Beispiel #1
0
int main(int argc, char* argv[])
{
    Teuchos::print_stack_on_segfault();

    RCP<const Basic> x = rcp(new Symbol("x"));
    RCP<const Basic> y = rcp(new Symbol("y"));
    RCP<const Basic> z = rcp(new Symbol("z"));
    RCP<const Basic> w = rcp(new Symbol("w"));
    RCP<const Basic> i100 = rcp(new Integer(100));

    RCP<const Basic> e, r;

    e = pow(add(add(pow(x, y), pow(y, x)), pow(z, x)), i100);

    std::cout << "Expanding: " << *e << std::endl;

    auto t1 = std::chrono::high_resolution_clock::now();
    r = expand(e);
    auto t2 = std::chrono::high_resolution_clock::now();
    //std::cout << *r << std::endl;
    std::cout
        << std::chrono::duration_cast<std::chrono::milliseconds>(t2-t1).count()
        << "ms" << std::endl;
    std::cout << "number of terms: "
        << rcp_dynamic_cast<const Add>(r)->dict_.size() << std::endl;

    return 0;
}
Beispiel #2
0
void test_probab_prime_p()
{
    RCP<const Integer> i1 = integer(1);
    RCP<const Integer> i5 = integer(5);
    RCP<const Integer> i6 = integer(6);

    assert(probab_prime_p(*i1) == 0);
    assert(probab_prime_p(*i5) == 2);
    assert(probab_prime_p(*i6) == 0);
}
Beispiel #3
0
void test_factor()
{
    RCP<const Integer> i2 = integer(2);
    RCP<const Integer> i3 = integer(3);
    RCP<const Integer> i6 = integer(6);
    RCP<const Integer> i17 = integer(17);
    RCP<const Integer> i31 = integer(31);
    RCP<const Integer> i121 = integer(121);
    RCP<const Integer> i122 = integer(122);
    RCP<const Integer> i1001 = integer(1001);
    RCP<const Integer> i900 = integer(900);
    RCP<const Integer> f;

    assert(factor(outArg(f), *i2) == 0);
    assert(factor(outArg(f), *i3) == 0);
    assert(factor(outArg(f), *i17) == 0);
    assert(factor(outArg(f), *i31) == 0);

    assert(factor(outArg(f), *i6) > 0);
    assert(divides(i6, f));
    assert(factor(outArg(f), *i121) > 0);
    assert(divides(i121, f));
    assert(factor(outArg(f), *i122) > 0);
    assert(divides(i122, f));
    assert(factor(outArg(f), *i1001) > 0);
    assert(divides(i1001, f));
    assert(!divides(i1001, i6));
    assert(factor(outArg(f), *i900) > 0);
    assert(divides(i900, f));
}
Beispiel #4
0
void test_factor_lehman_method()
{
    RCP<const Integer> i21 = integer(21);
    RCP<const Integer> i23 = integer(23);
    RCP<const Integer> i31 = integer(31);
    RCP<const Integer> i47 = integer(47);
    RCP<const Integer> i121 = integer(121);
    RCP<const Integer> i122 = integer(122);
    RCP<const Integer> i900 = integer(900);
    RCP<const Integer> i1001 = integer(1001);
    RCP<const Integer> f;

    assert(factor_lehman_method(outArg(f), *i23) == 0);
    assert(factor_lehman_method(outArg(f), *i31) == 0);
    assert(factor_lehman_method(outArg(f), *i47) == 0);

    assert(factor_lehman_method(outArg(f), *i21) > 0);
    assert(divides(i21, f));
    assert(factor_lehman_method(outArg(f), *i121) > 0);
    assert(divides(i121, f));
    assert(factor_lehman_method(outArg(f), *i122) > 0);
    assert(divides(i122, f));
    assert(factor_lehman_method(outArg(f), *i900) > 0);
    assert(divides(i900, f));
    assert(factor_lehman_method(outArg(f), *i1001) > 0);
    assert(divides(i1001, f));
}
Beispiel #5
0
void test_mul()
{
    RCP<Basic> x = rcp(new Symbol("x"));
    RCP<Basic> y = rcp(new Symbol("y"));
    RCP<Basic> z = rcp(new Symbol("z"));
    RCP<Basic> w = rcp(new Symbol("w"));
    RCP<Basic> i2 = rcp(new Integer(2));
    RCP<Basic> i3 = rcp(new Integer(3));
    RCP<Basic> i4 = rcp(new Integer(4));

    RCP<Basic> r1 = mul(x, y);
    RCP<Basic> r2 = pow(y, i2);
    map_basic_basic d;
    d[x] = y;
    assert(eq(r1->subs(d), r2));

    d[x] = z;
    d[y] = w;
    r1 = mul(x, y);
    r2 = mul(z, w);
    assert(eq(r1->subs(d), r2));

    d.clear();
    d[mul(x, y)] = z;
    r1 = mul(x, y);
    r2 = z;
    assert(eq(r1->subs(d), r2));

    d.clear();
    d[pow(x, y)] = z;
    r1 = mul(i2, pow(x, y));
    r2 = mul(i2, z);
    assert(eq(r1->subs(d), r2));
}
Beispiel #6
0
int main(int argc, char* argv[])
{
    print_stack_on_segfault();

    test_monomial_mul();
    test_expand();

    return 0;
}
Beispiel #7
0
void test_expand()
{
    RCP<Basic> x = rcp(new Symbol("x"));
    RCP<Basic> y = rcp(new Symbol("y"));
    RCP<Basic> z = rcp(new Symbol("z"));
    RCP<Basic> w = rcp(new Symbol("w"));
    RCP<Basic> i4 = rcp(new Integer(2));

    RCP<Basic> e, f1, f2, r;

    e = pow(add(add(add(x, y), z), w), i4);
    f1 = expand(e);
    f2 = expand(add(e, w));

    Dict_int syms;
    syms[x] = rcp(new Integer(0));
    syms[y] = rcp(new Integer(1));
    syms[z] = rcp(new Integer(2));
    syms[w] = rcp(new Integer(3));

    umap_vec_mpz P1, P2, C;

    expr2poly(f1, syms, P1);
    expr2poly(f2, syms, P2);
    std::cout << "poly_mul start" << std::endl;
    auto t1 = std::chrono::high_resolution_clock::now();
    poly_mul(P1, P2, C);
    auto t2 = std::chrono::high_resolution_clock::now();
    std::cout << "poly_mul stop" << std::endl;


    /*
    std::cout << *e << std::endl;
    std::cout << *f1 << std::endl;
    std::cout << P1 << std::endl;
    std::cout << *f2 << std::endl;
    std::cout << P2 << std::endl;
    std::cout << "RESULT:" << std::endl;
    std::cout << C << std::endl;
    */
    std::cout
        << std::chrono::duration_cast<std::chrono::milliseconds>(t2-t1).count()
        << "ms" << std::endl;
}
Beispiel #8
0
int main(int argc, char* argv[])
{
    print_stack_on_segfault();

    test_printing();

    test_matrix();

    return 0;
}
Beispiel #9
0
void test_factorial()
{
    RCP<const Integer> i1 = integer(1);

    assert(eq(factorial(1), i1));
    assert(eq(factorial(0), i1));
    assert(eq(factorial(5), integer(120)));
    assert(eq(factorial(9), integer(362880)));
}
Beispiel #10
0
int main(int argc, char* argv[])
{
    print_stack_on_segfault();

    test_symbol();
    test_add();
    test_mul();
    test_pow();
    test_trig();

    return 0;
}
Beispiel #11
0
int main(int argc, char* argv[])
{
    Teuchos::print_stack_on_segfault();

    RCP<const Basic> x = rcp(new Symbol("x"));
    RCP<const Basic> a, c;
    int N;

    N = 3000; a = x; c = integer(1);
    auto t1 = std::chrono::high_resolution_clock::now();
    for (int i = 0; i < N; i++) {
        a = add(a, mul(c, pow(x, integer(i))));
        c = mul(c, integer(-1));
    }
    auto t2 = std::chrono::high_resolution_clock::now();
    //std::cout << *a << std::endl;
    std::cout
        << std::chrono::duration_cast<std::chrono::milliseconds>(t2-t1).count()
        << "ms" << std::endl;
    std::cout << "number of terms: "
        << rcp_dynamic_cast<const Add>(a)->dict_.size() << std::endl;

    return 0;
}
Beispiel #12
0
void test_nextprime()
{
    RCP<const Integer> i1 = integer(1);
    RCP<const Integer> i5 = integer(5);
    RCP<const Integer> i6 = integer(6);

    assert(eq(nextprime(*i1), integer(2)));
    assert(eq(nextprime(*i5), integer(7)));
    assert(eq(nextprime(*i6), integer(7)));
}
Beispiel #13
0
int main(int argc, char* argv[])
{
    Teuchos::print_stack_on_segfault();

    RCP<const Basic> e = sin(integer(1));
    double r, r_exact;

    for(int i = 0; i < 10000; i++)
        e = pow(add(mul(add(e, pow(integer(2), integer(-3))), integer(3)), integer(1)), div(integer(2), integer(3)));

//  Too long:
//  std::cout << "Evaluating: " << *e << std::endl;

    auto t1 = std::chrono::high_resolution_clock::now();
    for (int i = 0; i < 500; i++)
        r = eval_double(*e);
    auto t2 = std::chrono::high_resolution_clock::now();
    std::cout
        << std::chrono::duration_cast<std::chrono::milliseconds>(t2-t1).count()
        << "ms" << std::endl;
/*
In SymPy for few iterations:
In [7]: sympify("(1 + 3*(1/8 + (1 + 3*(1/8 + (1 + 3*(1/8 + (1 + 3*(1/8 + (1 + 3*(1/8 + sin(1)))^(2/3)))^(2/3)))^(2/3)))^(2/3)))^(2/3)").n(20)
Out[7]: 8.0152751504518535013

//    r_exact = 8.0152751504518535013;

Here is code to use SymPy for more iterations:

In [5]: e = sin(1)

In [6]: for i in range(10):
   ...:     e = ((e+2**(-S(3)))*3 + 1)**(S(2)/3)
   ...:

In [7]: e.n(20)
Out[7]: 9.6473976427977306146

But unfortunately SymPy can't do more than perhaps 10 or 20 iterations, while
we need to test ~10000. However, the numbers seem to converge to 9.85647...

*/
    r_exact = 9.8564741713701043569;
    std::cout << "r (double) = " << r << std::endl;
    std::cout << "r (exact)  = " << r_exact << std::endl;
    std::cout << "error      = " << std::abs(r-r_exact) << std::endl;

    return 0;
}
Beispiel #14
0
void test_monomial_mul()
{
    vec_int a, b, c, d;
    a = {1, 2, 3, 4};
    b = {2, 3, 2, 5};
    c = {0, 0, 0, 0};

    monomial_mul(a, b, c);

    d = {3, 5, 5, 9};
    assert(c == d);
    d = {5, 6, 5, 5};
    assert(c != d);

    umap_vec_mpz m;
    m[a] = 4;
}
Beispiel #15
0
void test_binomial()
{
    RCP<const Integer> i10 = integer(10);
    RCP<const Integer> i5 = integer(5);
    RCP<const Integer> i0 = integer(0);
    RCP<const Integer> m10 = integer(-10);

    assert(eq(binomial(*i10, 1), i10));
    assert(eq(binomial(*i5, 2), i10));
    assert(eq(binomial(*i5, 10), i0));
    assert(eq(binomial(*i10, 11), i0));
    assert(eq(binomial(*i10, 2), integer(45)));

    assert(eq(binomial(*m10, 3), integer(-220)));
    assert(eq(binomial(*m10, 2), integer(55)));
}
Beispiel #16
0
void test_prime_factors()
{
    RCP<const Integer> i0 = integer(0);
    RCP<const Integer> i1 = integer(1);
    RCP<const Integer> i5 = integer(5);
    RCP<const Integer> i6 = integer(6);
    RCP<const Integer> i12 = integer(12);
    RCP<const Integer> i36 = integer(36);
    RCP<const Integer> i125 = integer(125);
    RCP<const Integer> i1001 = integer(1001);

    _test_primefactors(i0, 0);
    _test_primefactors(i1, 0);
    _test_primefactors(i5, 1);
    _test_primefactors(i6, 2);
    _test_primefactors(i12, 3);
    _test_primefactors(i36, 4);
    _test_primefactors(i125, 3);
    _test_primefactors(i1001, 3);
}
Beispiel #17
0
void test_modular_inverse()
{
    RCP<const Integer> i5 = integer(5);
    RCP<const Integer> i3 = integer(3);
    RCP<const Integer> i8 = integer(8);
    RCP<const Integer> i11 = integer(11);
    RCP<const Integer> b;

    assert(mod_inverse(outArg(b), *i3, *i5) != 0);
    assert(eq(b, integer(2)));

    assert(mod_inverse(outArg(b), *i3, *i8) != 0);
    assert(eq(b, integer(3)));

    assert(mod_inverse(outArg(b), *i3, *i11) != 0);
    assert(eq(b, integer(4)));
}
Beispiel #18
0
void test_symbol()
{
    RCP<Basic> x = rcp(new Symbol("x"));
    RCP<Basic> y = rcp(new Symbol("y"));
    RCP<Basic> z = rcp(new Symbol("z"));
    RCP<Basic> w = rcp(new Symbol("w"));
    RCP<Basic> i2 = rcp(new Integer(2));
    RCP<Basic> i3 = rcp(new Integer(3));
    RCP<Basic> i4 = rcp(new Integer(4));

    RCP<Basic> r1 = x;
    RCP<Basic> r2 = y;
    map_basic_basic d;
    d[x] = y;
    assert(eq(r1->subs(d), r2));
    assert(neq(r1->subs(d), r1));
}
Beispiel #19
0
void _test_prime_factor_multiplicities(const RCP<const Integer> &a)
{
    unsigned multiplicity;
    RCP<const Integer> _a = a;
    std::vector<RCP<const Integer>> primes;
    map_integer_uint prime_mul;

    prime_factor_multiplicities(a, prime_mul);

    for (auto it : prime_mul) {
        multiplicity = it.second;
        while(multiplicity) {
            _a = rcp_dynamic_cast<const Integer>(div(_a, it.first));
            multiplicity--;
        }
    }

    assert(eq(_a, integer(1)));
}
Beispiel #20
0
int main(int argc, char* argv[])
{
    print_stack_on_segfault();

    test_gcd_lcm();
    test_nextprime();
    test_probab_prime_p();
    test_modular_inverse();
    test_fibonacci_lucas();
    test_binomial();
    test_factorial();
    test_factor();
    test_factor_lehman_method();
    test_sieve();
    test_prime_factors();
    test_prime_factor_multiplicities();

    return 0;
}
Beispiel #21
0
void test_prime_factor_multiplicities()
{
    RCP<const Integer> i2 = integer(2);
    RCP<const Integer> i3 = integer(3);
    RCP<const Integer> i6 = integer(6);
    RCP<const Integer> i12 = integer(12);
    RCP<const Integer> i36 = integer(36);
    RCP<const Integer> i125 = integer(125);
    RCP<const Integer> i2357 = integer(2357);

    _test_prime_factor_multiplicities(i2);
    _test_prime_factor_multiplicities(i3);
    _test_prime_factor_multiplicities(i6);
    _test_prime_factor_multiplicities(i12);
    _test_prime_factor_multiplicities(i36);
    _test_prime_factor_multiplicities(i125);
    _test_prime_factor_multiplicities(i2357);
}
Beispiel #22
0
void test_add()
{
    RCP<Basic> x = rcp(new Symbol("x"));
    RCP<Basic> y = rcp(new Symbol("y"));
    RCP<Basic> z = rcp(new Symbol("z"));
    RCP<Basic> w = rcp(new Symbol("w"));
    RCP<Basic> i2 = rcp(new Integer(2));
    RCP<Basic> i3 = rcp(new Integer(3));
    RCP<Basic> i4 = rcp(new Integer(4));

    RCP<Basic> r1 = add(x, y);
    RCP<Basic> r2 = mul(i2, y);
    map_basic_basic d;
    d[x] = y;
    assert(eq(r1->subs(d), r2));

    d[x] = z;
    d[y] = w;
    r1 = add(x, y);
    r2 = add(z, w);
    assert(eq(r1->subs(d), r2));

    d.clear();
    d[add(x, y)] = z;
    r1 = add(x, y);
    r2 = z;
    assert(eq(r1->subs(d), r2));

    d.clear();
    d[pow(x, y)] = z;
    d[pow(x, i2)] = y;
    d[pow(i2, y)] = x;
    r1 = add(add(pow(x, y), pow(x, i2)), pow(i2, y));
    r2 = add(add(x, y), z);
    assert(eq(r1->subs(d), r2));

    r1 = add(add(add(add(pow(x, y), pow(x, i2)), pow(i2, y)), x), i3);
    r2 = add(add(add(mul(i2, x), y), z), i3);
    assert(eq(r1->subs(d), r2));
}
Beispiel #23
0
int main(int argc, char* argv[])
{
    print_stack_on_segfault();
    RCP<const Basic> x = rcp(new Symbol("x"));
    RCP<const Basic> y = rcp(new Symbol("y"));
    RCP<const Basic> z = rcp(new Symbol("z"));
    RCP<const Basic> w = rcp(new Symbol("w"));
    RCP<const Basic> i15 = rcp(new Integer(15));

    RCP<const Basic> e, f1, f2, r;

    e = pow(add(add(add(x, y), z), w), i15);
    f1 = expand(e);
    f2 = expand(add(e, w));

    umap_basic_int syms;
    insert(syms, x, rcp(new Integer(0)));
    insert(syms, y, rcp(new Integer(1)));
    insert(syms, z, rcp(new Integer(2)));
    insert(syms, w, rcp(new Integer(3)));

    umap_vec_mpz P1, P2, C;

    expr2poly(f1, syms, P1);
    expr2poly(f2, syms, P2);
    std::cout << "poly_mul start" << std::endl;
    auto t1 = std::chrono::high_resolution_clock::now();
    poly_mul(P1, P2, C);
    auto t2 = std::chrono::high_resolution_clock::now();
    std::cout << "poly_mul stop" << std::endl;


    /*
    std::cout << *e << std::endl;
    std::cout << *f1 << std::endl;
    std::cout << P1 << std::endl;
    std::cout << *f2 << std::endl;
    std::cout << P2 << std::endl;
    std::cout << "RESULT:" << std::endl;
    std::cout << C << std::endl;
    */
    std::cout
        << std::chrono::duration_cast<std::chrono::milliseconds>(t2-t1).count()
        << "ms" << std::endl;
    std::cout << "number of terms: "
        << C.size() << std::endl;



    return 0;
}
Beispiel #24
0
void test_printing()
{
    RCP<const Basic> r, r1, r2;
    RCP<const Integer> i = integer(-1);
    RCP<const Symbol> x  = symbol("x");
    RCP<const Symbol> y  = symbol("y");

    r = div(integer(12), pow(integer(196), div(integer(1), integer(2))));
    assert(r->__str__() == "(3/49)*196^(1/2)");

    r = mul(integer(12), pow(integer(196), div(integer(1), integer(2))));
    assert(r->__str__() == "12*196^(1/2)");

    r = mul(integer(23), mul(pow(integer(5), div(integer(1), integer(2))),
        pow(integer(7), div(integer(1), integer(2)))));
    assert(r->__str__() == "23*5^(1/2)*7^(1/2)");

    r = mul(integer(2), pow(symbol("x"), integer(2)));
    assert(r->__str__() == "2*x^2");

    r1 = mul(integer(12), pow(integer(196), div(integer(-1), integer(2))));
    r2 = mul(integer(294), pow(integer(196), div(integer(-1), integer(2))));
    r = add(integer(-51), mul(r1, r2));
    assert(r->__str__() == "-33");

    r1 = mul(x, i);
    r2 = mul(r1, y);
    assert(r1->__str__() == "-x");
    assert(r1->__str__() != "-1x");
    assert(r2->__str__() == "-x*y");
    assert(r2->__str__() != "-1x*y");

    r = mul(integer(-1), pow(integer(196), div(integer(1), integer(2))));
    assert(r->__str__() == "-196^(1/2)");
    r = pow(integer(-6), div(integer(1), integer(2)));
    assert(r->__str__() == "(-6)^(1/2)");

    RCP<const Number> rn1, rn2, rn3, c1, c2;
    rn1 = Rational::from_two_ints(integer(2), integer(4));
    rn2 = Rational::from_two_ints(integer(5), integer(7));
    rn3 = Rational::from_two_ints(integer(-5), integer(7));

    c1 = Complex::from_two_rats(static_cast<const Rational&>(*rn1), static_cast<const Rational&>(*rn2));
    c2 = Complex::from_two_rats(static_cast<const Rational&>(*rn1), static_cast<const Rational&>(*rn3));
    r1 = mul(c1, x);
    r2 = mul(c2, x);
    assert(c1->__str__() == "1/2 + 5/7*I");
    assert(c2->__str__() == "1/2 - 5/7*I");
    assert(r1->__str__() == "(1/2 + 5/7*I)*x");
    assert(r2->__str__() == "(1/2 - 5/7*I)*x");
    r1 = pow(x, c1);
    r2 = pow(x, c2);
    assert(r1->__str__() == "x^(1/2 + 5/7*I)");
    assert(r2->__str__() == "x^(1/2 - 5/7*I)");


    c1 = Complex::from_two_nums(*rn1, *rn2);
    c2 = Complex::from_two_nums(*rn1, *rn3);
    assert(c1->__str__() == "1/2 + 5/7*I");
    assert(c2->__str__() == "1/2 - 5/7*I");

    rn1 = Rational::from_two_ints(integer(0), integer(4));
    c1 = Complex::from_two_nums(*rn1, *rn2);
    c2 = Complex::from_two_nums(*rn1, *rn3);
    r1 = mul(c1, x);
    r2 = mul(c2, x);
    assert(c1->__str__() == "5/7*I");
    assert(c2->__str__() == "-5/7*I");
    assert(r1->__str__() == "5/7*I*x");
    assert(r2->__str__() == "-5/7*I*x");
    r1 = pow(x, c1);
    r2 = pow(x, c2);
    assert(r1->__str__() == "x^(5/7*I)");
    assert(r2->__str__() == "x^(-5/7*I)");



    c1 = Complex::from_two_nums(*rn2, *rn1);
    c2 = Complex::from_two_nums(*rn3, *rn1);
    r1 = mul(c1, x);
    r2 = mul(c2, x);
    assert(c1->__str__() == "5/7");
    assert(c2->__str__() == "-5/7");
    assert(r1->__str__() == "(5/7)*x");
    assert(r2->__str__() == "(-5/7)*x");
    r1 = pow(x, c1);
    r2 = pow(x, c2);
    assert(r1->__str__() == "x^(5/7)");
    assert(r2->__str__() == "x^(-5/7)");

    rn1 = Rational::from_two_ints(integer(1), integer(1));
    c1 = Complex::from_two_nums(*rn2, *rn1);
    assert(c1->__str__() == "5/7 + I");
    rn1 = Rational::from_two_ints(integer(-1), integer(1));
    c1 = Complex::from_two_nums(*rn2, *rn1);
    assert(c1->__str__() == "5/7 - I");

    r1 = mul(c1, x);
    assert(r1->__str__() == "(5/7 - I)*x" );

    r1 = mul(integer(2), x);
    assert(r1->__str__() == "2*x" );

    r1 = mul(mul(integer(2), pow(symbol("x"), div(integer(2), integer(3)))), y);
    assert(r1->__str__() == "2*x^(2/3)*y" );

    r1 = mul(x, y);
    assert(r1->__str__() == "x*y" );
}
Beispiel #25
0
void test_trig()
{
    RCP<Basic> x = rcp(new Symbol("x"));
    RCP<Basic> y = rcp(new Symbol("y"));
    RCP<Basic> z = rcp(new Symbol("z"));
    RCP<Basic> w = rcp(new Symbol("w"));
    RCP<Basic> i2 = rcp(new Integer(2));
    RCP<Basic> i3 = rcp(new Integer(3));
    RCP<Basic> i4 = rcp(new Integer(4));

    RCP<Basic> r1 = sin(x);
    RCP<Basic> r2 = zero;
    map_basic_basic d;
    d[x] = zero;
    assert(eq(r1->subs(d), r2));

    r1 = cos(x);
    r2 = one;
    assert(eq(r1->subs(d), r2));

    d[x] = y;
    r1 = sin(pow(x, i2));
    r2 = sin(pow(y, i2));
    assert(eq(r1->subs(d), r2));

    d.clear();
    d[sin(x)] = z;
    r1 = sin(x);
    r2 = z;
    assert(eq(r1->subs(d), r2));

    r1 = mul(i2, sin(x));
    r2 = mul(i2, z);
    assert(eq(r1->subs(d), r2));
}
Beispiel #26
0
void test_matrix()
{
    DenseMatrix A = DenseMatrix(2, 2, {integer(1), integer(0), integer(0),
        integer(1)});
    assert(A.__str__() == "[1, 0]\n[0, 1]\n");
}
Beispiel #27
0
void test_fibonacci_lucas()
{
    RCP<const Integer> g;
    RCP<const Integer> s;

    assert(eq(fibonacci(1), integer(1)));
    assert(eq(fibonacci(2), integer(1)));
    assert(eq(fibonacci(3), integer(2)));
    assert(eq(fibonacci(5), integer(5)));

    assert(eq(lucas(1), integer(1)));
    assert(eq(lucas(2), integer(3)));
    assert(eq(lucas(3), integer(4)));
    assert(eq(lucas(5), integer(11)));

    fibonacci2(outArg(g), outArg(s), 10);
    assert(eq(g, integer(55)));
    assert(eq(s, integer(34)));

    lucas2(outArg(g), outArg(s), 10);
    assert(eq(g, integer(123)));
    assert(eq(s, integer(76)));
}
Beispiel #28
0
void test_gcd_lcm()
{
    RCP<const Integer> i2 = integer(2);
    RCP<const Integer> i3 = integer(3);
    RCP<const Integer> i4 = integer(4);
    RCP<const Integer> i6 = integer(6);
    RCP<const Integer> g = integer(2);
    RCP<const Integer> s = integer(2);
    RCP<const Integer> t = integer(3);

    assert(eq(gcd(*i2, *i4), integer(2)));
    assert(eq(gcd(*i2, *i3), integer(1)));
    assert(eq(gcd(*i2, *i6), integer(2)));
    assert(eq(gcd(*i3, *i6), integer(3)));

    assert(eq(lcm(*i2, *i4), integer(4)));
    assert(eq(lcm(*i2, *i3), integer(6)));
    assert(eq(lcm(*i2, *i6), integer(6)));
    assert(eq(lcm(*i3, *i6), integer(6)));

    gcd_ext(outArg(g), outArg(s), outArg(t), *i2, *i3);
    assert(eq(g, integer(1)));
    assert(eq(g, add(mul(i2, s), mul(i3, t)))); // check if g = i2*s + i3*t

    gcd_ext(outArg(g), outArg(s), outArg(t), *i3, *i6);
    assert(eq(g, integer(3)));
    assert(eq(g, add(mul(i3, s), mul(i6, t)))); // check if g = i3*s + i6*t
}
Beispiel #29
0
int main(int argc, char* argv[])
{
    Teuchos::print_stack_on_segfault();

    DenseMatrix A = DenseMatrix(3, 3, {symbol("a"), symbol("b"), symbol("c"), symbol("d"),
        symbol("e"), symbol("f"), symbol("g"), symbol("h"), symbol("i")});

    DenseMatrix B = DenseMatrix(3, 3, {symbol("x"), symbol("y"), symbol("z"), symbol("p"),
        symbol("q"), symbol("r"), symbol("u"), symbol("v"), symbol("w")});

    DenseMatrix C(3, 3);

    std::cout << "Adding Two Matrices; matrix dimensions: 3 x 3" << std::endl;

    // We are taking an average time since time for a single addition varied in
    // a range of 40-50 microseconds
    unsigned N = 10000;
    auto t1 = std::chrono::high_resolution_clock::now();
    for (unsigned i = 0; i < N; i++)
        add_dense_dense(A, B, C);
    auto t2 = std::chrono::high_resolution_clock::now();

    std::cout
        << std::chrono::duration_cast<std::chrono::microseconds>(t2-t1).count()/N
        << " microseconds" << std::endl;

    return 0;
}
Beispiel #30
0
int main(int argc, char* argv[])
{
    Teuchos::print_stack_on_segfault();

    DenseMatrix A = DenseMatrix(4, 4, {integer(1), integer(2), integer(3), integer(4),
        integer(5), integer(6), integer(7), integer(8), integer(9), integer(10),
        integer(11), integer(12), integer(13), integer(14), integer(15),
        integer(16)});

    DenseMatrix B = DenseMatrix(4, 4, {integer(1), integer(2), integer(3), integer(4),
        integer(5), integer(6), integer(7), integer(8), integer(9), integer(10),
        integer(11), integer(12), integer(13), integer(14), integer(15),
        integer(16)});

    DenseMatrix C(4, 4);

    std::cout << "Adding Two Matrices; matrix dimensions: 4 x 4" << std::endl;

    // We are taking an average time since time for a single addition varied in
    // a range of 40-50 microseconds
    unsigned N = 10000;
    auto t1 = std::chrono::high_resolution_clock::now();
    for (unsigned i = 0; i < N; i++)
        add_dense_dense(A, B, C);
    auto t2 = std::chrono::high_resolution_clock::now();

    std::cout
        << std::chrono::duration_cast<std::chrono::microseconds>(t2-t1).count()/N
        << " microseconds" << std::endl;

    return 0;
}