void BytecodeLivenessAnalysis::getLivenessInfoAtBytecodeOffset(unsigned bytecodeOffset, FastBitVector& result)
{
    BytecodeBasicBlock* block = m_graph.findBasicBlockForBytecodeOffset(bytecodeOffset);
    ASSERT(block);
    ASSERT(!block->isEntryBlock());
    ASSERT(!block->isExitBlock());
    result.resize(block->out().numBits());
    computeLocalLivenessForBytecodeOffset(m_graph, block, bytecodeOffset, result);
}
void BytecodeLivenessAnalysis::getLivenessInfoForNonCapturedVarsAtBytecodeOffset(unsigned bytecodeOffset, FastBitVector& result)
{
    BytecodeBasicBlock* block = findBasicBlockForBytecodeOffset(m_basicBlocks, bytecodeOffset);
    ASSERT(block);
    ASSERT(!block->isEntryBlock());
    ASSERT(!block->isExitBlock());
    result.resize(block->out().numBits());
    computeLocalLivenessForBytecodeOffset(m_codeBlock, block, m_basicBlocks, bytecodeOffset, result);
}
void BytecodeLivenessAnalysis::dumpResults()
{
    Interpreter* interpreter = m_codeBlock->vm()->interpreter;
    Instruction* instructionsBegin = m_codeBlock->instructions().begin();
    for (unsigned i = 0; i < m_basicBlocks.size(); i++) {
        BytecodeBasicBlock* block = m_basicBlocks[i].get();
        dataLogF("\nBytecode basic block %u: %p (offset: %u, length: %u)\n", i, block, block->leaderBytecodeOffset(), block->totalBytecodeLength());
        dataLogF("Predecessors: ");
        for (unsigned j = 0; j < block->predecessors().size(); j++) {
            BytecodeBasicBlock* predecessor = block->predecessors()[j];
            dataLogF("%p ", predecessor);
        }
        dataLogF("\n");
        dataLogF("Successors: ");
        for (unsigned j = 0; j < block->successors().size(); j++) {
            BytecodeBasicBlock* successor = block->successors()[j];
            dataLogF("%p ", successor);
        }
        dataLogF("\n");
        if (block->isEntryBlock()) {
            dataLogF("Entry block %p\n", block);
            continue;
        }
        if (block->isExitBlock()) {
            dataLogF("Exit block: %p\n", block);
            continue;
        }
        for (unsigned bytecodeOffset = block->leaderBytecodeOffset(); bytecodeOffset < block->leaderBytecodeOffset() + block->totalBytecodeLength();) {
            const Instruction* currentInstruction = &instructionsBegin[bytecodeOffset];

            dataLogF("Live variables: ");
            FastBitVector liveBefore = getLivenessInfoAtBytecodeOffset(bytecodeOffset);
            for (unsigned j = 0; j < liveBefore.numBits(); j++) {
                if (liveBefore.get(j))
                    dataLogF("%u ", j);
            }
            dataLogF("\n");
            m_codeBlock->dumpBytecode(WTF::dataFile(), m_codeBlock->globalObject()->globalExec(), instructionsBegin, currentInstruction);

            OpcodeID opcodeID = interpreter->getOpcodeID(instructionsBegin[bytecodeOffset].u.opcode);
            unsigned opcodeLength = opcodeLengths[opcodeID];
            bytecodeOffset += opcodeLength;
        }

        dataLogF("Live variables: ");
        FastBitVector liveAfter = block->out();
        for (unsigned j = 0; j < liveAfter.numBits(); j++) {
            if (liveAfter.get(j))
                dataLogF("%u ", j);
        }
        dataLogF("\n");
    }
}
static void stepOverInstruction(CodeBlock* codeBlock, BytecodeBasicBlock* block, Vector<std::unique_ptr<BytecodeBasicBlock>>& basicBlocks, unsigned bytecodeOffset, const UseFunctor& use, const DefFunctor& def)
{
    // This abstractly execute the instruction in reverse. Instructions logically first use operands and
    // then define operands. This logical ordering is necessary for operations that use and def the same
    // operand, like:
    //
    //     op_add loc1, loc1, loc2
    //
    // The use of loc1 happens before the def of loc1. That's a semantic requirement since the add
    // operation cannot travel forward in time to read the value that it will produce after reading that
    // value. Since we are executing in reverse, this means that we must do defs before uses (reverse of
    // uses before defs).
    //
    // Since this is a liveness analysis, this ordering ends up being particularly important: if we did
    // uses before defs, then the add operation above would appear to not have loc1 live, since we'd
    // first add it to the out set (the use), and then we'd remove it (the def).
    
    computeDefsForBytecodeOffset(
        codeBlock, block, bytecodeOffset,
        [&] (CodeBlock* codeBlock, Instruction*, OpcodeID, int operand) {
            if (isValidRegisterForLiveness(codeBlock, operand))
                def(VirtualRegister(operand).toLocal());
        });

    computeUsesForBytecodeOffset(
        codeBlock, block, bytecodeOffset,
        [&] (CodeBlock* codeBlock, Instruction*, OpcodeID, int operand) {
            if (isValidRegisterForLiveness(codeBlock, operand))
                use(VirtualRegister(operand).toLocal());
        });

    // If we have an exception handler, we want the live-in variables of the 
    // exception handler block to be included in the live-in of this particular bytecode.
    if (HandlerInfo* handler = codeBlock->handlerForBytecodeOffset(bytecodeOffset)) {
        // FIXME: This resume check should not be needed.
        // https://bugs.webkit.org/show_bug.cgi?id=159281
        Interpreter* interpreter = codeBlock->vm()->interpreter;
        Instruction* instructionsBegin = codeBlock->instructions().begin();
        Instruction* instruction = &instructionsBegin[bytecodeOffset];
        OpcodeID opcodeID = interpreter->getOpcodeID(instruction->u.opcode);
        if (opcodeID != op_resume) {
            BytecodeBasicBlock* handlerBlock = findBasicBlockWithLeaderOffset(basicBlocks, handler->target);
            ASSERT(handlerBlock);
            handlerBlock->in().forEachSetBit(use);
        }
    }
}
void BytecodeLivenessAnalysis::runLivenessFixpoint()
{
    UnlinkedCodeBlock* unlinkedCodeBlock = m_codeBlock->unlinkedCodeBlock();
    unsigned numberOfVariables = unlinkedCodeBlock->m_numCalleeLocals;

    for (unsigned i = 0; i < m_basicBlocks.size(); i++) {
        BytecodeBasicBlock* block = m_basicBlocks[i].get();
        block->in().resize(numberOfVariables);
        block->out().resize(numberOfVariables);
    }

    bool changed;
    m_basicBlocks.last()->in().clearAll();
    m_basicBlocks.last()->out().clearAll();
    FastBitVector newOut;
    newOut.resize(m_basicBlocks.last()->out().numBits());
    do {
        changed = false;
        for (unsigned i = m_basicBlocks.size() - 1; i--;) {
            BytecodeBasicBlock* block = m_basicBlocks[i].get();
            newOut.clearAll();
            for (unsigned j = 0; j < block->successors().size(); j++)
                newOut.merge(block->successors()[j]->in());
            bool outDidChange = block->out().setAndCheck(newOut);
            computeLocalLivenessForBlock(m_codeBlock, block, m_basicBlocks);
            changed |= outDidChange;
        }
    } while (changed);
}
void BytecodeLivenessAnalysis::computeKills(BytecodeKills& result)
{
    FastBitVector out;
    
    result.m_codeBlock = m_codeBlock;
    result.m_killSets = std::make_unique<BytecodeKills::KillSet[]>(m_codeBlock->instructions().size());
    
    for (unsigned i = m_basicBlocks.size(); i--;) {
        BytecodeBasicBlock* block = m_basicBlocks[i].get();
        if (block->isEntryBlock() || block->isExitBlock())
            continue;
        
        out = block->out();
        
        for (unsigned i = block->bytecodeOffsets().size(); i--;) {
            unsigned bytecodeOffset = block->bytecodeOffsets()[i];
            stepOverInstruction(
                m_codeBlock, block, m_basicBlocks, bytecodeOffset,
                [&] (unsigned index) {
                    // This is for uses.
                    if (out.get(index))
                        return;
                    result.m_killSets[bytecodeOffset].add(index);
                    out.set(index);
                },
                [&] (unsigned index) {
                    // This is for defs.
                    out.clear(index);
                });
        }
    }
}
static void computeLocalLivenessForBytecodeOffset(CodeBlock* codeBlock, BytecodeBasicBlock* block, Vector<RefPtr<BytecodeBasicBlock> >& basicBlocks, unsigned targetOffset, FastBitVector& result)
{
    ASSERT(!block->isExitBlock());
    ASSERT(!block->isEntryBlock());

    FastBitVector out = block->out();
    HandlerInfo* handler = 0;

    FastBitVector uses;
    FastBitVector defs;
    uses.resize(out.numBits());
    defs.resize(out.numBits());

    for (int i = block->bytecodeOffsets().size() - 1; i >= 0; i--) {
        unsigned bytecodeOffset = block->bytecodeOffsets()[i];
        if (targetOffset > bytecodeOffset)
            break;

        uses.clearAll();
        defs.clearAll();

        computeUsesForBytecodeOffset(codeBlock, bytecodeOffset, uses);
        computeDefsForBytecodeOffset(codeBlock, bytecodeOffset, defs);

        out.exclude(defs);
        out.merge(uses);

        // If we have an exception handler, we want the live-in variables of the 
        // exception handler block to be included in the live-in of this particular bytecode.
        if ((handler = codeBlock->handlerForBytecodeOffset(bytecodeOffset))) {
            BytecodeBasicBlock* handlerBlock = findBasicBlockWithLeaderOffset(basicBlocks, handler->target);
            ASSERT(handlerBlock);
            out.merge(handlerBlock->in());
        }
    }

    result.set(out);
}
void BytecodeLivenessAnalysis::computeFullLiveness(FullBytecodeLiveness& result)
{
    FastBitVector out;
    
    result.m_map.resize(m_codeBlock->instructions().size());
    
    for (unsigned i = m_basicBlocks.size(); i--;) {
        BytecodeBasicBlock* block = m_basicBlocks[i].get();
        if (block->isEntryBlock() || block->isExitBlock())
            continue;
        
        out = block->out();
        
        for (unsigned i = block->bytecodeOffsets().size(); i--;) {
            unsigned bytecodeOffset = block->bytecodeOffsets()[i];
            stepOverInstruction(m_codeBlock, block, m_basicBlocks, bytecodeOffset, out);
            result.m_map[bytecodeOffset] = out;
        }
    }
}
Beispiel #9
0
void computeBytecodeBasicBlocks(CodeBlock* codeBlock, Vector<RefPtr<BytecodeBasicBlock> >& basicBlocks)
{
    Vector<unsigned, 32> jumpTargets;
    computePreciseJumpTargets(codeBlock, jumpTargets);

    // Create the entry and exit basic blocks.
    BytecodeBasicBlock* entry = new BytecodeBasicBlock(BytecodeBasicBlock::EntryBlock);
    basicBlocks.append(adoptRef(entry));
    BytecodeBasicBlock* exit = new BytecodeBasicBlock(BytecodeBasicBlock::ExitBlock);

    // Find basic block boundaries.
    BytecodeBasicBlock* current = new BytecodeBasicBlock(0, 0);
    linkBlocks(entry, current);
    basicBlocks.append(adoptRef(current));

    bool nextInstructionIsLeader = false;

    Interpreter* interpreter = codeBlock->vm()->interpreter;
    Instruction* instructionsBegin = codeBlock->instructions().begin();
    unsigned instructionCount = codeBlock->instructions().size();
    for (unsigned bytecodeOffset = 0; bytecodeOffset < instructionCount;) {
        OpcodeID opcodeID = interpreter->getOpcodeID(instructionsBegin[bytecodeOffset].u.opcode);
        unsigned opcodeLength = opcodeLengths[opcodeID];

        bool createdBlock = false;
        // If the current bytecode is a jump target, then it's the leader of its own basic block.
        if (isJumpTarget(opcodeID, jumpTargets, bytecodeOffset) || nextInstructionIsLeader) {
            BytecodeBasicBlock* block = new BytecodeBasicBlock(bytecodeOffset, opcodeLength);
            basicBlocks.append(adoptRef(block));
            current = block;
            createdBlock = true;
            nextInstructionIsLeader = false;
            bytecodeOffset += opcodeLength;
        }

        // If the current bytecode is a branch or a return, then the next instruction is the leader of its own basic block.
        if (isBranch(opcodeID) || isTerminal(opcodeID) || isThrow(opcodeID))
            nextInstructionIsLeader = true;

        if (createdBlock)
            continue;

        // Otherwise, just add to the length of the current block.
        current->addBytecodeLength(opcodeLength);
        bytecodeOffset += opcodeLength;
    }

    // Link basic blocks together.
    for (unsigned i = 0; i < basicBlocks.size(); i++) {
        BytecodeBasicBlock* block = basicBlocks[i].get();

        if (block->isEntryBlock() || block->isExitBlock())
            continue;

        bool fallsThrough = true; 
        for (unsigned bytecodeOffset = block->leaderBytecodeOffset(); bytecodeOffset < block->leaderBytecodeOffset() + block->totalBytecodeLength();) {
            const Instruction& currentInstruction = instructionsBegin[bytecodeOffset];
            OpcodeID opcodeID = interpreter->getOpcodeID(currentInstruction.u.opcode);
            unsigned opcodeLength = opcodeLengths[opcodeID];
            // If we found a terminal bytecode, link to the exit block.
            if (isTerminal(opcodeID)) {
                ASSERT(bytecodeOffset + opcodeLength == block->leaderBytecodeOffset() + block->totalBytecodeLength());
                linkBlocks(block, exit);
                fallsThrough = false;
                break;
            }

            // If we found a throw, get the HandlerInfo for this instruction to see where we will jump. 
            // If there isn't one, treat this throw as a terminal. This is true even if we have a finally
            // block because the finally block will create its own catch, which will generate a HandlerInfo.
            if (isThrow(opcodeID)) {
                ASSERT(bytecodeOffset + opcodeLength == block->leaderBytecodeOffset() + block->totalBytecodeLength());
                HandlerInfo* handler = codeBlock->handlerForBytecodeOffset(bytecodeOffset);
                fallsThrough = false;
                if (!handler) {
                    linkBlocks(block, exit);
                    break;
                }
                for (unsigned i = 0; i < basicBlocks.size(); i++) {
                    BytecodeBasicBlock* otherBlock = basicBlocks[i].get();
                    if (handler->target == otherBlock->leaderBytecodeOffset()) {
                        linkBlocks(block, otherBlock);
                        break;
                    }
                }
                break;
            }

            // If we found a branch, link to the block(s) that we jump to.
            if (isBranch(opcodeID)) {
                ASSERT(bytecodeOffset + opcodeLength == block->leaderBytecodeOffset() + block->totalBytecodeLength());
                Vector<unsigned, 1> bytecodeOffsetsJumpedTo;
                findJumpTargetsForBytecodeOffset(codeBlock, bytecodeOffset, bytecodeOffsetsJumpedTo);

                for (unsigned i = 0; i < basicBlocks.size(); i++) {
                    BytecodeBasicBlock* otherBlock = basicBlocks[i].get();
                    if (bytecodeOffsetsJumpedTo.contains(otherBlock->leaderBytecodeOffset()))
                        linkBlocks(block, otherBlock);
                }

                if (isUnconditionalBranch(opcodeID))
                    fallsThrough = false;

                break;
            }
            bytecodeOffset += opcodeLength;
        }

        // If we fall through then link to the next block in program order.
        if (fallsThrough) {
            ASSERT(i + 1 < basicBlocks.size());
            BytecodeBasicBlock* nextBlock = basicBlocks[i + 1].get();
            linkBlocks(block, nextBlock);
        }
    }

    basicBlocks.append(adoptRef(exit));
}
Beispiel #10
0
void BytecodeBasicBlock::computeImpl(Block* codeBlock, Instruction* instructionsBegin, unsigned instructionCount, Vector<std::unique_ptr<BytecodeBasicBlock>>& basicBlocks)
{
    Vector<unsigned, 32> jumpTargets;
    computePreciseJumpTargets(codeBlock, instructionsBegin, instructionCount, jumpTargets);

    auto appendBlock = [&] (std::unique_ptr<BytecodeBasicBlock>&& block) {
        block->m_index = basicBlocks.size();
        basicBlocks.append(WTFMove(block));
    };

    auto linkBlocks = [&] (BytecodeBasicBlock* from, BytecodeBasicBlock* to) {
        from->addSuccessor(to);
    };

    // Create the entry and exit basic blocks.
    basicBlocks.reserveCapacity(jumpTargets.size() + 2);

    auto entry = std::make_unique<BytecodeBasicBlock>(BytecodeBasicBlock::EntryBlock);
    auto firstBlock = std::make_unique<BytecodeBasicBlock>(0, 0);
    linkBlocks(entry.get(), firstBlock.get());

    appendBlock(WTFMove(entry));
    BytecodeBasicBlock* current = firstBlock.get();
    appendBlock(WTFMove(firstBlock));

    auto exit = std::make_unique<BytecodeBasicBlock>(BytecodeBasicBlock::ExitBlock);

    bool nextInstructionIsLeader = false;

    Interpreter* interpreter = codeBlock->vm()->interpreter;
    for (unsigned bytecodeOffset = 0; bytecodeOffset < instructionCount;) {
        OpcodeID opcodeID = interpreter->getOpcodeID(instructionsBegin[bytecodeOffset]);
        unsigned opcodeLength = opcodeLengths[opcodeID];

        bool createdBlock = false;
        // If the current bytecode is a jump target, then it's the leader of its own basic block.
        if (isJumpTarget(opcodeID, jumpTargets, bytecodeOffset) || nextInstructionIsLeader) {
            auto newBlock = std::make_unique<BytecodeBasicBlock>(bytecodeOffset, opcodeLength);
            current = newBlock.get();
            appendBlock(WTFMove(newBlock));
            createdBlock = true;
            nextInstructionIsLeader = false;
            bytecodeOffset += opcodeLength;
        }

        // If the current bytecode is a branch or a return, then the next instruction is the leader of its own basic block.
        if (isBranch(opcodeID) || isTerminal(opcodeID) || isThrow(opcodeID))
            nextInstructionIsLeader = true;

        if (createdBlock)
            continue;

        // Otherwise, just add to the length of the current block.
        current->addLength(opcodeLength);
        bytecodeOffset += opcodeLength;
    }

    // Link basic blocks together.
    for (unsigned i = 0; i < basicBlocks.size(); i++) {
        BytecodeBasicBlock* block = basicBlocks[i].get();

        if (block->isEntryBlock() || block->isExitBlock())
            continue;

        bool fallsThrough = true; 
        for (unsigned bytecodeOffset = block->leaderOffset(); bytecodeOffset < block->leaderOffset() + block->totalLength();) {
            OpcodeID opcodeID = interpreter->getOpcodeID(instructionsBegin[bytecodeOffset]);
            unsigned opcodeLength = opcodeLengths[opcodeID];
            // If we found a terminal bytecode, link to the exit block.
            if (isTerminal(opcodeID)) {
                ASSERT(bytecodeOffset + opcodeLength == block->leaderOffset() + block->totalLength());
                linkBlocks(block, exit.get());
                fallsThrough = false;
                break;
            }

            // If we found a throw, get the HandlerInfo for this instruction to see where we will jump. 
            // If there isn't one, treat this throw as a terminal. This is true even if we have a finally
            // block because the finally block will create its own catch, which will generate a HandlerInfo.
            if (isThrow(opcodeID)) {
                ASSERT(bytecodeOffset + opcodeLength == block->leaderOffset() + block->totalLength());
                auto* handler = codeBlock->handlerForBytecodeOffset(bytecodeOffset);
                fallsThrough = false;
                if (!handler) {
                    linkBlocks(block, exit.get());
                    break;
                }
                for (unsigned i = 0; i < basicBlocks.size(); i++) {
                    BytecodeBasicBlock* otherBlock = basicBlocks[i].get();
                    if (handler->target == otherBlock->leaderOffset()) {
                        linkBlocks(block, otherBlock);
                        break;
                    }
                }
                break;
            }

            // If we found a branch, link to the block(s) that we jump to.
            if (isBranch(opcodeID)) {
                ASSERT(bytecodeOffset + opcodeLength == block->leaderOffset() + block->totalLength());
                Vector<unsigned, 1> bytecodeOffsetsJumpedTo;
                findJumpTargetsForBytecodeOffset(codeBlock, instructionsBegin, bytecodeOffset, bytecodeOffsetsJumpedTo);

                for (unsigned i = 0; i < basicBlocks.size(); i++) {
                    BytecodeBasicBlock* otherBlock = basicBlocks[i].get();
                    if (bytecodeOffsetsJumpedTo.contains(otherBlock->leaderOffset()))
                        linkBlocks(block, otherBlock);
                }

                if (isUnconditionalBranch(opcodeID))
                    fallsThrough = false;

                break;
            }
            bytecodeOffset += opcodeLength;
        }

        // If we fall through then link to the next block in program order.
        if (fallsThrough) {
            ASSERT(i + 1 < basicBlocks.size());
            BytecodeBasicBlock* nextBlock = basicBlocks[i + 1].get();
            linkBlocks(block, nextBlock);
        }
    }

    appendBlock(WTFMove(exit));
    
    for (auto& basicBlock : basicBlocks)
        basicBlock->shrinkToFit();
}
void BytecodeBasicBlock::computeImpl(Block* codeBlock, const InstructionStream& instructions, Vector<std::unique_ptr<BytecodeBasicBlock>>& basicBlocks)
{
    Vector<InstructionStream::Offset, 32> jumpTargets;
    computePreciseJumpTargets(codeBlock, instructions, jumpTargets);

    auto appendBlock = [&] (std::unique_ptr<BytecodeBasicBlock>&& block) {
        block->m_index = basicBlocks.size();
        basicBlocks.append(WTFMove(block));
    };

    auto linkBlocks = [&] (BytecodeBasicBlock* from, BytecodeBasicBlock* to) {
        from->addSuccessor(to);
    };

    // Create the entry and exit basic blocks.
    basicBlocks.reserveCapacity(jumpTargets.size() + 2);

    auto entry = std::make_unique<BytecodeBasicBlock>(BytecodeBasicBlock::EntryBlock);
    auto firstBlock = std::make_unique<BytecodeBasicBlock>(BytecodeBasicBlock::EntryBlock);
    linkBlocks(entry.get(), firstBlock.get());

    appendBlock(WTFMove(entry));
    BytecodeBasicBlock* current = firstBlock.get();
    appendBlock(WTFMove(firstBlock));

    auto exit = std::make_unique<BytecodeBasicBlock>(BytecodeBasicBlock::ExitBlock);

    bool nextInstructionIsLeader = false;

    for (const auto& instruction : instructions) {
        auto bytecodeOffset = instruction.offset();
        OpcodeID opcodeID = instruction->opcodeID();

        bool createdBlock = false;
        // If the current bytecode is a jump target, then it's the leader of its own basic block.
        if (isJumpTarget(opcodeID, jumpTargets, bytecodeOffset) || nextInstructionIsLeader) {
            auto newBlock = std::make_unique<BytecodeBasicBlock>(instruction);
            current = newBlock.get();
            appendBlock(WTFMove(newBlock));
            createdBlock = true;
            nextInstructionIsLeader = false;
        }

        // If the current bytecode is a branch or a return, then the next instruction is the leader of its own basic block.
        if (isBranch(opcodeID) || isTerminal(opcodeID) || isThrow(opcodeID))
            nextInstructionIsLeader = true;

        if (createdBlock)
            continue;

        // Otherwise, just add to the length of the current block.
        current->addLength(instruction->size());
    }

    // Link basic blocks together.
    for (unsigned i = 0; i < basicBlocks.size(); i++) {
        BytecodeBasicBlock* block = basicBlocks[i].get();

        if (block->isEntryBlock() || block->isExitBlock())
            continue;

        bool fallsThrough = true;
        for (auto bytecodeOffset : block->offsets()) {
            auto instruction = instructions.at(bytecodeOffset);
            OpcodeID opcodeID = instruction->opcodeID();

            // If we found a terminal bytecode, link to the exit block.
            if (isTerminal(opcodeID)) {
                ASSERT(bytecodeOffset + instruction->size() == block->leaderOffset() + block->totalLength());
                linkBlocks(block, exit.get());
                fallsThrough = false;
                break;
            }

            // If we found a throw, get the HandlerInfo for this instruction to see where we will jump.
            // If there isn't one, treat this throw as a terminal. This is true even if we have a finally
            // block because the finally block will create its own catch, which will generate a HandlerInfo.
            if (isThrow(opcodeID)) {
                ASSERT(bytecodeOffset + instruction->size() == block->leaderOffset() + block->totalLength());
                auto* handler = codeBlock->handlerForBytecodeOffset(instruction.offset());
                fallsThrough = false;
                if (!handler) {
                    linkBlocks(block, exit.get());
                    break;
                }
                for (unsigned i = 0; i < basicBlocks.size(); i++) {
                    BytecodeBasicBlock* otherBlock = basicBlocks[i].get();
                    if (handler->target == otherBlock->leaderOffset()) {
                        linkBlocks(block, otherBlock);
                        break;
                    }
                }
                break;
            }

            // If we found a branch, link to the block(s) that we jump to.
            if (isBranch(opcodeID)) {
                ASSERT(bytecodeOffset + instruction->size() == block->leaderOffset() + block->totalLength());
                Vector<InstructionStream::Offset, 1> bytecodeOffsetsJumpedTo;
                findJumpTargetsForInstruction(codeBlock, instruction, bytecodeOffsetsJumpedTo);

                size_t numberOfJumpTargets = bytecodeOffsetsJumpedTo.size();
                ASSERT(numberOfJumpTargets);
                for (unsigned i = 0; i < basicBlocks.size(); i++) {
                    BytecodeBasicBlock* otherBlock = basicBlocks[i].get();
                    if (bytecodeOffsetsJumpedTo.contains(otherBlock->leaderOffset())) {
                        linkBlocks(block, otherBlock);
                        --numberOfJumpTargets;
                        if (!numberOfJumpTargets)
                            break;
                    }
                }
                // numberOfJumpTargets may not be 0 here if there are multiple jumps targeting the same
                // basic blocks (e.g. in a switch type opcode). Since we only decrement numberOfJumpTargets
                // once per basic block, the duplicates are not accounted for. For our purpose here,
                // that doesn't matter because we only need to link to the target block once regardless
                // of how many ways this block can jump there.

                if (isUnconditionalBranch(opcodeID))
                    fallsThrough = false;

                break;
            }
        }

        // If we fall through then link to the next block in program order.
        if (fallsThrough) {
            ASSERT(i + 1 < basicBlocks.size());
            BytecodeBasicBlock* nextBlock = basicBlocks[i + 1].get();
            linkBlocks(block, nextBlock);
        }
    }

    appendBlock(WTFMove(exit));

    for (auto& basicBlock : basicBlocks)
        basicBlock->shrinkToFit();
}