void EdgeBoxGenerator::scoreAllBoxes( Boxes &boxes )
{
  // get list of all boxes roughly distributed in grid
  boxes.resize(0); int arRad, scNum; float minSize=sqrt(_minBoxArea);
  arRad = int(log(_maxAspectRatio)/log(_arStep*_arStep));
  scNum = int(ceil(log(std::max(w,h)/minSize)/log(_scStep)));
  for( int s=0; s<scNum; s++ ) {
    int a, r, c, bh, bw, kr, kc, bId=-1; float ar, sc;
    for( a=0; a<2*arRad+1; a++ ) {
      ar=pow(_arStep,float(a-arRad)); sc=minSize*pow(_scStep,float(s));
      bh=int(sc/ar); kr=std::max(2,int(bh*_rcStepRatio));
      bw=int(sc*ar); kc=std::max(2,int(bw*_rcStepRatio));
      for( c=0; c<w-bw+kc; c+=kc ) for( r=0; r<h-bh+kr; r+=kr ) {
        Box b; b.r=r; b.c=c; b.h=bh; b.w=bw; boxes.push_back(b);
      }
    }
  }

  // score all boxes, refine top candidates, perform nms
  int i, k=0, m = int(boxes.size());
  for( i=0; i<m; i++ ) {
    scoreBox(boxes[i]);
    if( !boxes[i].s ) continue; k++;
    refineBox(boxes[i]);
  }
  sort(boxes.rbegin(),boxes.rend(),boxesCompare);
  boxes.resize(k); boxesNms(boxes,_beta,_eta,_maxBoxes);
}
Beispiel #2
0
void Messenger::read(std::vector<Boxes> &answer, const char type) {
  // If kodiak has not produced an answer yet, this thread goes to sleep for 1000miliseconds.
  // Each iteration the file is read again and the condition checked.
  while (!kodiak_messages.k_done()) {
    std::this_thread::sleep_for(std::chrono::milliseconds(1000));
    std::fstream input(f_name.c_str(), std::ios::in | std::ios::binary);
    if (!input) {
      std::cout << f_name << ": File not found.  Creating a new file." << std::endl;
    } else if (!kodiak_messages.ParseFromIstream(&input)) {
      std::cerr << "Failed to parse messages." << std::endl;
    }
  }
  // b stands for bifurcation.
  // Read in the boxes from respective variable in the shared file.
  if (type == 'b') {
    for (int i = 0; i < kodiak_messages.bifans_size(); ++i) {
      const kodiak::Bif_Ans &bifans = kodiak_messages.bifans(i);
      for (int o = 0; o < bifans.boxtype_size(); ++o) {
        Boxes type;
        const kodiak::Box_Type boxtype = bifans.boxtype(o);
        for (int p = 0; p < boxtype.box_size(); ++p) {
          Box b;
          const kodiak::Box box = boxtype.box(p);
          for (int y = 0; y < box.interval_size(); ++y) {
            const kodiak::Interval interval = box.interval(y);
            b.push_back(std::make_pair(interval.lb(), interval.ub()));
          }
          type.push_back(b);
        }
        answer.push_back(type);
      }
    }
  }

};
void EdgeBoxesImpl::scoreAllBoxes(Boxes &boxes)
{
    // get list of all boxes roughly distributed in grid
    boxes.resize(0);
    int ayRad, sxNum;
    float minSize = sqrt(_minBoxArea);
    ayRad = (int)(log(_maxAspectRatio) / log(_ayStep * _ayStep));
    sxNum = (int)(ceil(log(max(w, h) / minSize) / log(_sxStep)));

    for (int s = 0; s < sxNum; s++)
    {
        int a, y, x, bh, bw, ky, kx = -1;
        float ay, sx;
        for (a = 0; a < 2 * ayRad + 1; a++)
        {
            ay = pow(_ayStep, float(a - ayRad));
            sx = minSize * pow(_sxStep, float(s));
            bh = (int)(sx / ay);
            ky = max(2, (int)(bh * _xyStepRatio));
            bw = (int)(sx * ay);
            kx = max(2, (int)(bw * _xyStepRatio));
            for (x = 0; x < w - bw + kx; x += kx)
            {
                for (y = 0; y < h - bh + ky; y += ky)
                {
                    Box b;
                    b.y = y;
                    b.x = x;
                    b.h = bh;
                    b.w = bw;
                    boxes.push_back(b);
                }
            }
        }
    }

    // score all boxes, refine top candidates
    int i, k = 0, m = (int)boxes.size();
    for (i = 0; i < m; i++)
    {
        scoreBox(boxes[i]);
        if (!boxes[i].score) continue;
        k++;
        refineBox(boxes[i]);
    }
    sort(boxes.rbegin(), boxes.rend(), boxesCompare);
    boxes.resize(k);
}
Beispiel #4
0
void  mexFunction(int nlhs, mxArray *out[], int nrhs, const mxArray *input[]) {
    
    float thr=0.5, eta=1;
    int maxBoxes=100000;
    if(mxGetClassID(input[0])!=mxSINGLE_CLASS) mexErrMsgTxt("first input must be single");
    if (nrhs==4) eta = (float) mxGetScalar(input[3]);
    if (nrhs>=3) maxBoxes = (int) mxGetScalar(input[2]);
    if (nrhs<2) mexErrMsgTxt("Usage: nms_c(boxes, thre, max_nbox=Inf, eta=1)");
    
    thr = (float) mxGetScalar(input[1]);    
    float* boxes_array = (float*)mxGetPr( input[0] );
    int nbox = (int) mxGetM(input[0]);  //number of input boxes
    //mexPrintf("nbox: %d, thr: %f \n", nbox, thr);
    
    int x2,y2;
    Boxes boxes;
    boxes.resize(0);
    for(int i=0; i<nbox; i++) {
      Box b;
      b.c = (int)boxes_array[ i + 0*nbox ]-1;
      b.r = (int)boxes_array[ i + 1*nbox ]-1;
      x2  = (int) boxes_array[ i + 2*nbox ]-1;
      y2  = (int) boxes_array[ i + 3*nbox ]-1;
      b.w = (int) x2 - b.c + 1;
      b.h = (int) y2 - b.r + 1;
      b.s = (float) boxes_array[ i + 4*nbox ];
      boxes.push_back(b);
    }
        
    boxesNms(boxes, thr, maxBoxes, eta);
        
    //output
    int n = (int) boxes.size();
    out[0] = mxCreateNumericMatrix(n,5,mxSINGLE_CLASS,mxREAL);
    float *bbs = (float*) mxGetData(out[0]);
    for(int i=0; i<n; i++) {
      bbs[ i + 0*n ] = (float) boxes[i].c+1;
      bbs[ i + 1*n ] = (float) boxes[i].r+1;
      bbs[ i + 2*n ] = (float) (boxes[i].c+boxes[i].w);
      bbs[ i + 3*n ] = (float) (boxes[i].r+boxes[i].h);
      bbs[ i + 4*n ] = boxes[i].s;
    }
    
    
}
Beispiel #5
0
// Matlab entry point: bbs = mex( E, O, prm1, prm2, ... )
void mexFunction( int nl, mxArray *pl[], int nr, const mxArray *pr[] )
{
  // check and get inputs
  if(nr != 15) mexErrMsgTxt("Fourteen inputs required.");
  if(nl > 2) mexErrMsgTxt("At most two outputs expected.");
  if(mxGetClassID(pr[0])!=mxSINGLE_CLASS) mexErrMsgTxt("E must be a float*");
  if(mxGetClassID(pr[1])!=mxSINGLE_CLASS) mexErrMsgTxt("O must be a float*");
  arrayf E; E._x = (float*) mxGetData(pr[0]);
  arrayf O; O._x = (float*) mxGetData(pr[1]);
  int h = (int) mxGetM(pr[0]); O._h=E._h=h;
  int w = (int) mxGetN(pr[0]); O._w=E._w=w;

  // optionally create memory for visualization
  arrayf V; if( nl>1 ) {
    const int ds[3] = {h,w,3};
    pl[1] = mxCreateNumericArray(3,ds,mxSINGLE_CLASS,mxREAL);
    V._x = (float*) mxGetData(pl[1]); V._h=h; V._w=w;
  }

  // setup and run EdgeBoxGenerator
  EdgeBoxGenerator edgeBoxGen; Boxes boxes;
  edgeBoxGen._alpha = float(mxGetScalar(pr[2]));
  edgeBoxGen._beta = float(mxGetScalar(pr[3]));
  edgeBoxGen._eta = float(mxGetScalar(pr[4]));
  edgeBoxGen._minScore = float(mxGetScalar(pr[5]));
  edgeBoxGen._maxBoxes = int(mxGetScalar(pr[6]));
  edgeBoxGen._edgeMinMag = float(mxGetScalar(pr[7]));
  edgeBoxGen._edgeMergeThr = float(mxGetScalar(pr[8]));
  edgeBoxGen._clusterMinMag = float(mxGetScalar(pr[9]));
  edgeBoxGen._maxAspectRatio = float(mxGetScalar(pr[10]));
  edgeBoxGen._minBoxArea = float(mxGetScalar(pr[11]));
  edgeBoxGen._gamma = float(mxGetScalar(pr[12]));
  edgeBoxGen._kappa = float(mxGetScalar(pr[13]));
	
  ConstMatlabMultiArray<double> bbox(pr[14]);
  std::size_t n_bbox=bbox.shape()[0];
  for(int ii=0;ii<n_bbox;++ii)
  {
	  Box b;
	  b.c=bbox[ii][0]-1;
	  b.r=bbox[ii][1]-1;
	  b.w=bbox[ii][2]-bbox[ii][0];
	  b.h=bbox[ii][3]-bbox[ii][1];
	  if(b.w<=1 | b.h<=1)
		  continue;
	  boxes.push_back(b);
  }

  edgeBoxGen.generate( boxes, E, O, V );

  // create output bbs and output to Matlab
  int n = (int) boxes.size();
  pl[0] = mxCreateNumericMatrix(n,5,mxSINGLE_CLASS,mxREAL);
  float *bbs = (float*) mxGetData(pl[0]);
  for(int i=0; i<n; i++) {
    bbs[ i + 0*n ] = (float) boxes[i].c+1;
    bbs[ i + 1*n ] = (float) boxes[i].r+1;
    bbs[ i + 2*n ] = (float) boxes[i].w;
    bbs[ i + 3*n ] = (float) boxes[i].h;
    bbs[ i + 4*n ] = boxes[i].s;
  }
}