int, double *resid);
    extern int zgst04(int, int, doublecomplex *, int,
                      doublecomplex *, int, double rcond, double *resid);
    extern int zgst07(trans_t, int, int, SuperMatrix *, doublecomplex *, int,
                         doublecomplex *, int, doublecomplex *, int,
                         double *, double *, double *);
    extern int zlatb4_(char *, int *, int *, int *, char *, int *, int *,
                       double *, int *, double *, char *);
    extern int zlatms_(int *, int *, char *, int *, char *, double *d,
                       int *, double *, double *, int *, int *,
                       char *, doublecomplex *, int *, doublecomplex *, int *);
    extern int sp_zconvert(int, int, doublecomplex *, int, int, int,
                           doublecomplex *a, int *, int *, int *);


    /* Executable statements */

    strcpy(path, "ZGE");
    nrun  = 0;
    nfail = 0;
    nerrs = 0;

    /* Defaults */
    lwork      = 0;
    n          = 1;
    nrhs       = 1;
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    u          = 1.0;
    strcpy(matrix_type, "LA");
    parse_command_line(argc, argv, matrix_type, &n,
                       &panel_size, &relax, &nrhs, &maxsuper,
                       &rowblk, &colblk, &lwork, &u);
    if ( lwork > 0 ) {
        work = SUPERLU_MALLOC(lwork);
        if ( !work ) {
            fprintf(stderr, "expert: cannot allocate %d bytes\n", lwork);
            exit (-1);
        }
    }

    /* Set the default input options. */
    set_default_options(&options);
    options.DiagPivotThresh = u;
    options.PrintStat = NO;
    options.PivotGrowth = YES;
    options.ConditionNumber = YES;
    options.IterRefine = DOUBLE;

    if ( strcmp(matrix_type, "LA") == 0 ) {
        /* Test LAPACK matrix suite. */
        m = n;
        lda = SUPERLU_MAX(n, 1);
        nnz = n * n;        /* upper bound */
        fimat = 1;
        nimat = NTYPES;
        Afull = doublecomplexCalloc(lda * n);
        zallocateA(n, nnz, &a, &asub, &xa);
    } else {
        /* Read a sparse matrix */
        fimat = nimat = 0;
        zreadhb(&m, &n, &nnz, &a, &asub, &xa);
    }

    zallocateA(n, nnz, &a_save, &asub_save, &xa_save);
    rhsb = doublecomplexMalloc(m * nrhs);
    bsav = doublecomplexMalloc(m * nrhs);
    solx = doublecomplexMalloc(n * nrhs);
    ldb  = m;
    ldx  = n;
    zCreate_Dense_Matrix(&B, m, nrhs, rhsb, ldb, SLU_DN, SLU_Z, SLU_GE);
    zCreate_Dense_Matrix(&X, n, nrhs, solx, ldx, SLU_DN, SLU_Z, SLU_GE);
    xact = doublecomplexMalloc(n * nrhs);
    etree   = intMalloc(n);
    perm_r  = intMalloc(n);
    perm_c  = intMalloc(n);
    pc_save = intMalloc(n);
    R       = (double *) SUPERLU_MALLOC(m*sizeof(double));
    C       = (double *) SUPERLU_MALLOC(n*sizeof(double));
    ferr    = (double *) SUPERLU_MALLOC(nrhs*sizeof(double));
    berr    = (double *) SUPERLU_MALLOC(nrhs*sizeof(double));
    j = SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs);
    rwork   = (double *) SUPERLU_MALLOC(j*sizeof(double));
    for (i = 0; i < j; ++i) rwork[i] = 0.;
    if ( !R ) ABORT("SUPERLU_MALLOC fails for R");
    if ( !C ) ABORT("SUPERLU_MALLOC fails for C");
    if ( !ferr ) ABORT("SUPERLU_MALLOC fails for ferr");
    if ( !berr ) ABORT("SUPERLU_MALLOC fails for berr");
    if ( !rwork ) ABORT("SUPERLU_MALLOC fails for rwork");
    wwork   = doublecomplexCalloc( SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs) );

    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i] = i;
    options.ColPerm = MY_PERMC;

    for (imat = fimat; imat <= nimat; ++imat) { /* All matrix types */

        if ( imat ) {

            /* Skip types 5, 6, or 7 if the matrix size is too small. */
            zerot = (imat >= 5 && imat <= 7);
            if ( zerot && n < imat-4 )
                continue;

            /* Set up parameters with ZLATB4 and generate a test matrix
               with ZLATMS.  */
            zlatb4_(path, &imat, &n, &n, sym, &kl, &ku, &anorm, &mode,
                    &cndnum, dist);

            zlatms_(&n, &n, dist, iseed, sym, &rwork[0], &mode, &cndnum,
                    &anorm, &kl, &ku, "No packing", Afull, &lda,
                    &wwork[0], &info);

            if ( info ) {
                printf(FMT3, "ZLATMS", info, izero, n, nrhs, imat, nfail);
                continue;
            }

            /* For types 5-7, zero one or more columns of the matrix
               to test that INFO is returned correctly.   */
            if ( zerot ) {
                if ( imat == 5 ) izero = 1;
                else if ( imat == 6 ) izero = n;
                else izero = n / 2 + 1;
                ioff = (izero - 1) * lda;
                if ( imat < 7 ) {
                    for (i = 0; i < n; ++i) Afull[ioff + i] = zero;
                } else {
                    for (j = 0; j < n - izero + 1; ++j)
                        for (i = 0; i < n; ++i)
                            Afull[ioff + i + j*lda] = zero;
                }
            } else {
                izero = 0;
            }

            /* Convert to sparse representation. */
            sp_zconvert(n, n, Afull, lda, kl, ku, a, asub, xa, &nnz);

        } else {
            izero = 0;
            zerot = 0;
        }

        zCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_Z, SLU_GE);

        /* Save a copy of matrix A in ASAV */
        zCreate_CompCol_Matrix(&ASAV, m, n, nnz, a_save, asub_save, xa_save,
                              SLU_NC, SLU_Z, SLU_GE);
        zCopy_CompCol_Matrix(&A, &ASAV);

        /* Form exact solution. */
        zGenXtrue(n, nrhs, xact, ldx);

        StatInit(&stat);

        for (iequed = 0; iequed < 4; ++iequed) {
            *equed = equeds[iequed];
            if (iequed == 0) nfact = 4;
            else nfact = 1; /* Only test factored, pre-equilibrated matrix */

            for (ifact = 0; ifact < nfact; ++ifact) {
                fact = facts[ifact];
                options.Fact = fact;

                for (equil = 0; equil < 2; ++equil) {
                    options.Equil = equil;
                    prefact   = ( options.Fact == FACTORED ||
                                  options.Fact == SamePattern_SameRowPerm );
                                /* Need a first factor */
                    nofact    = (options.Fact != FACTORED);  /* Not factored */

                    /* Restore the matrix A. */
                    zCopy_CompCol_Matrix(&ASAV, &A);

                    if ( zerot ) {
                        if ( prefact ) continue;
                    } else if ( options.Fact == FACTORED ) {
                        if ( equil || iequed ) {
                            /* Compute row and column scale factors to
                               equilibrate matrix A.    */
                            zgsequ(&A, R, C, &rowcnd, &colcnd, &amax, &info);

                            /* Force equilibration. */
                            if ( !info && n > 0 ) {
                                if ( lsame_(equed, "R") ) {
                                    rowcnd = 0.;
                                    colcnd = 1.;
                                } else if ( lsame_(equed, "C") ) {
                                    rowcnd = 1.;
                                    colcnd = 0.;
                                } else if ( lsame_(equed, "B") ) {
                                    rowcnd = 0.;
                                    colcnd = 0.;
                                }
                            }

                            /* Equilibrate the matrix. */
                            zlaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
                        }
                    }

                    if ( prefact ) { /* Need a factor for the first time */

                        /* Save Fact option. */
                        fact = options.Fact;
                        options.Fact = DOFACT;

                        /* Preorder the matrix, obtain the column etree. */
                        sp_preorder(&options, &A, perm_c, etree, &AC);

                        /* Factor the matrix AC. */
                        zgstrf(&options, &AC, relax, panel_size,
                               etree, work, lwork, perm_c, perm_r, &L, &U,
                               &stat, &info);

                        if ( info ) {
                            printf("** First factor: info %d, equed %c\n",
                                   info, *equed);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %d bytes\n",
                                        info - n);
                                exit(0);
                            }
                        }

                        Destroy_CompCol_Permuted(&AC);

                        /* Restore Fact option. */
                        options.Fact = fact;
                    } /* if .. first time factor */

                    for (itran = 0; itran < NTRAN; ++itran) {
                        trans = transs[itran];
                        options.Trans = trans;

                        /* Restore the matrix A. */
                        zCopy_CompCol_Matrix(&ASAV, &A);

                        /* Set the right hand side. */
                        zFillRHS(trans, nrhs, xact, ldx, &A, &B);
                        zCopy_Dense_Matrix(m, nrhs, rhsb, ldb, bsav, ldb);

                        /*----------------
                         * Test zgssv
                         *----------------*/
                        if ( options.Fact == DOFACT && itran == 0) {
                            /* Not yet factored, and untransposed */

                            zCopy_Dense_Matrix(m, nrhs, rhsb, ldb, solx, ldx);
                            zgssv(&options, &A, perm_c, perm_r, &L, &U, &X,
                                  &stat, &info);

                            if ( info && info != izero ) {
                                printf(FMT3, "zgssv",
                                       info, izero, n, nrhs, imat, nfail);
                            } else {
                                /* Reconstruct matrix from factors and
                                   compute residual. */
                                zgst01(m, n, &A, &L, &U, perm_c, perm_r,
                                         &result[0]);
                                nt = 1;
                                if ( izero == 0 ) {
                                    /* Compute residual of the computed
                                       solution. */
                                    zCopy_Dense_Matrix(m, nrhs, rhsb, ldb,
                                                       wwork, ldb);
                                    zgst02(trans, m, n, nrhs, &A, solx,
                                              ldx, wwork,ldb, &result[1]);
                                    nt = 2;
                                }

                                /* Print information about the tests that
                                   did not pass the threshold.      */
                                for (i = 0; i < nt; ++i) {
                                    if ( result[i] >= THRESH ) {
                                        printf(FMT1, "zgssv", n, i,
                                               result[i]);
                                        ++nfail;
                                    }
                                }
                                nrun += nt;
                            } /* else .. info == 0 */

                            /* Restore perm_c. */
                            for (i = 0; i < n; ++i) perm_c[i] = pc_save[i];

                            if (lwork == 0) {
                                Destroy_SuperNode_Matrix(&L);
                                Destroy_CompCol_Matrix(&U);
                            }
                        } /* if .. end of testing zgssv */

                        /*----------------
                         * Test zgssvx
                         *----------------*/

                        /* Equilibrate the matrix if fact = FACTORED and
                           equed = 'R', 'C', or 'B'.   */
                        if ( options.Fact == FACTORED &&
                             (equil || iequed) && n > 0 ) {
                            zlaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
                        }

                        /* Solve the system and compute the condition number
                           and error bounds using zgssvx.      */
                        zgssvx(&options, &A, perm_c, perm_r, etree,
                               equed, R, C, &L, &U, work, lwork, &B, &X, &rpg,
                               &rcond, ferr, berr, &mem_usage, &stat, &info);

                        if ( info && info != izero ) {
                            printf(FMT3, "zgssvx",
                                   info, izero, n, nrhs, imat, nfail);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %.0f bytes\n",
                                        mem_usage.total_needed);
                                exit(0);
                            }
                        } else {
                            if ( !prefact ) {
                                /* Reconstruct matrix from factors and
                                   compute residual. */
                                zgst01(m, n, &A, &L, &U, perm_c, perm_r,
                                         &result[0]);
                                k1 = 0;
                            } else {
                                k1 = 1;
                            }

                            if ( !info ) {
                                /* Compute residual of the computed solution.*/
                                zCopy_Dense_Matrix(m, nrhs, bsav, ldb,
                                                  wwork, ldb);
                                zgst02(trans, m, n, nrhs, &ASAV, solx, ldx,
                                          wwork, ldb, &result[1]);

                                /* Check solution from generated exact
                                   solution. */
                                zgst04(n, nrhs, solx, ldx, xact, ldx, rcond,
                                          &result[2]);

                                /* Check the error bounds from iterative
                                   refinement. */
                                zgst07(trans, n, nrhs, &ASAV, bsav, ldb,
                                          solx, ldx, xact, ldx, ferr, berr,
                                          &result[3]);

                                /* Print information about the tests that did
                                   not pass the threshold.    */
                                for (i = k1; i < NTESTS; ++i) {
                                    if ( result[i] >= THRESH ) {
                                        printf(FMT2, "zgssvx",
                                               options.Fact, trans, *equed,
                                               n, imat, i, result[i]);
                                        ++nfail;
                                    }
                                }
                                nrun += NTESTS;
                            } /* if .. info == 0 */
                        } /* else .. end of testing zgssvx */

                    } /* for itran ... */

                    if ( lwork == 0 ) {
                        Destroy_SuperNode_Matrix(&L);
                        Destroy_CompCol_Matrix(&U);
                    }

                } /* for equil ... */
            } /* for ifact ... */
        } /* for iequed ... */
#if 0
    if ( !info ) {
        PrintPerf(&L, &U, &mem_usage, rpg, rcond, ferr, berr, equed);
    }
#endif

    } /* for imat ... */

    /* Print a summary of the results. */
    PrintSumm("ZGE", nfail, nrun, nerrs);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (bsav);
    SUPERLU_FREE (solx);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (pc_save);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    SUPERLU_FREE (rwork);
    SUPERLU_FREE (wwork);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    Destroy_CompCol_Matrix(&A);
    Destroy_CompCol_Matrix(&ASAV);
    if ( lwork > 0 ) {
        SUPERLU_FREE (work);
        Destroy_SuperMatrix_Store(&L);
        Destroy_SuperMatrix_Store(&U);
    }
    StatFree(&stat);

    return 0;
}