Beispiel #1
0
/* Subroutine */ int zget36_(doublereal *rmax, integer *lmax, integer *ninfo, 
	integer *knt, integer *nin)
{
    /* System generated locals */
    integer i__1, i__2, i__3, i__4;

    /* Builtin functions */
    integer s_rsle(cilist *), do_lio(integer *, integer *, char *, ftnlen), 
	    e_rsle(void);

    /* Local variables */
    static doublecomplex diag[10];
    static integer ifst, ilst;
    static doublecomplex work[200];
    static integer info1, info2, i__, j, n;
    static doublecomplex q[100]	/* was [10][10] */, ctemp;
    extern /* Subroutine */ int zhst01_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *);
    static doublereal rwork[10];
    static doublecomplex t1[100]	/* was [10][10] */, t2[100]	/* 
	    was [10][10] */;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *);
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), 
	    zlaset_(char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, doublecomplex *, integer *);
    static doublereal result[2];
    extern /* Subroutine */ int ztrexc_(char *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, integer *, integer *, 
	    integer *);
    static doublereal eps, res;
    static doublecomplex tmp[100]	/* was [10][10] */;

    /* Fortran I/O blocks */
    static cilist io___2 = { 0, 0, 0, 0, 0 };
    static cilist io___7 = { 0, 0, 0, 0, 0 };



#define q_subscr(a_1,a_2) (a_2)*10 + a_1 - 11
#define q_ref(a_1,a_2) q[q_subscr(a_1,a_2)]
#define t1_subscr(a_1,a_2) (a_2)*10 + a_1 - 11
#define t1_ref(a_1,a_2) t1[t1_subscr(a_1,a_2)]
#define t2_subscr(a_1,a_2) (a_2)*10 + a_1 - 11
#define t2_ref(a_1,a_2) t2[t2_subscr(a_1,a_2)]
#define tmp_subscr(a_1,a_2) (a_2)*10 + a_1 - 11
#define tmp_ref(a_1,a_2) tmp[tmp_subscr(a_1,a_2)]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZGET36 tests ZTREXC, a routine for reordering diagonal entries of a   
    matrix in complex Schur form. Thus, ZLAEXC computes a unitary matrix   
    Q such that   

       Q' * T1 * Q  = T2   

    and where one of the diagonal blocks of T1 (the one at row IFST) has   
    been moved to position ILST.   

    The test code verifies that the residual Q'*T1*Q-T2 is small, that T2   
    is in Schur form, and that the final position of the IFST block is   
    ILST.   

    The test matrices are read from a file with logical unit number NIN.   

    Arguments   
    ==========   

    RMAX    (output) DOUBLE PRECISION   
            Value of the largest test ratio.   

    LMAX    (output) INTEGER   
            Example number where largest test ratio achieved.   

    NINFO   (output) INTEGER   
            Number of examples where INFO is nonzero.   

    KNT     (output) INTEGER   
            Total number of examples tested.   

    NIN     (input) INTEGER   
            Input logical unit number.   

    ===================================================================== */


    eps = dlamch_("P");
    *rmax = 0.;
    *lmax = 0;
    *knt = 0;
    *ninfo = 0;

/*     Read input data until N=0 */

L10:
    io___2.ciunit = *nin;
    s_rsle(&io___2);
    do_lio(&c__3, &c__1, (char *)&n, (ftnlen)sizeof(integer));
    do_lio(&c__3, &c__1, (char *)&ifst, (ftnlen)sizeof(integer));
    do_lio(&c__3, &c__1, (char *)&ilst, (ftnlen)sizeof(integer));
    e_rsle();
    if (n == 0) {
	return 0;
    }
    ++(*knt);
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	io___7.ciunit = *nin;
	s_rsle(&io___7);
	i__2 = n;
	for (j = 1; j <= i__2; ++j) {
	    do_lio(&c__7, &c__1, (char *)&tmp_ref(i__, j), (ftnlen)sizeof(
		    doublecomplex));
	}
	e_rsle();
/* L20: */
    }
    zlacpy_("F", &n, &n, tmp, &c__10, t1, &c__10);
    zlacpy_("F", &n, &n, tmp, &c__10, t2, &c__10);
    res = 0.;

/*     Test without accumulating Q */

    zlaset_("Full", &n, &n, &c_b1, &c_b2, q, &c__10);
    ztrexc_("N", &n, t1, &c__10, q, &c__10, &ifst, &ilst, &info1);
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = n;
	for (j = 1; j <= i__2; ++j) {
	    i__3 = q_subscr(i__, j);
	    if (i__ == j && (q[i__3].r != 1. || q[i__3].i != 0.)) {
		res += 1. / eps;
	    }
	    i__3 = q_subscr(i__, j);
	    if (i__ != j && (q[i__3].r != 0. || q[i__3].i != 0.)) {
		res += 1. / eps;
	    }
/* L30: */
	}
/* L40: */
    }

/*     Test with accumulating Q */

    zlaset_("Full", &n, &n, &c_b1, &c_b2, q, &c__10);
    ztrexc_("V", &n, t2, &c__10, q, &c__10, &ifst, &ilst, &info2);

/*     Compare T1 with T2 */

    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = n;
	for (j = 1; j <= i__2; ++j) {
	    i__3 = t1_subscr(i__, j);
	    i__4 = t2_subscr(i__, j);
	    if (t1[i__3].r != t2[i__4].r || t1[i__3].i != t2[i__4].i) {
		res += 1. / eps;
	    }
/* L50: */
	}
/* L60: */
    }
    if (info1 != 0 || info2 != 0) {
	++(*ninfo);
    }
    if (info1 != info2) {
	res += 1. / eps;
    }

/*     Test for successful reordering of T2 */

    zcopy_(&n, tmp, &c__11, diag, &c__1);
    if (ifst < ilst) {
	i__1 = ilst;
	for (i__ = ifst + 1; i__ <= i__1; ++i__) {
	    i__2 = i__ - 1;
	    ctemp.r = diag[i__2].r, ctemp.i = diag[i__2].i;
	    i__2 = i__ - 1;
	    i__3 = i__ - 2;
	    diag[i__2].r = diag[i__3].r, diag[i__2].i = diag[i__3].i;
	    i__2 = i__ - 2;
	    diag[i__2].r = ctemp.r, diag[i__2].i = ctemp.i;
/* L70: */
	}
    } else if (ifst > ilst) {
	i__1 = ilst;
	for (i__ = ifst - 1; i__ >= i__1; --i__) {
	    i__2 = i__;
	    ctemp.r = diag[i__2].r, ctemp.i = diag[i__2].i;
	    i__2 = i__;
	    i__3 = i__ - 1;
	    diag[i__2].r = diag[i__3].r, diag[i__2].i = diag[i__3].i;
	    i__2 = i__ - 1;
	    diag[i__2].r = ctemp.r, diag[i__2].i = ctemp.i;
/* L80: */
	}
    }
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = t2_subscr(i__, i__);
	i__3 = i__ - 1;
	if (t2[i__2].r != diag[i__3].r || t2[i__2].i != diag[i__3].i) {
	    res += 1. / eps;
	}
/* L90: */
    }

/*     Test for small residual, and orthogonality of Q */

    zhst01_(&n, &c__1, &n, tmp, &c__10, t2, &c__10, q, &c__10, work, &c__200, 
	    rwork, result);
    res = res + result[0] + result[1];

/*     Test for T2 being in Schur form */

    i__1 = n - 1;
    for (j = 1; j <= i__1; ++j) {
	i__2 = n;
	for (i__ = j + 1; i__ <= i__2; ++i__) {
	    i__3 = t2_subscr(i__, j);
	    if (t2[i__3].r != 0. || t2[i__3].i != 0.) {
		res += 1. / eps;
	    }
/* L100: */
	}
/* L110: */
    }
    if (res > *rmax) {
	*rmax = res;
	*lmax = *knt;
    }
    goto L10;

/*     End of ZGET36 */

} /* zget36_ */
Beispiel #2
0
/* Subroutine */ int zchkhs_(integer *nsizes, integer *nn, integer *ntypes, 
	logical *dotype, integer *iseed, doublereal *thresh, integer *nounit, 
	doublecomplex *a, integer *lda, doublecomplex *h__, doublecomplex *t1, 
	 doublecomplex *t2, doublecomplex *u, integer *ldu, doublecomplex *
	z__, doublecomplex *uz, doublecomplex *w1, doublecomplex *w3, 
	doublecomplex *evectl, doublecomplex *evectr, doublecomplex *evecty, 
	doublecomplex *evectx, doublecomplex *uu, doublecomplex *tau, 
	doublecomplex *work, integer *nwork, doublereal *rwork, integer *
	iwork, logical *select, doublereal *result, integer *info)
{
    /* Initialized data */

    static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
    static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
    static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
    static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };

    /* Format strings */
    static char fmt_9999[] = "(\002 ZCHKHS: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9998[] = "(\002 ZCHKHS: \002,a,\002 Eigenvectors from"
	    " \002,a,\002 incorrectly \002,\002normalized.\002,/\002 Bits of "
	    "error=\002,0p,g10.3,\002,\002,9x,\002N=\002,i6,\002, JTYPE=\002,"
	    "i6,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9997[] = "(\002 ZCHKHS: Selected \002,a,\002 Eigenvector"
	    "s from \002,a,\002 do not match other eigenvectors \002,9x,\002N="
	    "\002,i6,\002, JTYPE=\002,i6,\002, ISEED=(\002,3(i5,\002,\002),i5,"
	    "\002)\002)";

    /* System generated locals */
    integer a_dim1, a_offset, evectl_dim1, evectl_offset, evectr_dim1, 
	    evectr_offset, evectx_dim1, evectx_offset, evecty_dim1, 
	    evecty_offset, h_dim1, h_offset, t1_dim1, t1_offset, t2_dim1, 
	    t2_offset, u_dim1, u_offset, uu_dim1, uu_offset, uz_dim1, 
	    uz_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    double sqrt(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    double z_abs(doublecomplex *);

    /* Local variables */
    integer i__, j, k, n, n1, jj, in, ihi, ilo;
    doublereal ulp, cond;
    integer jcol, nmax;
    doublereal unfl, ovfl, temp1, temp2;
    logical badnn, match;
    integer imode;
    doublereal dumma[4];
    integer iinfo;
    doublereal conds;
    extern /* Subroutine */ int zget10_(integer *, integer *, doublecomplex *, 
	     integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublereal *, doublereal *);
    doublereal aninv, anorm;
    extern /* Subroutine */ int zget22_(char *, char *, char *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, doublecomplex *, doublereal *, doublereal *), zgemm_(char *, char *, integer *, 
	    integer *, integer *, doublecomplex *, doublecomplex *, integer *, 
	     doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *);
    integer nmats, jsize, nerrs, itype, jtype, ntest;
    extern /* Subroutine */ int zhst01_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *), zcopy_(integer *, doublecomplex *, 
	    integer *, doublecomplex *, integer *);
    doublereal rtulp;
    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
    extern doublereal dlamch_(char *);
    doublecomplex cdumma[4];
    integer idumma[1];
    extern /* Subroutine */ int dlafts_(char *, integer *, integer *, integer 
	    *, integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *);
    integer ioldsd[4];
    extern /* Subroutine */ int xerbla_(char *, integer *), zgehrd_(
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, integer *), dlasum_(
	    char *, integer *, integer *, integer *), zlatme_(integer 
	    *, char *, integer *, doublecomplex *, integer *, doublereal *, 
	    doublecomplex *, char *, char *, char *, char *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, doublereal *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), zhsein_(char *, char *, char *, 
	    logical *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     doublecomplex *, integer *, doublecomplex *, integer *, integer *
, integer *, doublecomplex *, doublereal *, integer *, integer *, 
	    integer *), zlacpy_(char *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, doublecomplex *, integer *), zlatmr_(
	    integer *, integer *, char *, integer *, char *, doublecomplex *, 
	    integer *, doublereal *, doublecomplex *, char *, char *, 
	    doublecomplex *, integer *, doublereal *, doublecomplex *, 
	    integer *, doublereal *, char *, integer *, integer *, integer *, 
	    doublereal *, doublereal *, char *, doublecomplex *, integer *, 
	    integer *, integer *);
    doublereal rtunfl, rtovfl, rtulpi, ulpinv;
    integer mtypes, ntestt;
    extern /* Subroutine */ int zhseqr_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *), zlatms_(integer *, integer *, char *, integer *, 
	     char *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, char *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), ztrevc_(char 
	    *, char *, logical *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *, 
	     integer *, doublecomplex *, doublereal *, integer *), zunghr_(integer *, integer *, integer *, doublecomplex *, 
	     integer *, doublecomplex *, doublecomplex *, integer *, integer *
), zunmhr_(char *, char *, integer *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___35 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___38 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___40 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___47 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___49 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___54 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___55 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___56 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___57 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___58 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___59 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___60 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___62 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___63 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___64 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     February 2007 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*     ZCHKHS  checks the nonsymmetric eigenvalue problem routines. */

/*             ZGEHRD factors A as  U H U' , where ' means conjugate */
/*             transpose, H is hessenberg, and U is unitary. */

/*             ZUNGHR generates the unitary matrix U. */

/*             ZUNMHR multiplies a matrix by the unitary matrix U. */

/*             ZHSEQR factors H as  Z T Z' , where Z is unitary and T */
/*             is upper triangular.  It also computes the eigenvalues, */
/*             w(1), ..., w(n); we define a diagonal matrix W whose */
/*             (diagonal) entries are the eigenvalues. */

/*             ZTREVC computes the left eigenvector matrix L and the */
/*             right eigenvector matrix R for the matrix T.  The */
/*             columns of L are the complex conjugates of the left */
/*             eigenvectors of T.  The columns of R are the right */
/*             eigenvectors of T.  L is lower triangular, and R is */
/*             upper triangular. */

/*             ZHSEIN computes the left eigenvector matrix Y and the */
/*             right eigenvector matrix X for the matrix H.  The */
/*             columns of Y are the complex conjugates of the left */
/*             eigenvectors of H.  The columns of X are the right */
/*             eigenvectors of H.  Y is lower triangular, and X is */
/*             upper triangular. */

/*     When ZCHKHS is called, a number of matrix "sizes" ("n's") and a */
/*     number of matrix "types" are specified.  For each size ("n") */
/*     and each type of matrix, one matrix will be generated and used */
/*     to test the nonsymmetric eigenroutines.  For each matrix, 14 */
/*     tests will be performed: */

/*     (1)     | A - U H U**H | / ( |A| n ulp ) */

/*     (2)     | I - UU**H | / ( n ulp ) */

/*     (3)     | H - Z T Z**H | / ( |H| n ulp ) */

/*     (4)     | I - ZZ**H | / ( n ulp ) */

/*     (5)     | A - UZ H (UZ)**H | / ( |A| n ulp ) */

/*     (6)     | I - UZ (UZ)**H | / ( n ulp ) */

/*     (7)     | T(Z computed) - T(Z not computed) | / ( |T| ulp ) */

/*     (8)     | W(Z computed) - W(Z not computed) | / ( |W| ulp ) */

/*     (9)     | TR - RW | / ( |T| |R| ulp ) */

/*     (10)    | L**H T - W**H L | / ( |T| |L| ulp ) */

/*     (11)    | HX - XW | / ( |H| |X| ulp ) */

/*     (12)    | Y**H H - W**H Y | / ( |H| |Y| ulp ) */

/*     (13)    | AX - XW | / ( |A| |X| ulp ) */

/*     (14)    | Y**H A - W**H Y | / ( |A| |Y| ulp ) */

/*     The "sizes" are specified by an array NN(1:NSIZES); the value of */
/*     each element NN(j) specifies one size. */
/*     The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */
/*     if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */
/*     Currently, the list of possible types is: */

/*     (1)  The zero matrix. */
/*     (2)  The identity matrix. */
/*     (3)  A (transposed) Jordan block, with 1's on the diagonal. */

/*     (4)  A diagonal matrix with evenly spaced entries */
/*          1, ..., ULP  and random complex angles. */
/*          (ULP = (first number larger than 1) - 1 ) */
/*     (5)  A diagonal matrix with geometrically spaced entries */
/*          1, ..., ULP  and random complex angles. */
/*     (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
/*          and random complex angles. */

/*     (7)  Same as (4), but multiplied by SQRT( overflow threshold ) */
/*     (8)  Same as (4), but multiplied by SQRT( underflow threshold ) */

/*     (9)  A matrix of the form  U' T U, where U is unitary and */
/*          T has evenly spaced entries 1, ..., ULP with random complex */
/*          angles on the diagonal and random O(1) entries in the upper */
/*          triangle. */

/*     (10) A matrix of the form  U' T U, where U is unitary and */
/*          T has geometrically spaced entries 1, ..., ULP with random */
/*          complex angles on the diagonal and random O(1) entries in */
/*          the upper triangle. */

/*     (11) A matrix of the form  U' T U, where U is unitary and */
/*          T has "clustered" entries 1, ULP,..., ULP with random */
/*          complex angles on the diagonal and random O(1) entries in */
/*          the upper triangle. */

/*     (12) A matrix of the form  U' T U, where U is unitary and */
/*          T has complex eigenvalues randomly chosen from */
/*          ULP < |z| < 1   and random O(1) entries in the upper */
/*          triangle. */

/*     (13) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP */
/*          with random complex angles on the diagonal and random O(1) */
/*          entries in the upper triangle. */

/*     (14) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has geometrically spaced entries */
/*          1, ..., ULP with random complex angles on the diagonal */
/*          and random O(1) entries in the upper triangle. */

/*     (15) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP */
/*          with random complex angles on the diagonal and random O(1) */
/*          entries in the upper triangle. */

/*     (16) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has complex eigenvalues randomly chosen */
/*          from   ULP < |z| < 1   and random O(1) entries in the upper */
/*          triangle. */

/*     (17) Same as (16), but multiplied by SQRT( overflow threshold ) */
/*     (18) Same as (16), but multiplied by SQRT( underflow threshold ) */

/*     (19) Nonsymmetric matrix with random entries chosen from |z| < 1 */
/*     (20) Same as (19), but multiplied by SQRT( overflow threshold ) */
/*     (21) Same as (19), but multiplied by SQRT( underflow threshold ) */

/*  Arguments */
/*  ========== */

/*  NSIZES - INTEGER */
/*           The number of sizes of matrices to use.  If it is zero, */
/*           ZCHKHS does nothing.  It must be at least zero. */
/*           Not modified. */

/*  NN     - INTEGER array, dimension (NSIZES) */
/*           An array containing the sizes to be used for the matrices. */
/*           Zero values will be skipped.  The values must be at least */
/*           zero. */
/*           Not modified. */

/*  NTYPES - INTEGER */
/*           The number of elements in DOTYPE.   If it is zero, ZCHKHS */
/*           does nothing.  It must be at least zero.  If it is MAXTYP+1 */
/*           and NSIZES is 1, then an additional type, MAXTYP+1 is */
/*           defined, which is to use whatever matrix is in A.  This */
/*           is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */
/*           DOTYPE(MAXTYP+1) is .TRUE. . */
/*           Not modified. */

/*  DOTYPE - LOGICAL array, dimension (NTYPES) */
/*           If DOTYPE(j) is .TRUE., then for each size in NN a */
/*           matrix of that size and of type j will be generated. */
/*           If NTYPES is smaller than the maximum number of types */
/*           defined (PARAMETER MAXTYP), then types NTYPES+1 through */
/*           MAXTYP will not be generated.  If NTYPES is larger */
/*           than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */
/*           will be ignored. */
/*           Not modified. */

/*  ISEED  - INTEGER array, dimension (4) */
/*           On entry ISEED specifies the seed of the random number */
/*           generator. The array elements should be between 0 and 4095; */
/*           if not they will be reduced mod 4096.  Also, ISEED(4) must */
/*           be odd.  The random number generator uses a linear */
/*           congruential sequence limited to small integers, and so */
/*           should produce machine independent random numbers. The */
/*           values of ISEED are changed on exit, and can be used in the */
/*           next call to ZCHKHS to continue the same random number */
/*           sequence. */
/*           Modified. */

/*  THRESH - DOUBLE PRECISION */
/*           A test will count as "failed" if the "error", computed as */
/*           described above, exceeds THRESH.  Note that the error */
/*           is scaled to be O(1), so THRESH should be a reasonably */
/*           small multiple of 1, e.g., 10 or 100.  In particular, */
/*           it should not depend on the precision (single vs. double) */
/*           or the size of the matrix.  It must be at least zero. */
/*           Not modified. */

/*  NOUNIT - INTEGER */
/*           The FORTRAN unit number for printing out error messages */
/*           (e.g., if a routine returns IINFO not equal to 0.) */
/*           Not modified. */

/*  A      - COMPLEX*16 array, dimension (LDA,max(NN)) */
/*           Used to hold the matrix whose eigenvalues are to be */
/*           computed.  On exit, A contains the last matrix actually */
/*           used. */
/*           Modified. */

/*  LDA    - INTEGER */
/*           The leading dimension of A, H, T1 and T2.  It must be at */
/*           least 1 and at least max( NN ). */
/*           Not modified. */

/*  H      - COMPLEX*16 array, dimension (LDA,max(NN)) */
/*           The upper hessenberg matrix computed by ZGEHRD.  On exit, */
/*           H contains the Hessenberg form of the matrix in A. */
/*           Modified. */

/*  T1     - COMPLEX*16 array, dimension (LDA,max(NN)) */
/*           The Schur (="quasi-triangular") matrix computed by ZHSEQR */
/*           if Z is computed.  On exit, T1 contains the Schur form of */
/*           the matrix in A. */
/*           Modified. */

/*  T2     - COMPLEX*16 array, dimension (LDA,max(NN)) */
/*           The Schur matrix computed by ZHSEQR when Z is not computed. */
/*           This should be identical to T1. */
/*           Modified. */

/*  LDU    - INTEGER */
/*           The leading dimension of U, Z, UZ and UU.  It must be at */
/*           least 1 and at least max( NN ). */
/*           Not modified. */

/*  U      - COMPLEX*16 array, dimension (LDU,max(NN)) */
/*           The unitary matrix computed by ZGEHRD. */
/*           Modified. */

/*  Z      - COMPLEX*16 array, dimension (LDU,max(NN)) */
/*           The unitary matrix computed by ZHSEQR. */
/*           Modified. */

/*  UZ     - COMPLEX*16 array, dimension (LDU,max(NN)) */
/*           The product of U times Z. */
/*           Modified. */

/*  W1     - COMPLEX*16 array, dimension (max(NN)) */
/*           The eigenvalues of A, as computed by a full Schur */
/*           decomposition H = Z T Z'.  On exit, W1 contains the */
/*           eigenvalues of the matrix in A. */
/*           Modified. */

/*  W3     - COMPLEX*16 array, dimension (max(NN)) */
/*           The eigenvalues of A, as computed by a partial Schur */
/*           decomposition (Z not computed, T only computed as much */
/*           as is necessary for determining eigenvalues).  On exit, */
/*           W3 contains the eigenvalues of the matrix in A, possibly */
/*           perturbed by ZHSEIN. */
/*           Modified. */

/*  EVECTL - COMPLEX*16 array, dimension (LDU,max(NN)) */
/*           The conjugate transpose of the (upper triangular) left */
/*           eigenvector matrix for the matrix in T1. */
/*           Modified. */

/*  EVEZTR - COMPLEX*16 array, dimension (LDU,max(NN)) */
/*           The (upper triangular) right eigenvector matrix for the */
/*           matrix in T1. */
/*           Modified. */

/*  EVECTY - COMPLEX*16 array, dimension (LDU,max(NN)) */
/*           The conjugate transpose of the left eigenvector matrix */
/*           for the matrix in H. */
/*           Modified. */

/*  EVECTX - COMPLEX*16 array, dimension (LDU,max(NN)) */
/*           The right eigenvector matrix for the matrix in H. */
/*           Modified. */

/*  UU     - COMPLEX*16 array, dimension (LDU,max(NN)) */
/*           Details of the unitary matrix computed by ZGEHRD. */
/*           Modified. */

/*  TAU    - COMPLEX*16 array, dimension (max(NN)) */
/*           Further details of the unitary matrix computed by ZGEHRD. */
/*           Modified. */

/*  WORK   - COMPLEX*16 array, dimension (NWORK) */
/*           Workspace. */
/*           Modified. */

/*  NWORK  - INTEGER */
/*           The number of entries in WORK.  NWORK >= 4*NN(j)*NN(j) + 2. */

/*  RWORK  - DOUBLE PRECISION array, dimension (max(NN)) */
/*           Workspace.  Could be equivalenced to IWORK, but not SELECT. */
/*           Modified. */

/*  IWORK  - INTEGER array, dimension (max(NN)) */
/*           Workspace. */
/*           Modified. */

/*  SELECT - LOGICAL array, dimension (max(NN)) */
/*           Workspace.  Could be equivalenced to IWORK, but not RWORK. */
/*           Modified. */

/*  RESULT - DOUBLE PRECISION array, dimension (14) */
/*           The values computed by the fourteen tests described above. */
/*           The values are currently limited to 1/ulp, to avoid */
/*           overflow. */
/*           Modified. */

/*  INFO   - INTEGER */
/*           If 0, then everything ran OK. */
/*            -1: NSIZES < 0 */
/*            -2: Some NN(j) < 0 */
/*            -3: NTYPES < 0 */
/*            -6: THRESH < 0 */
/*            -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). */
/*           -14: LDU < 1 or LDU < NMAX. */
/*           -26: NWORK too small. */
/*           If  ZLATMR, CLATMS, or CLATME returns an error code, the */
/*               absolute value of it is returned. */
/*           If 1, then ZHSEQR could not find all the shifts. */
/*           If 2, then the EISPACK code (for small blocks) failed. */
/*           If >2, then 30*N iterations were not enough to find an */
/*               eigenvalue or to decompose the problem. */
/*           Modified. */

/* ----------------------------------------------------------------------- */

/*     Some Local Variables and Parameters: */
/*     ---- ----- --------- --- ---------- */

/*     ZERO, ONE       Real 0 and 1. */
/*     MAXTYP          The number of types defined. */
/*     MTEST           The number of tests defined: care must be taken */
/*                     that (1) the size of RESULT, (2) the number of */
/*                     tests actually performed, and (3) MTEST agree. */
/*     NTEST           The number of tests performed on this matrix */
/*                     so far.  This should be less than MTEST, and */
/*                     equal to it by the last test.  It will be less */
/*                     if any of the routines being tested indicates */
/*                     that it could not compute the matrices that */
/*                     would be tested. */
/*     NMAX            Largest value in NN. */
/*     NMATS           The number of matrices generated so far. */
/*     NERRS           The number of tests which have exceeded THRESH */
/*                     so far (computed by DLAFTS). */
/*     COND, CONDS, */
/*     IMODE           Values to be passed to the matrix generators. */
/*     ANORM           Norm of A; passed to matrix generators. */

/*     OVFL, UNFL      Overflow and underflow thresholds. */
/*     ULP, ULPINV     Finest relative precision and its inverse. */
/*     RTOVFL, RTUNFL, */
/*     RTULP, RTULPI   Square roots of the previous 4 values. */

/*             The following four arrays decode JTYPE: */
/*     KTYPE(j)        The general type (1-10) for type "j". */
/*     KMODE(j)        The MODE value to be passed to the matrix */
/*                     generator for type "j". */
/*     KMAGN(j)        The order of magnitude ( O(1), */
/*                     O(overflow^(1/2) ), O(underflow^(1/2) ) */
/*     KCONDS(j)       Selects whether CONDS is to be 1 or */
/*                     1/sqrt(ulp).  (0 means irrelevant.) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --nn;
    --dotype;
    --iseed;
    t2_dim1 = *lda;
    t2_offset = 1 + t2_dim1;
    t2 -= t2_offset;
    t1_dim1 = *lda;
    t1_offset = 1 + t1_dim1;
    t1 -= t1_offset;
    h_dim1 = *lda;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    uu_dim1 = *ldu;
    uu_offset = 1 + uu_dim1;
    uu -= uu_offset;
    evectx_dim1 = *ldu;
    evectx_offset = 1 + evectx_dim1;
    evectx -= evectx_offset;
    evecty_dim1 = *ldu;
    evecty_offset = 1 + evecty_dim1;
    evecty -= evecty_offset;
    evectr_dim1 = *ldu;
    evectr_offset = 1 + evectr_dim1;
    evectr -= evectr_offset;
    evectl_dim1 = *ldu;
    evectl_offset = 1 + evectl_dim1;
    evectl -= evectl_offset;
    uz_dim1 = *ldu;
    uz_offset = 1 + uz_dim1;
    uz -= uz_offset;
    z_dim1 = *ldu;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1;
    u -= u_offset;
    --w1;
    --w3;
    --tau;
    --work;
    --rwork;
    --iwork;
    --select;
    --result;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Check for errors */

    ntestt = 0;
    *info = 0;

    badnn = FALSE_;
    nmax = 0;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*ntypes < 0) {
	*info = -3;
    } else if (*thresh < 0.) {
	*info = -6;
    } else if (*lda <= 1 || *lda < nmax) {
	*info = -9;
    } else if (*ldu <= 1 || *ldu < nmax) {
	*info = -14;
    } else if ((nmax << 2) * nmax + 2 > *nwork) {
	*info = -26;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZCHKHS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*nsizes == 0 || *ntypes == 0) {
	return 0;
    }

/*     More important constants */

    unfl = dlamch_("Safe minimum");
    ovfl = dlamch_("Overflow");
    dlabad_(&unfl, &ovfl);
    ulp = dlamch_("Epsilon") * dlamch_("Base");
    ulpinv = 1. / ulp;
    rtunfl = sqrt(unfl);
    rtovfl = sqrt(ovfl);
    rtulp = sqrt(ulp);
    rtulpi = 1. / rtulp;

/*     Loop over sizes, types */

    nerrs = 0;
    nmats = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	n1 = max(1,n);
	aninv = 1. / (doublereal) n1;

	if (*nsizes != 1) {
	    mtypes = min(21,*ntypes);
	} else {
	    mtypes = min(22,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L250;
	    }
	    ++nmats;
	    ntest = 0;

/*           Save ISEED in case of an error. */

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

/*           Initialize RESULT */

	    for (j = 1; j <= 14; ++j) {
		result[j] = 0.;
/* L30: */
	    }

/*           Compute "A" */

/*           Control parameters: */

/*           KMAGN  KCONDS  KMODE        KTYPE */
/*       =1  O(1)   1       clustered 1  zero */
/*       =2  large  large   clustered 2  identity */
/*       =3  small          exponential  Jordan */
/*       =4                 arithmetic   diagonal, (w/ eigenvalues) */
/*       =5                 random log   hermitian, w/ eigenvalues */
/*       =6                 random       general, w/ eigenvalues */
/*       =7                              random diagonal */
/*       =8                              random hermitian */
/*       =9                              random general */
/*       =10                             random triangular */

	    if (mtypes > 21) {
		goto L100;
	    }

	    itype = ktype[jtype - 1];
	    imode = kmode[jtype - 1];

/*           Compute norm */

	    switch (kmagn[jtype - 1]) {
		case 1:  goto L40;
		case 2:  goto L50;
		case 3:  goto L60;
	    }

L40:
	    anorm = 1.;
	    goto L70;

L50:
	    anorm = rtovfl * ulp * aninv;
	    goto L70;

L60:
	    anorm = rtunfl * n * ulpinv;
	    goto L70;

L70:

	    zlaset_("Full", lda, &n, &c_b1, &c_b1, &a[a_offset], lda);
	    iinfo = 0;
	    cond = ulpinv;

/*           Special Matrices */

	    if (itype == 1) {

/*              Zero */

		iinfo = 0;
	    } else if (itype == 2) {

/*              Identity */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    i__4 = jcol + jcol * a_dim1;
		    a[i__4].r = anorm, a[i__4].i = 0.;
/* L80: */
		}

	    } else if (itype == 3) {

/*              Jordan Block */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    i__4 = jcol + jcol * a_dim1;
		    a[i__4].r = anorm, a[i__4].i = 0.;
		    if (jcol > 1) {
			i__4 = jcol + (jcol - 1) * a_dim1;
			a[i__4].r = 1., a[i__4].i = 0.;
		    }
/* L90: */
		}

	    } else if (itype == 4) {

/*              Diagonal Matrix, [Eigen]values Specified */

		zlatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &imode, &cond, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[(
			n << 1) + 1], &c__1, &c_b27, "N", idumma, &c__0, &
			c__0, &c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[
			1], &iinfo);

	    } else if (itype == 5) {

/*              Hermitian, eigenvalues specified */

		zlatms_(&n, &n, "D", &iseed[1], "H", &rwork[1], &imode, &cond, 
			 &anorm, &n, &n, "N", &a[a_offset], lda, &work[1], &
			iinfo);

	    } else if (itype == 6) {

/*              General, eigenvalues specified */

		if (kconds[jtype - 1] == 1) {
		    conds = 1.;
		} else if (kconds[jtype - 1] == 2) {
		    conds = rtulpi;
		} else {
		    conds = 0.;
		}

		zlatme_(&n, "D", &iseed[1], &work[1], &imode, &cond, &c_b2, 
			" ", "T", "T", "T", &rwork[1], &c__4, &conds, &n, &n, 
			&anorm, &a[a_offset], lda, &work[n + 1], &iinfo);

	    } else if (itype == 7) {

/*              Diagonal, random eigenvalues */

		zlatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b27, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[(
			n << 1) + 1], &c__1, &c_b27, "N", idumma, &c__0, &
			c__0, &c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[
			1], &iinfo);

	    } else if (itype == 8) {

/*              Hermitian, random eigenvalues */

		zlatmr_(&n, &n, "D", &iseed[1], "H", &work[1], &c__6, &c_b27, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[(
			n << 1) + 1], &c__1, &c_b27, "N", idumma, &n, &n, &
			c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 9) {

/*              General, random eigenvalues */

		zlatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b27, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[(
			n << 1) + 1], &c__1, &c_b27, "N", idumma, &n, &n, &
			c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 10) {

/*              Triangular, random eigenvalues */

		zlatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b27, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[(
			n << 1) + 1], &c__1, &c_b27, "N", idumma, &n, &c__0, &
			c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else {

		iinfo = 1;
	    }

	    if (iinfo != 0) {
		io___35.ciunit = *nounit;
		s_wsfe(&io___35);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L100:

/*           Call ZGEHRD to compute H and U, do tests. */

	    zlacpy_(" ", &n, &n, &a[a_offset], lda, &h__[h_offset], lda);
	    ntest = 1;

	    ilo = 1;
	    ihi = n;

	    i__3 = *nwork - n;
	    zgehrd_(&n, &ilo, &ihi, &h__[h_offset], lda, &work[1], &work[n + 
		    1], &i__3, &iinfo);

	    if (iinfo != 0) {
		result[1] = ulpinv;
		io___38.ciunit = *nounit;
		s_wsfe(&io___38);
		do_fio(&c__1, "ZGEHRD", (ftnlen)6);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

	    i__3 = n - 1;
	    for (j = 1; j <= i__3; ++j) {
		i__4 = j + 1 + j * uu_dim1;
		uu[i__4].r = 0., uu[i__4].i = 0.;
		i__4 = n;
		for (i__ = j + 2; i__ <= i__4; ++i__) {
		    i__5 = i__ + j * u_dim1;
		    i__6 = i__ + j * h_dim1;
		    u[i__5].r = h__[i__6].r, u[i__5].i = h__[i__6].i;
		    i__5 = i__ + j * uu_dim1;
		    i__6 = i__ + j * h_dim1;
		    uu[i__5].r = h__[i__6].r, uu[i__5].i = h__[i__6].i;
		    i__5 = i__ + j * h_dim1;
		    h__[i__5].r = 0., h__[i__5].i = 0.;
/* L110: */
		}
/* L120: */
	    }
	    i__3 = n - 1;
	    zcopy_(&i__3, &work[1], &c__1, &tau[1], &c__1);
	    i__3 = *nwork - n;
	    zunghr_(&n, &ilo, &ihi, &u[u_offset], ldu, &work[1], &work[n + 1], 
		     &i__3, &iinfo);
	    ntest = 2;

	    zhst01_(&n, &ilo, &ihi, &a[a_offset], lda, &h__[h_offset], lda, &
		    u[u_offset], ldu, &work[1], nwork, &rwork[1], &result[1]);

/*           Call ZHSEQR to compute T1, T2 and Z, do tests. */

/*           Eigenvalues only (W3) */

	    zlacpy_(" ", &n, &n, &h__[h_offset], lda, &t2[t2_offset], lda);
	    ntest = 3;
	    result[3] = ulpinv;

	    zhseqr_("E", "N", &n, &ilo, &ihi, &t2[t2_offset], lda, &w3[1], &
		    uz[uz_offset], ldu, &work[1], nwork, &iinfo);
	    if (iinfo != 0) {
		io___40.ciunit = *nounit;
		s_wsfe(&io___40);
		do_fio(&c__1, "ZHSEQR(E)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		if (iinfo <= n + 2) {
		    *info = abs(iinfo);
		    goto L240;
		}
	    }

/*           Eigenvalues (W1) and Full Schur Form (T2) */

	    zlacpy_(" ", &n, &n, &h__[h_offset], lda, &t2[t2_offset], lda);

	    zhseqr_("S", "N", &n, &ilo, &ihi, &t2[t2_offset], lda, &w1[1], &
		    uz[uz_offset], ldu, &work[1], nwork, &iinfo);
	    if (iinfo != 0 && iinfo <= n + 2) {
		io___41.ciunit = *nounit;
		s_wsfe(&io___41);
		do_fio(&c__1, "ZHSEQR(S)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

/*           Eigenvalues (W1), Schur Form (T1), and Schur Vectors (UZ) */

	    zlacpy_(" ", &n, &n, &h__[h_offset], lda, &t1[t1_offset], lda);
	    zlacpy_(" ", &n, &n, &u[u_offset], ldu, &uz[uz_offset], ldu);

	    zhseqr_("S", "V", &n, &ilo, &ihi, &t1[t1_offset], lda, &w1[1], &
		    uz[uz_offset], ldu, &work[1], nwork, &iinfo);
	    if (iinfo != 0 && iinfo <= n + 2) {
		io___42.ciunit = *nounit;
		s_wsfe(&io___42);
		do_fio(&c__1, "ZHSEQR(V)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

/*           Compute Z = U' UZ */

	    zgemm_("C", "N", &n, &n, &n, &c_b2, &u[u_offset], ldu, &uz[
		    uz_offset], ldu, &c_b1, &z__[z_offset], ldu);
	    ntest = 8;

/*           Do Tests 3: | H - Z T Z' | / ( |H| n ulp ) */
/*                and 4: | I - Z Z' | / ( n ulp ) */

	    zhst01_(&n, &ilo, &ihi, &h__[h_offset], lda, &t1[t1_offset], lda, 
		    &z__[z_offset], ldu, &work[1], nwork, &rwork[1], &result[
		    3]);

/*           Do Tests 5: | A - UZ T (UZ)' | / ( |A| n ulp ) */
/*                and 6: | I - UZ (UZ)' | / ( n ulp ) */

	    zhst01_(&n, &ilo, &ihi, &a[a_offset], lda, &t1[t1_offset], lda, &
		    uz[uz_offset], ldu, &work[1], nwork, &rwork[1], &result[5]
);

/*           Do Test 7: | T2 - T1 | / ( |T| n ulp ) */

	    zget10_(&n, &n, &t2[t2_offset], lda, &t1[t1_offset], lda, &work[1]
, &rwork[1], &result[7]);

/*           Do Test 8: | W3 - W1 | / ( max(|W1|,|W3|) ulp ) */

	    temp1 = 0.;
	    temp2 = 0.;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
/* Computing MAX */
		d__1 = temp1, d__2 = z_abs(&w1[j]), d__1 = max(d__1,d__2), 
			d__2 = z_abs(&w3[j]);
		temp1 = max(d__1,d__2);
/* Computing MAX */
		i__4 = j;
		i__5 = j;
		z__1.r = w1[i__4].r - w3[i__5].r, z__1.i = w1[i__4].i - w3[
			i__5].i;
		d__1 = temp2, d__2 = z_abs(&z__1);
		temp2 = max(d__1,d__2);
/* L130: */
	    }

/* Computing MAX */
	    d__1 = unfl, d__2 = ulp * max(temp1,temp2);
	    result[8] = temp2 / max(d__1,d__2);

/*           Compute the Left and Right Eigenvectors of T */

/*           Compute the Right eigenvector Matrix: */

	    ntest = 9;
	    result[9] = ulpinv;

/*           Select every other eigenvector */

	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		select[j] = FALSE_;
/* L140: */
	    }
	    i__3 = n;
	    for (j = 1; j <= i__3; j += 2) {
		select[j] = TRUE_;
/* L150: */
	    }
	    ztrevc_("Right", "All", &select[1], &n, &t1[t1_offset], lda, 
		    cdumma, ldu, &evectr[evectr_offset], ldu, &n, &in, &work[
		    1], &rwork[1], &iinfo);
	    if (iinfo != 0) {
		io___47.ciunit = *nounit;
		s_wsfe(&io___47);
		do_fio(&c__1, "ZTREVC(R,A)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

/*           Test 9:  | TR - RW | / ( |T| |R| ulp ) */

	    zget22_("N", "N", "N", &n, &t1[t1_offset], lda, &evectr[
		    evectr_offset], ldu, &w1[1], &work[1], &rwork[1], dumma);
	    result[9] = dumma[0];
	    if (dumma[1] > *thresh) {
		io___49.ciunit = *nounit;
		s_wsfe(&io___49);
		do_fio(&c__1, "Right", (ftnlen)5);
		do_fio(&c__1, "ZTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof(doublereal));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Compute selected right eigenvectors and confirm that */
/*           they agree with previous right eigenvectors */

	    ztrevc_("Right", "Some", &select[1], &n, &t1[t1_offset], lda, 
		    cdumma, ldu, &evectl[evectl_offset], ldu, &n, &in, &work[
		    1], &rwork[1], &iinfo);
	    if (iinfo != 0) {
		io___50.ciunit = *nounit;
		s_wsfe(&io___50);
		do_fio(&c__1, "ZTREVC(R,S)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

	    k = 1;
	    match = TRUE_;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		if (select[j]) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			i__5 = jj + j * evectr_dim1;
			i__6 = jj + k * evectl_dim1;
			if (evectr[i__5].r != evectl[i__6].r || evectr[i__5]
				.i != evectl[i__6].i) {
			    match = FALSE_;
			    goto L180;
			}
/* L160: */
		    }
		    ++k;
		}
/* L170: */
	    }
L180:
	    if (! match) {
		io___54.ciunit = *nounit;
		s_wsfe(&io___54);
		do_fio(&c__1, "Right", (ftnlen)5);
		do_fio(&c__1, "ZTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Compute the Left eigenvector Matrix: */

	    ntest = 10;
	    result[10] = ulpinv;
	    ztrevc_("Left", "All", &select[1], &n, &t1[t1_offset], lda, &
		    evectl[evectl_offset], ldu, cdumma, ldu, &n, &in, &work[1]
, &rwork[1], &iinfo);
	    if (iinfo != 0) {
		io___55.ciunit = *nounit;
		s_wsfe(&io___55);
		do_fio(&c__1, "ZTREVC(L,A)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

/*           Test 10:  | LT - WL | / ( |T| |L| ulp ) */

	    zget22_("C", "N", "C", &n, &t1[t1_offset], lda, &evectl[
		    evectl_offset], ldu, &w1[1], &work[1], &rwork[1], &dumma[
		    2]);
	    result[10] = dumma[2];
	    if (dumma[3] > *thresh) {
		io___56.ciunit = *nounit;
		s_wsfe(&io___56);
		do_fio(&c__1, "Left", (ftnlen)4);
		do_fio(&c__1, "ZTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&dumma[3], (ftnlen)sizeof(doublereal));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Compute selected left eigenvectors and confirm that */
/*           they agree with previous left eigenvectors */

	    ztrevc_("Left", "Some", &select[1], &n, &t1[t1_offset], lda, &
		    evectr[evectr_offset], ldu, cdumma, ldu, &n, &in, &work[1]
, &rwork[1], &iinfo);
	    if (iinfo != 0) {
		io___57.ciunit = *nounit;
		s_wsfe(&io___57);
		do_fio(&c__1, "ZTREVC(L,S)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

	    k = 1;
	    match = TRUE_;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		if (select[j]) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			i__5 = jj + j * evectl_dim1;
			i__6 = jj + k * evectr_dim1;
			if (evectl[i__5].r != evectr[i__6].r || evectl[i__5]
				.i != evectr[i__6].i) {
			    match = FALSE_;
			    goto L210;
			}
/* L190: */
		    }
		    ++k;
		}
/* L200: */
	    }
L210:
	    if (! match) {
		io___58.ciunit = *nounit;
		s_wsfe(&io___58);
		do_fio(&c__1, "Left", (ftnlen)4);
		do_fio(&c__1, "ZTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Call ZHSEIN for Right eigenvectors of H, do test 11 */

	    ntest = 11;
	    result[11] = ulpinv;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		select[j] = TRUE_;
/* L220: */
	    }

	    zhsein_("Right", "Qr", "Ninitv", &select[1], &n, &h__[h_offset], 
		    lda, &w3[1], cdumma, ldu, &evectx[evectx_offset], ldu, &
		    n1, &in, &work[1], &rwork[1], &iwork[1], &iwork[1], &
		    iinfo);
	    if (iinfo != 0) {
		io___59.ciunit = *nounit;
		s_wsfe(&io___59);
		do_fio(&c__1, "ZHSEIN(R)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L240;
		}
	    } else {

/*              Test 11:  | HX - XW | / ( |H| |X| ulp ) */

/*                        (from inverse iteration) */

		zget22_("N", "N", "N", &n, &h__[h_offset], lda, &evectx[
			evectx_offset], ldu, &w3[1], &work[1], &rwork[1], 
			dumma);
		if (dumma[0] < ulpinv) {
		    result[11] = dumma[0] * aninv;
		}
		if (dumma[1] > *thresh) {
		    io___60.ciunit = *nounit;
		    s_wsfe(&io___60);
		    do_fio(&c__1, "Right", (ftnlen)5);
		    do_fio(&c__1, "ZHSEIN", (ftnlen)6);
		    do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof(
			    doublereal));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		}
	    }

/*           Call ZHSEIN for Left eigenvectors of H, do test 12 */

	    ntest = 12;
	    result[12] = ulpinv;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		select[j] = TRUE_;
/* L230: */
	    }

	    zhsein_("Left", "Qr", "Ninitv", &select[1], &n, &h__[h_offset], 
		    lda, &w3[1], &evecty[evecty_offset], ldu, cdumma, ldu, &
		    n1, &in, &work[1], &rwork[1], &iwork[1], &iwork[1], &
		    iinfo);
	    if (iinfo != 0) {
		io___61.ciunit = *nounit;
		s_wsfe(&io___61);
		do_fio(&c__1, "ZHSEIN(L)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L240;
		}
	    } else {

/*              Test 12:  | YH - WY | / ( |H| |Y| ulp ) */

/*                        (from inverse iteration) */

		zget22_("C", "N", "C", &n, &h__[h_offset], lda, &evecty[
			evecty_offset], ldu, &w3[1], &work[1], &rwork[1], &
			dumma[2]);
		if (dumma[2] < ulpinv) {
		    result[12] = dumma[2] * aninv;
		}
		if (dumma[3] > *thresh) {
		    io___62.ciunit = *nounit;
		    s_wsfe(&io___62);
		    do_fio(&c__1, "Left", (ftnlen)4);
		    do_fio(&c__1, "ZHSEIN", (ftnlen)6);
		    do_fio(&c__1, (char *)&dumma[3], (ftnlen)sizeof(
			    doublereal));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		}
	    }

/*           Call ZUNMHR for Right eigenvectors of A, do test 13 */

	    ntest = 13;
	    result[13] = ulpinv;

	    zunmhr_("Left", "No transpose", &n, &n, &ilo, &ihi, &uu[uu_offset]
, ldu, &tau[1], &evectx[evectx_offset], ldu, &work[1], 
		    nwork, &iinfo);
	    if (iinfo != 0) {
		io___63.ciunit = *nounit;
		s_wsfe(&io___63);
		do_fio(&c__1, "ZUNMHR(L)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L240;
		}
	    } else {

/*              Test 13:  | AX - XW | / ( |A| |X| ulp ) */

/*                        (from inverse iteration) */

		zget22_("N", "N", "N", &n, &a[a_offset], lda, &evectx[
			evectx_offset], ldu, &w3[1], &work[1], &rwork[1], 
			dumma);
		if (dumma[0] < ulpinv) {
		    result[13] = dumma[0] * aninv;
		}
	    }

/*           Call ZUNMHR for Left eigenvectors of A, do test 14 */

	    ntest = 14;
	    result[14] = ulpinv;

	    zunmhr_("Left", "No transpose", &n, &n, &ilo, &ihi, &uu[uu_offset]
, ldu, &tau[1], &evecty[evecty_offset], ldu, &work[1], 
		    nwork, &iinfo);
	    if (iinfo != 0) {
		io___64.ciunit = *nounit;
		s_wsfe(&io___64);
		do_fio(&c__1, "ZUNMHR(L)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L240;
		}
	    } else {

/*              Test 14:  | YA - WY | / ( |A| |Y| ulp ) */

/*                        (from inverse iteration) */

		zget22_("C", "N", "C", &n, &a[a_offset], lda, &evecty[
			evecty_offset], ldu, &w3[1], &work[1], &rwork[1], &
			dumma[2]);
		if (dumma[2] < ulpinv) {
		    result[14] = dumma[2] * aninv;
		}
	    }

/*           End of Loop -- Check for RESULT(j) > THRESH */

L240:

	    ntestt += ntest;
	    dlafts_("ZHS", &n, &n, &jtype, &ntest, &result[1], ioldsd, thresh, 
		     nounit, &nerrs);

L250:
	    ;
	}
/* L260: */
    }

/*     Summary */

    dlasum_("ZHS", nounit, &nerrs, &ntestt);

    return 0;


/*     End of ZCHKHS */

} /* zchkhs_ */