Beispiel #1
0
/*
 * Instrument select instructions similar to how we instrument branches.
 */
void PandaInstrumentVisitor::visitSelectInst(SelectInst &I){
    BinaryOperator *BO;
    ZExtInst *ZEI;
    CallInst *CI;
    std::vector<Value*> argValues;
    Value *condition;
    Function *F = mod->getFunction("log_dynval");
    if (!F) {
        printf("Instrumentation function not found\n");
        assert(1==0);
    }
    condition = I.getCondition();
    BO = static_cast<BinaryOperator*>(IRB.CreateNot(condition));
    ZEI = static_cast<ZExtInst*>(IRB.CreateZExt(BO, wordType));
    argValues.push_back(ConstantInt::get(ptrType,
        (uintptr_t)dynval_buffer));
    argValues.push_back(ConstantInt::get(intType, SELECTENTRY));
    argValues.push_back(ConstantInt::get(intType, SELECT));
    argValues.push_back(static_cast<Value*>(ZEI));
    CI = IRB.CreateCall(F, ArrayRef<Value*>(argValues));
    CI->insertBefore(static_cast<Instruction*>(&I));
    ZEI->insertBefore(static_cast<Instruction*>(CI));
    BO->insertBefore(static_cast<Instruction*>(ZEI));
}
Beispiel #2
0
/// Insert code in the prolog code when unrolling a loop with a
/// run-time trip-count.
///
/// This method assumes that the loop unroll factor is total number
/// of loop bodes in the loop after unrolling. (Some folks refer
/// to the unroll factor as the number of *extra* copies added).
/// We assume also that the loop unroll factor is a power-of-two. So, after
/// unrolling the loop, the number of loop bodies executed is 2,
/// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
/// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
/// the switch instruction is generated.
///
///    extraiters = tripcount % loopfactor
///    if (extraiters == 0) jump Loop:
///    if (extraiters == loopfactor) jump L1
///    if (extraiters == loopfactor-1) jump L2
///    ...
///    L1:  LoopBody;
///    L2:  LoopBody;
///    ...
///    if tripcount < loopfactor jump End
///    Loop:
///    ...
///    End:
///
bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
                                   LPPassManager *LPM) {
  // for now, only unroll loops that contain a single exit
  if (!L->getExitingBlock())
    return false;

  // Make sure the loop is in canonical form, and there is a single
  // exit block only.
  if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
    return false;

  // Use Scalar Evolution to compute the trip count.  This allows more
  // loops to be unrolled than relying on induction var simplification
  if (!LPM)
    return false;
  ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
  if (!SE)
    return false;

  // Only unroll loops with a computable trip count and the trip count needs
  // to be an int value (allowing a pointer type is a TODO item)
  const SCEV *BECount = SE->getBackedgeTakenCount(L);
  if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy())
    return false;

  // Add 1 since the backedge count doesn't include the first loop iteration
  const SCEV *TripCountSC =
    SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1));
  if (isa<SCEVCouldNotCompute>(TripCountSC))
    return false;

  // We only handle cases when the unroll factor is a power of 2.
  // Count is the loop unroll factor, the number of extra copies added + 1.
  if ((Count & (Count-1)) != 0)
    return false;

  // If this loop is nested, then the loop unroller changes the code in
  // parent loop, so the Scalar Evolution pass needs to be run again
  if (Loop *ParentLoop = L->getParentLoop())
    SE->forgetLoop(ParentLoop);

  BasicBlock *PH = L->getLoopPreheader();
  BasicBlock *Header = L->getHeader();
  BasicBlock *Latch = L->getLoopLatch();
  // It helps to splits the original preheader twice, one for the end of the
  // prolog code and one for a new loop preheader
  BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass());
  BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass());
  BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());

  // Compute the number of extra iterations required, which is:
  //  extra iterations = run-time trip count % (loop unroll factor + 1)
  SCEVExpander Expander(*SE, "loop-unroll");
  Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
                                            PreHeaderBR);
  Type *CountTy = TripCount->getType();
  BinaryOperator *ModVal =
    BinaryOperator::CreateURem(TripCount,
                               ConstantInt::get(CountTy, Count),
                               "xtraiter");
  ModVal->insertBefore(PreHeaderBR);

  // Check if for no extra iterations, then jump to unrolled loop
  Value *BranchVal = new ICmpInst(PreHeaderBR,
                                  ICmpInst::ICMP_NE, ModVal,
                                  ConstantInt::get(CountTy, 0), "lcmp");
  // Branch to either the extra iterations or the unrolled loop
  // We will fix up the true branch label when adding loop body copies
  BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
  assert(PreHeaderBR->isUnconditional() &&
         PreHeaderBR->getSuccessor(0) == PEnd &&
         "CFG edges in Preheader are not correct");
  PreHeaderBR->eraseFromParent();

  ValueToValueMapTy LVMap;
  Function *F = Header->getParent();
  // These variables are used to update the CFG links in each iteration
  BasicBlock *CompareBB = nullptr;
  BasicBlock *LastLoopBB = PH;
  // Get an ordered list of blocks in the loop to help with the ordering of the
  // cloned blocks in the prolog code
  LoopBlocksDFS LoopBlocks(L);
  LoopBlocks.perform(LI);

  //
  // For each extra loop iteration, create a copy of the loop's basic blocks
  // and generate a condition that branches to the copy depending on the
  // number of 'left over' iterations.
  //
  for (unsigned leftOverIters = Count-1; leftOverIters > 0; --leftOverIters) {
    std::vector<BasicBlock*> NewBlocks;
    ValueToValueMapTy VMap;

    // Clone all the basic blocks in the loop, but we don't clone the loop
    // This function adds the appropriate CFG connections.
    CloneLoopBlocks(L, (leftOverIters == Count-1), LastLoopBB, PEnd, NewBlocks,
                    LoopBlocks, VMap, LVMap, LI);
    LastLoopBB = cast<BasicBlock>(VMap[Latch]);

    // Insert the cloned blocks into function just before the original loop
    F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(),
                                  NewBlocks[0], F->end());

    // Generate the code for the comparison which determines if the loop
    // prolog code needs to be executed.
    if (leftOverIters == Count-1) {
      // There is no compare block for the fall-thru case when for the last
      // left over iteration
      CompareBB = NewBlocks[0];
    } else {
      // Create a new block for the comparison
      BasicBlock *NewBB = BasicBlock::Create(CompareBB->getContext(), "unr.cmp",
                                             F, CompareBB);
      if (Loop *ParentLoop = L->getParentLoop()) {
        // Add the new block to the parent loop, if needed
        ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
      }

      // The comparison w/ the extra iteration value and branch
      Value *BranchVal = new ICmpInst(*NewBB, ICmpInst::ICMP_EQ, ModVal,
                                      ConstantInt::get(CountTy, leftOverIters),
                                      "un.tmp");
      // Branch to either the extra iterations or the unrolled loop
      BranchInst::Create(NewBlocks[0], CompareBB,
                         BranchVal, NewBB);
      CompareBB = NewBB;
      PH->getTerminator()->setSuccessor(0, NewBB);
      VMap[NewPH] = CompareBB;
    }

    // Rewrite the cloned instruction operands to use the values
    // created when the clone is created.
    for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
      for (BasicBlock::iterator I = NewBlocks[i]->begin(),
             E = NewBlocks[i]->end(); I != E; ++I) {
        RemapInstruction(I, VMap,
                         RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
      }
    }
  }

  // Connect the prolog code to the original loop and update the
  // PHI functions.
  ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, LVMap,
                LPM->getAsPass());
  NumRuntimeUnrolled++;
  return true;
}
Beispiel #3
0
/*
 * Call the logging function, logging the branch target.  Target[0] is the true
 * branch, and target[1] is the false branch.  So when logging, we NOT the
 * condition to actually log the target taken.  We are also logging and
 * processing unconditional branches for the time being.
 */
void PandaInstrumentVisitor::visitBranchInst(BranchInst &I){
    BinaryOperator *BO;
    ZExtInst *ZEI;
    CallInst *CI;
    std::vector<Value*> argValues;
    Value *condition;
    Function *F = mod->getFunction("log_dynval");
    if (!F) {
        printf("Instrumentation function not found\n");
        assert(1==0);
    }
    if (I.isConditional()){
        condition = I.getCondition();
        if(isa<UndefValue>(condition)){
            BO = static_cast<BinaryOperator*>(IRB.CreateNot(condition));
            ZEI = static_cast<ZExtInst*>(IRB.CreateZExt(BO, wordType));
            argValues.push_back(ConstantInt::get(ptrType,
                (uintptr_t)dynval_buffer));
            argValues.push_back(ConstantInt::get(intType, BRANCHENTRY));
            argValues.push_back(ConstantInt::get(intType, BRANCHOP));
            argValues.push_back(static_cast<Value*>(ZEI));
            CI = IRB.CreateCall(F, ArrayRef<Value*>(argValues));
            CI->insertBefore(static_cast<Instruction*>(&I));
        }
        else if (isa<Constant>(condition)){
            CallInst *CI;
            std::vector<Value*> argValues;
            uint64_t constcond = static_cast<ConstantInt*>(
                I.getCondition())->getZExtValue();
            argValues.push_back(ConstantInt::get(ptrType,
                (uintptr_t)dynval_buffer));
            argValues.push_back(ConstantInt::get(intType, BRANCHENTRY));
            argValues.push_back(ConstantInt::get(intType, BRANCHOP));
            argValues.push_back(ConstantInt::get(wordType, !constcond));
            CI = IRB.CreateCall(F, ArrayRef<Value*>(argValues));
            CI->insertBefore(static_cast<Instruction*>(&I));
        }
        else {
            BO = static_cast<BinaryOperator*>(IRB.CreateNot(condition));
            ZEI = static_cast<ZExtInst*>(IRB.CreateZExt(BO, wordType));
            argValues.push_back(ConstantInt::get(ptrType,
                (uintptr_t)dynval_buffer));
            argValues.push_back(ConstantInt::get(intType, BRANCHENTRY));
            argValues.push_back(ConstantInt::get(intType, BRANCHOP));
            argValues.push_back(static_cast<Value*>(ZEI));
            CI = IRB.CreateCall(F, ArrayRef<Value*>(argValues));
            CI->insertBefore(static_cast<Instruction*>(&I));
            ZEI->insertBefore(static_cast<Instruction*>(CI));
            BO->insertBefore(static_cast<Instruction*>(ZEI));
        }
    }
    else {
        argValues.push_back(ConstantInt::get(ptrType,
            (uintptr_t)dynval_buffer));
        argValues.push_back(ConstantInt::get(intType, BRANCHENTRY));
        argValues.push_back(ConstantInt::get(intType, BRANCHOP));
        argValues.push_back(ConstantInt::get(wordType, 0));
        CI = IRB.CreateCall(F, ArrayRef<Value*>(argValues));
        CI->insertBefore(static_cast<Instruction*>(&I));
    }
}