Beispiel #1
0
//---------------------------------------------------------------------------
//	@function:
//		CJoinOrderDP::PexprExpand
//
//	@doc:
//		Create join order
//
//---------------------------------------------------------------------------
CExpression *
CJoinOrderDP::PexprExpand()
{
	CBitSet *pbs = GPOS_NEW(m_pmp) CBitSet(m_pmp);
	for (ULONG ul = 0; ul < m_ulComps; ul++)
	{
		(void) pbs->FExchangeSet(ul);
	}

	if (GPOPT_DP_JOIN_ORDERING_SIZE_THRESHOLD < m_ulComps &&
		GPOPT_DP_JOIN_ORDERING_CONNECTEDNESS_THRESHOLD < DMaxConnectedness(pbs))
	{
		// terminate early if computation cost is expected to be large
		pbs->Release();

		return NULL;
	}

	CExpression *pexprResult = PexprBestJoinOrder(pbs);
	if (NULL != pexprResult)
	{
		pexprResult->AddRef();
	}
	pbs->Release();

	return pexprResult;
}
Beispiel #2
0
//---------------------------------------------------------------------------
//	@function:
//		CBitSetTest::EresUnittest_Performance
//
//	@doc:
//		Simple perf test -- simulates xform candidate sets
//
//---------------------------------------------------------------------------
GPOS_RESULT
CBitSetTest::EresUnittest_Performance()
{
	// create memory pool
	CAutoMemoryPool amp;
	IMemoryPool *pmp = amp.Pmp();
	
	ULONG cSizeBits = 512;
	CBitSet *pbsBase = GPOS_NEW(pmp) CBitSet(pmp, cSizeBits);
	for (ULONG i = 0; i < cSizeBits; i++)
		{
			(void) pbsBase->FExchangeSet(i);
		}

	CBitSet *pbsTest = GPOS_NEW(pmp) CBitSet(pmp, cSizeBits);
	for (ULONG j = 0; j < 100000; j++)
	{
		ULONG cRandomBits = 16;
		for (ULONG i = 0; i < cRandomBits; i += ((cSizeBits - 1) / cRandomBits))
		{
			(void) pbsTest->FExchangeSet(i);
		}
			
		pbsTest->Intersection(pbsBase);		
	}	
	
	pbsTest->Release();
	pbsBase->Release();
	
	return GPOS_OK;
}	
Beispiel #3
0
//---------------------------------------------------------------------------
//	@function:
//		CJoinOrderDP::PexprBuildPred
//
//	@doc:
//		Build predicate connecting the two given sets
//
//---------------------------------------------------------------------------
CExpression *
CJoinOrderDP::PexprBuildPred
	(
	CBitSet *pbsFst,
	CBitSet *pbsSnd
	)
{
	// collect edges connecting the given sets
	CBitSet *pbsEdges = GPOS_NEW(m_mp) CBitSet(m_mp);
	CBitSet *pbs = GPOS_NEW(m_mp) CBitSet(m_mp, *pbsFst);
	pbs->Union(pbsSnd);

	for (ULONG ul = 0; ul < m_ulEdges; ul++)
	{
		SEdge *pedge = m_rgpedge[ul];
		if (
			pbs->ContainsAll(pedge->m_pbs) &&
			!pbsFst->IsDisjoint(pedge->m_pbs) &&
			!pbsSnd->IsDisjoint(pedge->m_pbs)
			)
		{
#ifdef GPOS_DEBUG
		BOOL fSet =
#endif // GPOS_DEBUG
			pbsEdges->ExchangeSet(ul);
			GPOS_ASSERT(!fSet);
		}
	}
	pbs->Release();

	CExpression *pexprPred = NULL;
	if (0 < pbsEdges->Size())
	{
		CExpressionArray *pdrgpexpr = GPOS_NEW(m_mp) CExpressionArray(m_mp);
		CBitSetIter bsi(*pbsEdges);
		while (bsi.Advance())
		{
			ULONG ul = bsi.Bit();
			SEdge *pedge = m_rgpedge[ul];
			pedge->m_pexpr->AddRef();
			pdrgpexpr->Append(pedge->m_pexpr);
		}

		pexprPred = CPredicateUtils::PexprConjunction(m_mp, pdrgpexpr);
	}

	pbsEdges->Release();
	return pexprPred;
}
//---------------------------------------------------------------------------
//	@function:
//		CTranslatorDXLToExprUtils::AddKeySets
//
//	@doc:
// 		Add key sets info from the MD relation to the table descriptor
//
//---------------------------------------------------------------------------
void
CTranslatorDXLToExprUtils::AddKeySets
	(
	IMemoryPool *pmp,
	CTableDescriptor *ptabdesc,
	const IMDRelation *pmdrel,
	HMUlUl *phmululColMapping
	)
{
	GPOS_ASSERT(NULL != ptabdesc);
	GPOS_ASSERT(NULL != pmdrel);

	const ULONG ulKeySets = pmdrel->UlKeySets();
	for (ULONG ul = 0; ul < ulKeySets; ul++)
	{
		CBitSet *pbs = GPOS_NEW(pmp) CBitSet(pmp, ptabdesc->UlColumns());
		const DrgPul *pdrgpulKeys = pmdrel->PdrgpulKeyset(ul);
		const ULONG ulKeys = pdrgpulKeys->UlLength();

		for (ULONG ulKey = 0; ulKey < ulKeys; ulKey++)
		{
			// populate current keyset
			ULONG ulOriginalKey = *((*pdrgpulKeys)[ulKey]);
			ULONG *pulRemappedKey = phmululColMapping->PtLookup(&ulOriginalKey);
			GPOS_ASSERT(NULL != pulRemappedKey);
			
			pbs->FExchangeSet(*pulRemappedKey);
		}

		if (!ptabdesc->FAddKeySet(pbs))
		{
			pbs->Release();
		}
	}
}
//---------------------------------------------------------------------------
//	@function:
//		CLogicalGbAggDeduplicate::PstatsDerive
//
//	@doc:
//		Derive statistics
//
//---------------------------------------------------------------------------
IStatistics *
CLogicalGbAggDeduplicate::PstatsDerive
	(
	IMemoryPool *pmp,
	CExpressionHandle &exprhdl,
	DrgPstat * // not used
	)
	const
{
	GPOS_ASSERT(Esp(exprhdl) > EspNone);
	IStatistics *pstatsChild = exprhdl.Pstats(0);

	// extract computed columns
	DrgPul *pdrgpulComputedCols = GPOS_NEW(pmp) DrgPul(pmp);
	exprhdl.Pdpscalar(1 /*ulChildIndex*/)->PcrsDefined()->ExtractColIds(pmp, pdrgpulComputedCols);

	// construct bitset with keys of join child
	CBitSet *pbsKeys = GPOS_NEW(pmp) CBitSet(pmp);
	const ULONG ulKeys = m_pdrgpcrKeys->UlLength();
	for (ULONG ul = 0; ul < ulKeys; ul++)
	{
		CColRef *pcr = (*m_pdrgpcrKeys)[ul];
		pbsKeys->FExchangeSet(pcr->UlId());
	}

	IStatistics *pstats = CLogicalGbAgg::PstatsDerive(pmp, pstatsChild, Pdrgpcr(), pdrgpulComputedCols, pbsKeys);
	pbsKeys->Release();
	pdrgpulComputedCols->Release();

	return pstats;
}
Beispiel #6
0
//---------------------------------------------------------------------------
//	@function:
//		CBitSetTest::EresUnittest_Basics
//
//	@doc:
//		Testing ctors/dtor
//
//---------------------------------------------------------------------------
GPOS_RESULT
CBitSetTest::EresUnittest_Basics()
{
	// create memory pool
	CAutoMemoryPool amp;
	IMemoryPool *pmp = amp.Pmp();

	ULONG cSizeBits = 32;
	CBitSet *pbs = GPOS_NEW(pmp) CBitSet(pmp, cSizeBits);

	ULONG cInserts = 10;
	for (ULONG i = 0; i < cInserts; i += 2)
	{
		// forces addition of new link
		pbs->FExchangeSet(i * cSizeBits);
	}
	GPOS_ASSERT(cInserts / 2 == pbs->CElements());

	for (ULONG i = 1; i < cInserts; i += 2)
	{
		// new link between existing links
		pbs->FExchangeSet(i * cSizeBits);
	}
	GPOS_ASSERT(cInserts == pbs->CElements());

	CBitSet *pbsCopy = GPOS_NEW(pmp) CBitSet(pmp, *pbs);
	GPOS_ASSERT(pbsCopy->FEqual(pbs));

	// delete old bitset to make sure we're not accidentally
	// using any of its memory
	pbs->Release();

	for (ULONG i = 0; i < cInserts; i++)
	{
		GPOS_ASSERT(pbsCopy->FBit(i * cSizeBits));
	}

	CWStringDynamic str(pmp);
	COstreamString os(&str);
	
	os << *pbsCopy << std::endl;
	GPOS_TRACE(str.Wsz());
	
	pbsCopy->Release();

	return GPOS_OK;
}
Beispiel #7
0
//---------------------------------------------------------------------------
//	@function:
//		CJoinOrderDP::PexprJoin
//
//	@doc:
//		Join expressions in the given set
//
//---------------------------------------------------------------------------
CExpression *
CJoinOrderDP::PexprJoin
	(
	CBitSet *pbs
	)
{
	GPOS_ASSERT(2 == pbs->Size());

	CBitSetIter bsi(*pbs);
	(void) bsi.Advance();
	ULONG ulCompFst = bsi.Bit();
	(void) bsi.Advance();
	ULONG ulCompSnd = bsi.Bit();
	GPOS_ASSERT(!bsi.Advance());

	CBitSet *pbsFst = GPOS_NEW(m_mp) CBitSet(m_mp);
	(void) pbsFst->ExchangeSet(ulCompFst);
	CBitSet *pbsSnd = GPOS_NEW(m_mp) CBitSet(m_mp);
	(void) pbsSnd->ExchangeSet(ulCompSnd);
	CExpression *pexprScalar = PexprPred(pbsFst, pbsSnd);
	pbsFst->Release();
	pbsSnd->Release();

	if (NULL == pexprScalar)
	{
		return NULL;
	}

	CExpression *pexprLeft = m_rgpcomp[ulCompFst]->m_pexpr;
	CExpression *pexprRight = m_rgpcomp[ulCompSnd]->m_pexpr;
	pexprLeft->AddRef();
	pexprRight->AddRef();
	pexprScalar->AddRef();
	CExpression *pexprJoin =
		CUtils::PexprLogicalJoin<CLogicalInnerJoin>(m_mp, pexprLeft, pexprRight, pexprScalar);

	DeriveStats(pexprJoin);
	// store solution in DP table
	pbs->AddRef();
#ifdef GPOS_DEBUG
	BOOL fInserted =
#endif // GPOS_DEBUG
		m_phmbsexpr->Insert(pbs, pexprJoin);
	GPOS_ASSERT(fInserted);

	return pexprJoin;
}
Beispiel #8
0
//---------------------------------------------------------------------------
//	@function:
//		CBitSetTest::EresUnittest_SetOps
//
//	@doc:
//		Test for set operations
//
//---------------------------------------------------------------------------
GPOS_RESULT
CBitSetTest::EresUnittest_SetOps()
{
	// create memory pool
	CAutoMemoryPool amp;
	IMemoryPool *pmp = amp.Pmp();

	ULONG cSizeBits = 32;
	ULONG cInserts = 10;

	CBitSet *pbs1 = GPOS_NEW(pmp) CBitSet(pmp, cSizeBits);
	for (ULONG i = 0; i < cInserts; i += 2)
	{
		pbs1->FExchangeSet(i * cSizeBits);
	}

	CBitSet *pbs2 = GPOS_NEW(pmp) CBitSet(pmp, cSizeBits);
	for (ULONG i = 1; i < cInserts; i += 2)
	{
		pbs2->FExchangeSet(i * cSizeBits);
	}
	CBitSet *pbs = GPOS_NEW(pmp) CBitSet(pmp, cSizeBits);

	pbs->Union(pbs1);
	GPOS_ASSERT(pbs->FEqual(pbs1));

	pbs->Intersection(pbs1);
	GPOS_ASSERT(pbs->FEqual(pbs1));
	GPOS_ASSERT(pbs->FEqual(pbs));
	GPOS_ASSERT(pbs1->FEqual(pbs1));

	pbs->Union(pbs2);
	GPOS_ASSERT(!pbs->FEqual(pbs1) && !pbs->FEqual(pbs2));
	GPOS_ASSERT(pbs->FSubset(pbs1) && pbs->FSubset(pbs2));
	
	pbs->Difference(pbs2);
	GPOS_ASSERT(pbs->FEqual(pbs1));

	pbs1->Release();

	pbs->Union(pbs2);
	pbs->Intersection(pbs2);
	GPOS_ASSERT(pbs->FEqual(pbs2));
	GPOS_ASSERT(pbs->FSubset(pbs2));

	GPOS_ASSERT(pbs->CElements() == pbs2->CElements());

	pbs2->Release();

	pbs->Release();

	return GPOS_OK;
}
//---------------------------------------------------------------------------
//	@function:
//		CSerializableOptimizerConfig::Serialize
//
//	@doc:
//		Serialize contents into provided stream
//
//---------------------------------------------------------------------------
void
CSerializableOptimizerConfig::Serialize
	(
	COstream &oos
	)
{
	CXMLSerializer xml_serializer(m_mp, oos, false /*Indent*/);

	// Copy traceflags from global state
	CBitSet *pbs = CTask::Self()->GetTaskCtxt()->copy_trace_flags(m_mp);
	m_optimizer_config->Serialize(m_mp, &xml_serializer, pbs);
	pbs->Release();
}
Beispiel #10
0
//---------------------------------------------------------------------------
//	@function:
//		CBitSetTest::EresUnittest_Removal
//
//	@doc:
//		Cleanup test
//
//---------------------------------------------------------------------------
GPOS_RESULT
CBitSetTest::EresUnittest_Removal()
{
	// create memory pool
	CAutoMemoryPool amp;
	IMemoryPool *pmp = amp.Pmp();

	ULONG cSizeBits = 32;
	CBitSet *pbs = GPOS_NEW(pmp) CBitSet(pmp, cSizeBits);
	CBitSet *pbsEmpty = GPOS_NEW(pmp) CBitSet(pmp, cSizeBits);

	GPOS_ASSERT(pbs->FEqual(pbsEmpty));
	GPOS_ASSERT(pbsEmpty->FEqual(pbs));

	ULONG cInserts = 10;
	for (ULONG i = 0; i < cInserts; i++)
	{
		pbs->FExchangeSet(i * cSizeBits);

		GPOS_ASSERT(i + 1 == pbs->CElements());
	}

	for (ULONG i = 0; i < cInserts; i++)
	{
		// cleans up empty links
		pbs->FExchangeClear(i * cSizeBits);

		GPOS_ASSERT(cInserts - i - 1 == pbs->CElements());
	}

	GPOS_ASSERT(pbs->FEqual(pbsEmpty));
	GPOS_ASSERT(pbsEmpty->FEqual(pbs));

	pbs->Release();
	pbsEmpty->Release();

	return GPOS_OK;
}
Beispiel #11
0
//---------------------------------------------------------------------------
//	@function:
//		CTranslatorDXLToQuery::MarkUnusedColumns
//
//	@doc:
//		Mark unused target list entries in the setop child
//
//---------------------------------------------------------------------------
void
CTranslatorDXLToQuery::MarkUnusedColumns
	(
	Query *pquery,
	RangeTblRef *prtref,
	CStateDXLToQuery *pstatedxltoquery,
	const DrgPul *pdrgpulColids
	)
{
	const ULONG ulRTIndex = prtref->rtindex;
	RangeTblEntry *prte = (RangeTblEntry*) gpdb::PvListNth(pquery->rtable, ulRTIndex -1);

	GPOS_ASSERT(RTE_SUBQUERY == prte->rtekind);
	Query *pqueryDerTbl = prte->subquery;

	// maintain the list of used columns in a bit set
	CBitSet *pds = New(m_pmp) CBitSet(m_pmp);
	const ULONG ulLen = pdrgpulColids->UlLength();
	for (ULONG ul = 0; ul < ulLen; ul++)
	{
		ULONG ulValue = *((*pdrgpulColids)[ul]);
		(void) pds->FExchangeSet(ulValue);
	}

	// Mark all columns that are not in the list of required input columns as being unused
	const ULONG ulSize = pstatedxltoquery->UlLength();
	for (ULONG ul = 0; ul < ulSize; ul++)
	{
		ULONG ulColId = pstatedxltoquery->UlColId(ul);
		BOOL fSet = pds->FBit(ulColId);

		if (!fSet)
		{
			// mark the column as unused in the query
			TargetEntry *pte2 = (TargetEntry*) gpdb::PvListNth(pqueryDerTbl->targetList, ul);
			pte2->resjunk = true;

			// mark the column as unused in the state
			TargetEntry *pte = pstatedxltoquery->PteColumn(ul);
			pte->resjunk = true;
		}
	}

	pds->Release();
}
Beispiel #12
0
//---------------------------------------------------------------------------
//	@function:
//		CJoinOrderDP::PexprExpand
//
//	@doc:
//		Create join order
//
//---------------------------------------------------------------------------
CExpression *
CJoinOrderDP::PexprExpand()
{
	CBitSet *pbs = GPOS_NEW(m_mp) CBitSet(m_mp);
	for (ULONG ul = 0; ul < m_ulComps; ul++)
	{
		(void) pbs->ExchangeSet(ul);
	}

	CExpression *pexprResult = PexprBestJoinOrder(pbs);
	if (NULL != pexprResult)
	{
		pexprResult->AddRef();
	}
	pbs->Release();

	return pexprResult;
}
Beispiel #13
0
//---------------------------------------------------------------------------
//	@function:
//		CJoinOrderDP::DConnectedness
//
//	@doc:
//		 Return connectedness measure of given component
//
//---------------------------------------------------------------------------
CDouble
CJoinOrderDP::DConnectedness
	(
	ULONG ulComp
	)
{
	CBitSet *pbsConnected = GPOS_NEW(m_pmp) CBitSet(m_pmp);
	for (ULONG ul = 0; ul < m_ulEdges; ul++)
	{
		SEdge *pedge = m_rgpedge[ul];
		if (pedge->m_pbs->FBit(ulComp))
		{
			pbsConnected->Union(pedge->m_pbs);
		}
	}
	(void) pbsConnected->FExchangeClear(ulComp);
	DOUBLE dConnectedness = (DOUBLE) pbsConnected->CElements() / m_ulComps;
	pbsConnected->Release();

	return CDouble(dConnectedness);
}
//---------------------------------------------------------------------------
//      @function:
//		CPartitionPropagationSpec::SplitPartPredicates
//
//	@doc:
//		Split the partition elimination predicates over the various levels
//		as well as the residual predicate and add them to the appropriate
//		hashmaps. These are to be used when creating the partition selector
//
//---------------------------------------------------------------------------
void
CPartitionPropagationSpec::SplitPartPredicates
	(
	IMemoryPool *mp,
	CExpression *pexprScalar,
	CColRef2dArray *pdrgpdrgpcrKeys,
	UlongToExprMap *phmulexprEqFilter,	// output
	UlongToExprMap *phmulexprFilter,		// output
	CExpression **ppexprResidual	// output
	)
{
	GPOS_ASSERT(NULL != pexprScalar);
	GPOS_ASSERT(NULL != pdrgpdrgpcrKeys);
	GPOS_ASSERT(NULL != phmulexprEqFilter);
	GPOS_ASSERT(NULL != phmulexprFilter);
	GPOS_ASSERT(NULL != ppexprResidual);
	GPOS_ASSERT(NULL == *ppexprResidual);

	CExpressionArray *pdrgpexprConjuncts = CPredicateUtils::PdrgpexprConjuncts(mp, pexprScalar);
	CBitSet *pbsUsed = GPOS_NEW(mp) CBitSet(mp);
	CColRefSet *pcrsKeys = PcrsKeys(mp, pdrgpdrgpcrKeys);

	const ULONG ulLevels = pdrgpdrgpcrKeys->Size();
	for (ULONG ul = 0; ul < ulLevels; ul++)
	{
		CColRef *colref = CUtils::PcrExtractPartKey(pdrgpdrgpcrKeys, ul);
		// find conjuncts for this key and mark their positions
		CExpressionArray *pdrgpexprKey = PdrgpexprPredicatesOnKey(mp, pdrgpexprConjuncts, colref, pcrsKeys, &pbsUsed);
		const ULONG length = pdrgpexprKey->Size();
		if (length == 0)
		{
			// no predicates on this key
			pdrgpexprKey->Release();
			continue;
		}

		if (length == 1 && CPredicateUtils::FIdentCompare((*pdrgpexprKey)[0], IMDType::EcmptEq, colref))
		{
			// EqFilters
			// one equality predicate (key = expr); take out the expression
			// and add it to the equality filters map
			CExpression *pexprPartKey = NULL;
			CExpression *pexprOther = NULL;
			IMDType::ECmpType cmp_type = IMDType::EcmptOther;

			CPredicateUtils::ExtractComponents((*pdrgpexprKey)[0], colref, &pexprPartKey, &pexprOther, &cmp_type);
			GPOS_ASSERT(NULL != pexprOther);
			pexprOther->AddRef();
#ifdef GPOS_DEBUG
			BOOL result =
#endif // GPOS_DEBUG
			phmulexprEqFilter->Insert(GPOS_NEW(mp) ULONG(ul), pexprOther);
			GPOS_ASSERT(result);
			pdrgpexprKey->Release();
		}
		else
		{
			// Filters
			// more than one predicate on this key or one non-simple-equality predicate
#ifdef GPOS_DEBUG
			BOOL result =
#endif // GPOS_DEBUG
			phmulexprFilter->Insert(GPOS_NEW(mp) ULONG(ul), CPredicateUtils::PexprConjunction(mp, pdrgpexprKey));
			GPOS_ASSERT(result);
			continue;
		}

	}

	(*ppexprResidual) = PexprResidualFilter(mp, pdrgpexprConjuncts, pbsUsed);

	pcrsKeys->Release();
	pdrgpexprConjuncts->Release();
	pbsUsed->Release();
}
Beispiel #15
0
//---------------------------------------------------------------------------
//	@function:
//		CPhysical::PppsRequiredPushThruNAry
//
//	@doc:
//		Helper for pushing required partition propagation to the children of
//		an n-ary operator
//
//---------------------------------------------------------------------------
CPartitionPropagationSpec *
CPhysical::PppsRequiredPushThruNAry
	(
	IMemoryPool *mp,
	CExpressionHandle &exprhdl,
	CPartitionPropagationSpec *pppsReqd,
	ULONG child_index
	)
{
	GPOS_ASSERT(NULL != pppsReqd);


	CPartIndexMap *ppimReqd = pppsReqd->Ppim();
	CPartFilterMap *ppfmReqd = pppsReqd->Ppfm();

	ULongPtrArray *pdrgpul = ppimReqd->PdrgpulScanIds(mp);

	CPartIndexMap *ppimResult = GPOS_NEW(mp) CPartIndexMap(mp);
	CPartFilterMap *ppfmResult = GPOS_NEW(mp) CPartFilterMap(mp);

	const ULONG ulPartIndexIds = pdrgpul->Size();
	const ULONG arity = exprhdl.UlNonScalarChildren();

	// iterate over required part index ids and decide which ones to push to the outer
	// and which to the inner side of the n-ary op
	for (ULONG ul = 0; ul < ulPartIndexIds; ul++)
	{
		ULONG part_idx_id = *((*pdrgpul)[ul]);
		GPOS_ASSERT(ppimReqd->Contains(part_idx_id));

		CBitSet *pbsPartConsumer = GPOS_NEW(mp) CBitSet(mp);
		for (ULONG ulChildIdx = 0; ulChildIdx < arity; ulChildIdx++)
		{
			if (exprhdl.GetRelationalProperties(ulChildIdx)->Ppartinfo()->FContainsScanId(part_idx_id))
			{
				(void) pbsPartConsumer->ExchangeSet(ulChildIdx);
			}
		}

		if (arity == pbsPartConsumer->Size() &&
			COperator::EopPhysicalSequence == exprhdl.Pop()->Eopid() &&
			(*(exprhdl.Pgexpr()))[0]->FHasCTEProducer())
		{
			GPOS_ASSERT(2 == arity);

			// this is a part index id that comes from both sides of a sequence
			// with a CTE producer on the outer side, so pretend that part index
			// id is not defined the inner sides
			pbsPartConsumer->ExchangeClear(1);
		}

		if (!FCanPushPartReqToChild(pbsPartConsumer, child_index))
		{
			// clean up
			pbsPartConsumer->Release();

			continue;
		}

		// clean up
		pbsPartConsumer->Release();

		CPartKeysArray *pdrgppartkeys = exprhdl.GetRelationalProperties(child_index)->Ppartinfo()->PdrgppartkeysByScanId(part_idx_id);
		GPOS_ASSERT(NULL != pdrgppartkeys);
		pdrgppartkeys->AddRef();

		// push requirements to child node
		ppimResult->AddRequiredPartPropagation(ppimReqd, part_idx_id, CPartIndexMap::EppraPreservePropagators, pdrgppartkeys);

		// check if there is a filter on the part index id and propagate that further down
		if (ppfmReqd->FContainsScanId(part_idx_id))
		{
			CExpression *pexpr = ppfmReqd->Pexpr(part_idx_id);
			// if the current child is inner child and the predicate is IsNull check and the parent is outer join,
			// don't push IsNull check predicate to the partition filter.
			// for all the other cases, push the filter down.
			if (!(1 == child_index &&
				CUtils::FScalarNullTest(pexpr) &&
				CUtils::FPhysicalOuterJoin(exprhdl.Pop()))
				)
			{
				pexpr->AddRef();
				ppfmResult->AddPartFilter(mp, part_idx_id, pexpr, NULL /*stats */);
			}
		}
	}

	pdrgpul->Release();

	return GPOS_NEW(mp) CPartitionPropagationSpec(ppimResult, ppfmResult);
}
Beispiel #16
0
//---------------------------------------------------------------------------
//      @function:
//		CPartitionPropagationSpec::SplitPartPredicates
//
//	@doc:
//		Split the partition elimination predicates over the various levels
//		as well as the residual predicate and add them to the appropriate
//		hashmaps. These are to be used when creating the partition selector
//
//---------------------------------------------------------------------------
void
CPartitionPropagationSpec::SplitPartPredicates
	(
	IMemoryPool *pmp,
	CExpression *pexprScalar,
	DrgDrgPcr *pdrgpdrgpcrKeys,
	HMUlExpr *phmulexprEqFilter,	// output
	HMUlExpr *phmulexprFilter,		// output
	CExpression **ppexprResidual	// output
	)
{
	GPOS_ASSERT(NULL != pexprScalar);
	GPOS_ASSERT(NULL != pdrgpdrgpcrKeys);
	GPOS_ASSERT(NULL != phmulexprEqFilter);
	GPOS_ASSERT(NULL != phmulexprFilter);
	GPOS_ASSERT(NULL != ppexprResidual);
	GPOS_ASSERT(NULL == *ppexprResidual);

	DrgPexpr *pdrgpexprConjuncts = CPredicateUtils::PdrgpexprConjuncts(pmp, pexprScalar);
	CBitSet *pbsUsed = GPOS_NEW(pmp) CBitSet(pmp);
	CColRefSet *pcrsKeys = PcrsKeys(pmp, pdrgpdrgpcrKeys);

	const ULONG ulLevels = pdrgpdrgpcrKeys->UlLength();
	for (ULONG ul = 0; ul < ulLevels; ul++)
	{
		CColRef *pcr = CUtils::PcrExtractPartKey(pdrgpdrgpcrKeys, ul);
		// find conjuncts for this key and mark their positions
		DrgPexpr *pdrgpexprKey = PdrgpexprPredicatesOnKey(pmp, pdrgpexprConjuncts, pcr, pcrsKeys, &pbsUsed);
		const ULONG ulLen = pdrgpexprKey->UlLength();
		if (0 == ulLen)
		{
			// no predicates on this key
			pdrgpexprKey->Release();
			continue;
		}

		if (1 < ulLen || (!CPredicateUtils::FEquality((*pdrgpexprKey)[0])))
		{
			// more than one predicate on this key or one non-equality predicate
#ifdef GPOS_DEBUG
			BOOL fResult =
#endif // GPOS_DEBUG
			phmulexprFilter->FInsert(GPOS_NEW(pmp) ULONG(ul), CPredicateUtils::PexprConjunction(pmp, pdrgpexprKey));
			GPOS_ASSERT(fResult);
			continue;
		}

		// one equality predicate (key = expr); take out the expression
		// and add it to the equality filters map
		CExpression *pexprPartKey = NULL;
		CExpression *pexprOther = NULL;
		IMDType::ECmpType ecmpt = IMDType::EcmptOther;

		CPredicateUtils::ExtractComponents((*pdrgpexprKey)[0], pcr, &pexprPartKey, &pexprOther, &ecmpt);
		GPOS_ASSERT(NULL != pexprOther);
		pexprOther->AddRef();
#ifdef GPOS_DEBUG
		BOOL fResult =
#endif // GPOS_DEBUG
		phmulexprEqFilter->FInsert(GPOS_NEW(pmp) ULONG(ul), pexprOther);
		GPOS_ASSERT(fResult);
		pdrgpexprKey->Release();
	}

	(*ppexprResidual) = PexprResidualFilter(pmp, pdrgpexprConjuncts, pbsUsed);

	pcrsKeys->Release();
	pdrgpexprConjuncts->Release();
	pbsUsed->Release();
}
Beispiel #17
0
//---------------------------------------------------------------------------
//	@function:
//		CJoinOrderDP::PexprBestJoinOrder
//
//	@doc:
//		find best join order for a given set of elements;
//
//---------------------------------------------------------------------------
CExpression *
CJoinOrderDP::PexprBestJoinOrder
	(
	CBitSet *pbs
	)
{
	GPOS_CHECK_STACK_SIZE;
	GPOS_CHECK_ABORT;

	GPOS_ASSERT(NULL != pbs);

	// start by looking-up cost in the DP map
	CExpression *pexpr = PexprLookup(pbs);

	if (pexpr == m_pexprDummy)
	{
		// no join order could be created
		return NULL;
	}

	if (NULL != pexpr)
	{
		// join order is found by looking up map
		return pexpr;
	}

	// find maximal covered subset
	CBitSet *pbsCovered = PbsCovered(pbs);
	if (0 == pbsCovered->Size())
	{
		// set is not covered, return a cross product
		pbsCovered->Release();

		return PexprCross(pbs);
	}

	if (!pbsCovered->Equals(pbs))
	{
		// create a cross product for uncovered subset
		CBitSet *pbsUncovered = GPOS_NEW(m_mp) CBitSet(m_mp, *pbs);
		pbsUncovered->Difference(pbsCovered);
		CExpression *pexprResult =
			PexprJoinCoveredSubsetWithUncoveredSubset(pbs, pbsCovered, pbsUncovered);
		pbsCovered->Release();
		pbsUncovered->Release();

		return pexprResult;
	}
	pbsCovered->Release();

	// if set has size 2, there is only one possible solution
	if (2 == pbs->Size())
	{
		return PexprJoin(pbs);
	}

	// otherwise, compute best join order using dynamic programming
	CExpression *pexprBestJoinOrder = PexprBestJoinOrderDP(pbs);
	if (pexprBestJoinOrder == m_pexprDummy)
	{
		// no join order could be created
		return NULL;
	}

	return pexprBestJoinOrder;
}
Beispiel #18
0
//---------------------------------------------------------------------------
//	@function:
//		CJoinOrderDP::PexprBestJoinOrderDP
//
//	@doc:
//		Find the best join order of a given set of elements using dynamic
//		programming;
//		given a set of elements (e.g., {A, B, C}), we find all possible splits
//		of the set (e.g., {A}, {B, C}) where at least one edge connects the
//		two subsets resulting from the split,
//		for each split, we find the best join orders of left and right subsets
//		recursively,
//		the function finds the split with the least cost, and stores the join
//		of its two subsets as the best join order of the given set
//
//
//---------------------------------------------------------------------------
CExpression *
CJoinOrderDP::PexprBestJoinOrderDP
	(
	CBitSet *pbs // set of elements to be joined
	)
{
	CDouble dMinCost(0.0);
	CExpression *pexprResult = NULL;

	CBitSetArray *pdrgpbsSubsets = PdrgpbsSubsets(m_mp, pbs);
	const ULONG ulSubsets = pdrgpbsSubsets->Size();
	for (ULONG ul = 0; ul < ulSubsets; ul++)
	{
		CBitSet *pbsCurrent = (*pdrgpbsSubsets)[ul];
		CBitSet *pbsRemaining = GPOS_NEW(m_mp) CBitSet(m_mp, *pbs);
		pbsRemaining->Difference(pbsCurrent);

		// check if subsets are connected with one or more edges
		CExpression *pexprPred = PexprPred(pbsCurrent, pbsRemaining);
		if (NULL != pexprPred)
		{
			// compute solutions of left and right subsets recursively
			CExpression *pexprLeft = PexprBestJoinOrder(pbsCurrent);
			CExpression *pexprRight = PexprBestJoinOrder(pbsRemaining);

			if (NULL != pexprLeft && NULL != pexprRight)
			{
				// we found solutions of left and right subsets, we check if
				// this gives a better solution for the input set
				CExpression *pexprJoin = PexprJoin(pbsCurrent, pbsRemaining);
				CDouble dCost = DCost(pexprJoin);

				if (NULL == pexprResult || dCost < dMinCost)
				{
					// this is the first solution, or we found a better solution
					dMinCost = dCost;
					CRefCount::SafeRelease(pexprResult);
					pexprJoin->AddRef();
					pexprResult = pexprJoin;
				}

				if (m_ulComps == pbs->Size())
				{
					AddJoinOrder(pexprJoin, dCost);
				}

				pexprJoin->Release();
			}
		}
		pbsRemaining->Release();
	}
	pdrgpbsSubsets->Release();

	// store solution in DP table
	if (NULL == pexprResult)
	{
		m_pexprDummy->AddRef();
		pexprResult = m_pexprDummy;
	}

	DeriveStats(pexprResult);
	pbs->AddRef();
#ifdef GPOS_DEBUG
	BOOL fInserted =
#endif // GPOS_DEBUG
		m_phmbsexpr->Insert(pbs, pexprResult);
	GPOS_ASSERT(fInserted);

	// add expression cost to cost map
	InsertExpressionCost(pexprResult, dMinCost, false /*fValidateInsert*/);

	return pexprResult;
}
//---------------------------------------------------------------------------
//	@function:
//		CConfigParamMapping::PbsPack
//
//	@doc:
//		Pack the GPDB config params into a bitset
//
//---------------------------------------------------------------------------
CBitSet *
CConfigParamMapping::PbsPack
	(
	IMemoryPool *pmp,
	ULONG ulXforms // number of available xforms
	)
{
	CBitSet *pbs = New(pmp) CBitSet(pmp, EopttraceSentinel);

	for (ULONG ul = 0; ul < GPOS_ARRAY_SIZE(m_elem); ul++)
	{
		SConfigMappingElem elem = m_elem[ul];
		GPOS_ASSERT(!pbs->FBit((ULONG) elem.m_etf) &&
					"trace flag already set");

		BOOL fVal = *elem.m_pfParam;
		if (elem.m_fNegate)
		{
			// negate the value of config param
			fVal = !fVal;
		}

		if (fVal)
		{
#ifdef GPOS_DEBUG
			BOOL fSet =
#endif // GPOS_DEBUG
				pbs->FExchangeSet((ULONG) elem.m_etf);
			GPOS_ASSERT(!fSet);
		}
	}

	// pack disable flags of xforms
	for (ULONG ul = 0; ul < ulXforms; ul++)
	{
		GPOS_ASSERT(!pbs->FBit(EopttraceDisableXformBase + ul) &&
					"xform trace flag already set");

		if (optimizer_xforms[ul])
		{
#ifdef GPOS_DEBUG
			BOOL fSet =
#endif // GPOS_DEBUG
				pbs->FExchangeSet(EopttraceDisableXformBase + ul);
			GPOS_ASSERT(!fSet);
		}
	}

	// disable index-join if the corresponding GUC is turned off
	if (!optimizer_enable_indexjoin)
	{
		CBitSet *pbsIndexJoin = CXform::PbsIndexJoinXforms(pmp);
		pbs->Union(pbsIndexJoin);
		pbsIndexJoin->Release();
	}

	// disable bitmap scan if the corresponding GUC is turned off
	if (!optimizer_enable_bitmapscan)
	{
		CBitSet *pbsBitmapScan = CXform::PbsBitmapIndexXforms(pmp);
		pbs->Union(pbsBitmapScan);
		pbsBitmapScan->Release();
	}

	// disable outerjoin to unionall transformation if GUC is turned off
	if (!optimizer_enable_outerjoin_to_unionall_rewrite)
	{
		 pbs->FExchangeSet(GPOPT_DISABLE_XFORM_TF(CXform::ExfLeftOuter2InnerUnionAllLeftAntiSemiJoin));
	}

	// disable Assert MaxOneRow plans if GUC is turned off
	if (!optimizer_enable_assert_maxonerow)
	{
		 pbs->FExchangeSet(GPOPT_DISABLE_XFORM_TF(CXform::ExfMaxOneRow2Assert));
	}

	if (!optimizer_enable_partial_index)
	{
		CBitSet *pbsHeterogeneousIndex = CXform::PbsHeterogeneousIndexXforms(pmp);
		pbs->Union(pbsHeterogeneousIndex);
		pbsHeterogeneousIndex->Release();
	}

	return pbs;
}