Beispiel #1
0
//-----------------------------------------------------------------------------
void CbcSolverLongThin::resolve()
{
  int * whichRow = NULL;
  int * whichColumn = NULL;
  // problem may be small enough to do nested search
  const double * colLower = modelPtr_->columnLower();
  const double * colUpper = modelPtr_->columnUpper();
  
  int numberIntegers = model_->numberIntegers();
  const int * integerVariable = model_->integerVariable();
  int numberRows=modelPtr_->numberRows();
  int numberColumns = modelPtr_->numberColumns();
  
  int i;
  int nFix=0;
  int nNewRow=0;
  int nNewCol=0;
  int sizeDynamic = COIN_INT_MAX;
  int smallOriginalNumberRows=0;
  if (algorithm_==0) {
    for (i=0;i<numberIntegers;i++) {
      int iColumn=integerVariable[i];
      if (colLower[iColumn]==colUpper[iColumn])
        nFix++;
    }
  } else {
    whichRow = new int[numberRows];
    whichColumn = new int [numberColumns];
    // more sophisticated
    OsiCuts cs;
    tryCut->generateCuts(*this,cs);
    int numberCuts = cs.sizeColCuts();
    if (numberCuts) {
      for ( i = 0 ; i < numberCuts ; i++) {
        const OsiColCut *thisCut = cs.colCutPtr(i) ;
	const CoinPackedVector & ubs = thisCut->ubs() ;
	int n = ubs.getNumElements() ;
	const int * which = ubs.getIndices() ;
	const double * values = ubs.getElements() ;
	for (int j = 0;j<n;j++) {
	  int iColumn = which[j] ;
	  this->setColUpper(iColumn,values[j]) ;
        }
      }
    }
#if 1
    const int * duplicate = tryCut->duplicate();
    sizeDynamic = tryCut->sizeDynamic();
    int nOrig = tryCut->numberOriginalRows();
    for (i=0;i<nOrig;i++) {
      if (duplicate[i]==-1)
        whichRow[nNewRow++]=i;
      else
        modelPtr_->setRowStatus(i,ClpSimplex::basic);
    }
    smallOriginalNumberRows=nNewRow;
    for (;i<numberRows;i++) {
      whichRow[nNewRow++]=i;
    }
#else
    for (i=0;i<numberRows;i++) 
      whichRow[i]=i;
    nNewRow=numberRows;
#endif
    for (i=0;i<numberIntegers;i++) {
      int iColumn=integerVariable[i];
      if (colLower[iColumn]==colUpper[iColumn])
        nFix++;
      bool choose;
      if (algorithm_==1)
        choose = true;
      else
        choose = (node_[i]>count_-memory_&&node_[i]>0);
      if ((choose&&colUpper[i])
	  ||(modelPtr_->getStatus(i)!=ClpSimplex::atLowerBound&&
             modelPtr_->getStatus(i)!=ClpSimplex::isFixed)
	  ||colLower[i]>0.0)
	whichColumn[nNewCol++]=i;
    }
  }
  if (nestedSearch_<1.0&&model_&&model_->phase()==2) {
    if (((double) sizeDynamic)*((double) nNewCol)<1000000000&&sizeDynamic<10000000) {
      // could do Dynamic Programming
      // back to original number of rows
      nNewRow = smallOriginalNumberRows;
      // and get rid of any basics
      int nNewCol=0;
      for (i=0;i<numberColumns;i++) {
        if (colUpper[i]||colLower[i]>0.0)
          whichColumn[nNewCol++]=i;
      }
      ClpSimplex temp(modelPtr_,nNewRow,whichRow,nNewCol,whichColumn);
      int returnCode;
      double * rowLower2 = temp.rowLower();
      double * rowUpper2 = temp.rowUpper();
      int numberColumns2 = temp.numberColumns();
      double * colLower2 = temp.columnLower();
      double * colUpper2 = temp.columnUpper();
      const CoinPackedMatrix * matrix = temp.matrix();
      const double * element = matrix->getElements();
      const int * row = matrix->getIndices();
      const CoinBigIndex * columnStart = matrix->getVectorStarts();
      const int * columnLength = matrix->getVectorLengths();
      double offset=0.0;
      const double * objective = temp.objective();
      bool feasible=true;
      for (i=0;i<numberColumns2;i++) {
        double value = colLower2[i];
        if (value) {
          offset += value*objective[i];
          colLower2[i]=0.0;
          colUpper2[i] -= value;
          for (int j=columnStart[i];
               j<columnStart[i]+columnLength[i];j++) {
            int iRow=row[j];
            rowLower2[iRow] -= value*element[j]; 
            rowUpper2[iRow] -= value*element[j]; 
            if (rowUpper2[iRow]<-1.0e-8) {
              feasible=false;
              printf("odd - problem is infeasible\n");
            }
          }
        }
      }
      temp.setObjectiveOffset(-offset);
      OsiClpSolverInterface temp2(&temp);
      double * solutionDP = NULL;
      if (feasible) {
        for (i=0;i<numberColumns2;i++) 
          temp2.setInteger(i);
        CbcModel modelSmall(temp2);
        modelSmall.messageHandler()->setLogLevel(0);
        CbcFathomDynamicProgramming fathom1(modelSmall);
        // Set maximum space allowed
        fathom1.setMaximumSize(100000000);
        temp2.writeMps("small");
        returnCode=fathom1.fathom(solutionDP);
        if (returnCode!=1) {
          printf("probably not enough memory\n");
          abort();
        }
      }
      if (solutionDP) {
        double objValue = 0.0;
        double * solution = modelPtr_->primalColumnSolution();
        const double * objective = modelPtr_->objective();
        for (i=0;i<numberColumns;i++) 
          solution[i]=colLower[i];
        for (i=0;i<nNewCol;i++) {
          int iColumn = whichColumn[i];
          solution[iColumn]+=solutionDP[i];
        }
        for (i=0;i<numberColumns;i++) 
          objValue += solution[i]*objective[i];
        if (objValue<model_->getCutoff()) {
          printf("good solution %g by dynamic programming\n",objValue);
          returnCode = 0;
          // paranoid check
          double * rowLower = modelPtr_->rowLower();
          double * rowUpper = modelPtr_->rowUpper();
          // Column copy
          const CoinPackedMatrix * matrix2 = modelPtr_->matrix();
          element = matrix2->getElements();
          row = matrix2->getIndices();
          columnStart = matrix2->getVectorStarts();
          columnLength = matrix2->getVectorLengths();
          double * rowActivity = new double [numberRows];
          memset(rowActivity,0,numberRows*sizeof(double));
          for (i=0;i<numberColumns;i++) {
            int j;
            double value = solution[i];
            assert (value>=colLower[i]&&value<=colUpper[i]);
            if (value) {
              printf("%d has value %g\n",i,value);
              for (j=columnStart[i];
                   j<columnStart[i]+columnLength[i];j++) {
                int iRow=row[j];
                rowActivity[iRow] += value*element[j];
              }
            }
          }
          // check was feasible
          bool feasible=true;
          for (i=0;i<numberRows;i++) {
            if(rowActivity[i]<rowLower[i]) {
              if (rowActivity[i]<rowLower[i]-1.0e-8)
                feasible = false;
            } else if(rowActivity[i]>rowUpper[i]) {
              if (rowActivity[i]>rowUpper[i]+1.0e-8)
                feasible = false;
            }
          }
          if (!feasible) {
            printf("** Bad solution by dynamic programming\n");
            abort();
          }
          delete [] rowActivity;
          model_->setBestSolution(CBC_TREE_SOL,objValue,solution);
        } else {
          returnCode=2;
        }
      } else {
        returnCode=2;
      }
      temp2.releaseClp();
      modelPtr_->setProblemStatus(1);
      delete [] whichRow;
      delete [] whichColumn;
      return;
    }
    if (nFix>nestedSearch_*numberIntegers) {
      // Do nested search
      // back to original number of rows
      nNewRow = smallOriginalNumberRows;
      // and get rid of any basics
      int nNewCol=0;
      for (i=0;i<numberColumns;i++) {
        if (colUpper[i]||colLower[i]>0.0)
          whichColumn[nNewCol++]=i;
      }
#if 0
      // We clone from continuous solver so set some stuff
      OsiSolverInterface * solver = model_->continuousSolver();
      CbcSolverLongThin * osiclp = dynamic_cast< CbcSolverLongThin*> (solver);
      assert (osiclp);
      // up special options
      if (osiclp->specialOptions()==3)
	osiclp->setSpecialOptions(7);
      double saveNested = osiclp->getNested();
      int saveAlgorithm = osiclp->getAlgorithm();
      osiclp->setNested(1.0);
      osiclp->setAlgorithm(0);
      int numberObjects = model_->numberObjects();
      if (numberObjects>model_->numberIntegers()) {
	// for now only integers
	//assert (numberObjects == model_->numberIntegers()+1);
	model_->setNumberObjects(model_->numberIntegers());
        // try follow on
	//model_->setNumberObjects(model_->numberIntegers()+1);
      }
      double saveMaxTime = model_->getDblParam(CbcModel::CbcMaximumSeconds);
      model_->setDblParam(CbcModel::CbcMaximumSeconds,1.0e5);
      // up special options
#if 1
      int returnCode= model_->subBranchAndBound(colLower,colUpper,2000);
#else
      CbcModel * model3 = model_->cleanModel(colLower,colUpper);
      // integer presolve
      int returnCode=0;
      CbcModel * model2 = model3->integerPresolve(false);
      if (!model2||!model2->getNumRows()) {
        delete model2;
        delete model3;
        returnCode= 2;
      } else {
        if (handler_->logLevel()>1)
          printf("Reduced model has %d rows and %d columns\n",
                 model2->getNumRows(),model2->getNumCols());
        if (true) {
          OsiSolverInterface * solver = model2->solver();
          OsiSolverInterface * osiclp = dynamic_cast< OsiSolverInterface*> (solver);
          assert (osiclp);
          int * priority = new int [numberColumns+1];
          int n=0;
          int iColumn;
          for ( iColumn=0;iColumn<numberColumns;iColumn++) {
            if (solver->isInteger(iColumn)) {
              priority[n++]=10000;
            }
          }
          priority[n]=1;
          CbcObject * newObject =new CbcFollowOn2(model2);
          model2->addObjects(1,&newObject);
          delete newObject;
          model2->passInPriorities(priority,false);
          delete [] priority;
        }
        returnCode= model_->subBranchAndBound(model3,model2,4000);
      }
#endif
      model_->setDblParam(CbcModel::CbcMaximumSeconds,saveMaxTime);
      model_->setNumberObjects(numberObjects);
      osiclp->setNested(saveNested);
      osiclp->setAlgorithm(saveAlgorithm);
#else
      // start again very simply
      ClpSimplex temp(modelPtr_,nNewRow,whichRow,nNewCol,whichColumn);
      int returnCode;
      OsiClpSolverInterface temp2(&temp);
      temp2.setupForRepeatedUse(2);
      int numberColumns2 = temp.numberColumns();
      const double * colUpper2 = temp2.getColUpper();
      const double * colLower2 = temp2.getColLower();
      const double * solution2 = temp.getColSolution();
      double * cleanSolution2 = new double [numberColumns2];
      for (i=0;i<numberColumns2;i++) {
        temp2.setInteger(i);
        double value = solution2[i];
        value = CoinMin(CoinMax(value,colLower2[i]),colUpper2[i]);
        cleanSolution2[i] = value;
      }
      temp2.setColSolution(cleanSolution2);
      delete [] cleanSolution2;
      CbcModel modelSmall(temp2);
      modelSmall.setNumberStrong(0);
      CglProbing generator1;
      generator1.setUsingObjective(true);
      generator1.setMaxPass(3);
      generator1.setMaxProbe(100);
      generator1.setMaxLook(50);
      generator1.setRowCuts(3);
      
      CglGomory generator2;
      // try larger limit
      generator2.setLimit(300);
      
      CglKnapsackCover generator3;
      
      CglOddHole generator4;
      generator4.setMinimumViolation(0.005);
      generator4.setMinimumViolationPer(0.00002);
      // try larger limit
      generator4.setMaximumEntries(200);
      
      CglClique generator5;
      generator5.setStarCliqueReport(false);
      generator5.setRowCliqueReport(false);
      
      CglMixedIntegerRounding mixedGen;
      CglFlowCover flowGen;
      
      // Add in generators
      modelSmall.addCutGenerator(&generator1,-1,"Probing",true,false,false,-1);
      modelSmall.addCutGenerator(&generator2,-99,"Gomory",true,false,false,-99);
      modelSmall.addCutGenerator(&generator3,-99,"Knapsack",true,false,false,-99);
      modelSmall.addCutGenerator(&generator4,-99,"OddHole",true,false,false,-99);
      modelSmall.addCutGenerator(&generator5,-99,"Clique",true,false,false,-99);
      modelSmall.addCutGenerator(&flowGen,-99,"FlowCover",true,false,false,-99);
      modelSmall.addCutGenerator(&mixedGen,-99,"MixedIntegerRounding",true,false,false,-100);
#if 1
      const CoinPackedMatrix * matrix = temp2.getMatrixByCol();
      const int * columnLength = matrix->getVectorLengths();
      int * priority = new int [numberColumns2+1];
      // do pseudo costs and priorities - take a reasonable guess
      CbcObject ** objects = new CbcObject * [numberColumns2+1];
      int n=0;
      const double * objective = modelSmall.getObjCoefficients();
      for (i=0;i<numberColumns2;i++) {
        CbcSimpleIntegerPseudoCost * newObject =
          new CbcSimpleIntegerPseudoCost(&modelSmall,n,i,objective[i],0.5*objective[i]);
        newObject->setMethod(3);
        objects[n]= newObject;
        priority[n++]=10000-columnLength[i];
      }
      priority[n]=1;
      objects[n++]=new CbcFollowOn2(&modelSmall);
      modelSmall.addObjects(n,objects);
      for (i=0;i<n;i++)
        delete objects[i];
      delete [] objects;
      modelSmall.passInPriorities(priority,false);
      delete [] priority;
#endif
      modelSmall.setCutoff(model_->getCutoff());
      //if (!onPathX&&modelSmall.getCutoff()>480.5)
      //modelSmall.setCutoff(480.5);
      //printf("cutoff %g\n",model_->getCutoff());
      modelSmall.messageHandler()->setLogLevel(1);
      modelSmall.solver()->messageHandler()->setLogLevel(0);
      modelSmall.messagesPointer()->setDetailMessage(3,9);
      modelSmall.messagesPointer()->setDetailMessage(3,6);
      modelSmall.messagesPointer()->setDetailMessage(3,4);
      modelSmall.messagesPointer()->setDetailMessage(3,13);
      modelSmall.messagesPointer()->setDetailMessage(3,14);
      modelSmall.messagesPointer()->setDetailMessage(3,1);
      modelSmall.messagesPointer()->setDetailMessage(3,3007);
      modelSmall.branchAndBound();
      temp2.releaseClp();
      if (modelSmall.bestSolution()) {
        double objValue = 0.0;
        const double * solution2 = modelSmall.bestSolution();
        double * solution = modelPtr_->primalColumnSolution();
        const double * objective = modelPtr_->objective();
        for (i=0;i<numberColumns;i++) 
          solution[i]=colLower[i];
        for (i=0;i<nNewCol;i++) {
          int iColumn = whichColumn[i];
          solution[iColumn]=solution2[i];
        }
        for (i=0;i<numberColumns;i++) 
          objValue += solution[i]*objective[i];
        assert (objValue<model_->getCutoff());
        if (objValue<model_->getCutoff()) {
          //printf("good solution \n");
          model_->setBestSolution(CBC_TREE_SOL,objValue,solution);
          returnCode = 0;
        } else {
          returnCode=2;
        }
      } else {
        returnCode=2;
      }
#endif
      if (returnCode!=0&&returnCode!=2) {
	printf("pretending entire search done\n");
	returnCode=0;
      }
      if (returnCode==0||returnCode==2) {
	modelPtr_->setProblemStatus(1);
        delete [] whichRow;
        delete [] whichColumn;
	return;
     }
    }
  }
  if ((count_<100&&algorithm_==2)||!algorithm_) {
    delete [] whichRow;
    delete [] whichColumn;
    assert(!modelPtr_->specialOptions());
    int saveOptions = modelPtr_->specialOptions();
    int startFinishOptions;
    bool takeHint;
    OsiHintStrength strength;
    bool gotHint = (getHintParam(OsiDoInBranchAndCut,takeHint,strength));
    assert (gotHint);
    if (strength!=OsiHintIgnore&&takeHint) {
      // could do something - think about it
      //printf("thin hint %d %c\n",strength,takeHint ? 'T' :'F');
    }
    if((specialOptions_&1)==0) {
      startFinishOptions=0;
      modelPtr_->setSpecialOptions(saveOptions|(64|1024));
    } else {
      startFinishOptions=1+2+4;
      if((specialOptions_&4)==0) 
	modelPtr_->setSpecialOptions(saveOptions|(64|128|512|1024|4096));
      else
	modelPtr_->setSpecialOptions(saveOptions|(64|128|512|1024|2048|4096));
    }
    //printf("thin options %d size %d\n",modelPtr_->specialOptions(),modelPtr_->numberColumns());
    setBasis(basis_,modelPtr_);
    //modelPtr_->setLogLevel(1);
    modelPtr_->dual(0,0);
    basis_ = getBasis(modelPtr_);
    modelPtr_->setSpecialOptions(saveOptions);
    if (modelPtr_->status()==0) {
      count_++;
      double * solution = modelPtr_->primalColumnSolution();
      int i;
      for (i=0;i<numberColumns;i++) {
	if (solution[i]>1.0e-6||modelPtr_->getStatus(i)==ClpSimplex::basic) {
	  node_[i]=CoinMax(count_,node_[i]);
	  howMany_[i]++;
	}
      }
    } else {
      if (!algorithm_==2)
	printf("infeasible early on\n");
    }
  } else {
    // use counts
    int i;
    const double * lower = modelPtr_->columnLower();
    const double * upper = modelPtr_->columnUpper();
    setBasis(basis_,modelPtr_);
    ClpSimplex * temp = new ClpSimplex(modelPtr_,nNewRow,whichRow,nNewCol,whichColumn);
    //temp->setLogLevel(2);
    //printf("small has %d rows and %d columns\n",nNewRow,nNewCol);
    temp->setSpecialOptions(128+512);
    temp->setDualObjectiveLimit(1.0e50);
    temp->dual();
    if (temp->status()) {
      // In some cases we know that it must be infeasible
      if (believeInfeasible_||algorithm_==1) {
	modelPtr_->setProblemStatus(1);
	printf("assuming infeasible!\n");
	//modelPtr_->writeMps("infeas.mps");
	//temp->writeMps("infeas2.mps");
	//abort();
	delete temp;
        delete [] whichRow;
	delete [] whichColumn;
	return;
      }
    }
    double * solution = modelPtr_->primalColumnSolution();
    if (!temp->status()) {
      const double * solution2 = temp->primalColumnSolution();
      memset(solution,0,numberColumns*sizeof(double));
      for (i=0;i<nNewCol;i++) {
	int iColumn = whichColumn[i];
	solution[iColumn]=solution2[i];
	modelPtr_->setStatus(iColumn,temp->getStatus(i));
      }
      double * rowSolution = modelPtr_->primalRowSolution();
      const double * rowSolution2 = temp->primalRowSolution();
      double * dual = modelPtr_->dualRowSolution();
      const double * dual2 = temp->dualRowSolution();
      memset(dual,0,numberRows*sizeof(double));
      for (i=0;i<nNewRow;i++) {
        int iRow=whichRow[i];
        modelPtr_->setRowStatus(iRow,temp->getRowStatus(i));
        rowSolution[iRow]=rowSolution2[i];
        dual[iRow]=dual2[i];
      }
      // See if optimal
      double * dj = modelPtr_->dualColumnSolution();
      // get reduced cost for large problem
      // this assumes minimization
      memcpy(dj,modelPtr_->objective(),numberColumns*sizeof(double));
      modelPtr_->transposeTimes(-1.0,dual,dj);
      modelPtr_->setObjectiveValue(temp->objectiveValue());
      modelPtr_->setProblemStatus(0);
      int nBad=0;
      
      for (i=0;i<numberColumns;i++) {
	if (modelPtr_->getStatus(i)==ClpSimplex::atLowerBound
	    &&upper[i]>lower[i]&&dj[i]<-1.0e-5)
	  nBad++;
      }
      //modelPtr_->writeMps("bada.mps");
      //temp->writeMps("badb.mps");
      if (nBad) {
        assert (algorithm_==2);
	//printf("%d bad\n",nBad);
	timesBad_++;
	modelPtr_->primal();
      }
    } else {
      // infeasible - do all
      modelPtr_->setSpecialOptions(64+128+512);
      setBasis(basis_,modelPtr_);
      //modelPtr_->setLogLevel(1);
      modelPtr_->dual(0,0);
      basis_ = getBasis(modelPtr_);
      modelPtr_->setSpecialOptions(0);
      if (modelPtr_->status()) {
	printf("really infeasible!\n");
	delete temp;
        delete [] whichRow;
	delete [] whichColumn;
	return;
      } else {
	printf("initially infeasible\n");
      }
    }
    delete temp;
    delete [] whichRow;
    delete [] whichColumn;
    basis_ = getBasis(modelPtr_);
    modelPtr_->setSpecialOptions(0);
    count_++;
    if ((count_%100)==0&&algorithm_==2)
      printf("count %d, bad %d\n",count_,timesBad_);
    for (i=0;i<numberColumns;i++) {
      if (solution[i]>1.0e-6||modelPtr_->getStatus(i)==ClpSimplex::basic) {
	node_[i]=CoinMax(count_,node_[i]);
	howMany_[i]++;
      }
    }
    if (modelPtr_->objectiveValue()>=modelPtr_->dualObjectiveLimit())
      modelPtr_->setProblemStatus(1);
  }
}
Beispiel #2
0
static int solve(EKKModel * model, int  startup, int algorithm,
                 int presolve)
{
     // values pass or not
     if (startup)
          startup = 1;
     // if scaled then be careful
     bool scaled = ekk_scaling(model) == 1;
     if (scaled)
          ekk_scaleRim(model, 1);
     void * compressInfo = NULL;
     ClpSimplex * clp;
     if (!presolve || !presolveInfo) {
          // no presolve or osl presolve - compact columns
          compressInfo = ekk_compressModel(model);
          clp = clpmodel(model, startup);;
     } else {
          // pick up clp model
          clp = presolveInfo->model();
     }

     // don't scale if alreday scaled
     if (scaled)
          clp->scaling(false);
     if (clp->numberRows() > 10000)
          clp->factorization()->maximumPivots(100 + clp->numberRows() / 100);
     if (algorithm > 0)
          clp->primal(startup);
     else
          clp->dual();

     int numberIterations = clp->numberIterations();
     if (presolve && presolveInfo) {
          // very wasteful - create a clp copy of osl model
          ClpSimplex * clpOriginal = clpmodel(model, 0);
          presolveInfo->setOriginalModel(clpOriginal);
          // do postsolve
          presolveInfo->postsolve(true);
          delete clp;
          delete presolveInfo;
          presolveInfo = NULL;
          clp = clpOriginal;
          if (presolve == 3 || (presolve == 2 && clp->status())) {
               printf("Resolving from postsolved model\n");
               clp->primal(1);
               numberIterations += clp->numberIterations();
          }
     }

     // put back solution

     double * rowDual = (double *) ekk_rowduals(model);
     int numberRows = ekk_getInumrows(model);
     int numberColumns = ekk_getInumcols(model);
     int * rowStatus = (int *) ekk_rowstat(model);
     double * rowSolution = (double *) ekk_rowacts(model);
     int i;
     int * columnStatus = (int *) ekk_colstat(model);
     double * columnSolution = (double *) ekk_colsol(model);
     memcpy(rowSolution, clp->primalRowSolution(), numberRows * sizeof(double));
     memcpy(rowDual, clp->dualRowSolution(), numberRows * sizeof(double));
     for (i = 0; i < numberRows; i++) {
          if (clp->getRowStatus(i) == ClpSimplex::basic)
               rowStatus[i] = 0x80000000;
          else
               rowStatus[i] = 0;
     }

     double * columnDual = (double *) ekk_colrcosts(model);
     memcpy(columnSolution, clp->primalColumnSolution(),
            numberColumns * sizeof(double));
     memcpy(columnDual, clp->dualColumnSolution(), numberColumns * sizeof(double));
     for (i = 0; i < numberColumns; i++) {
          if (clp->getColumnStatus(i) == ClpSimplex::basic)
               columnStatus[i] = 0x80000000;
          else
               columnStatus[i] = 0;
     }
     ekk_setIprobstat(model, clp->status());
     ekk_setRobjvalue(model, clp->objectiveValue());
     ekk_setInumpinf(model, clp->numberPrimalInfeasibilities());
     ekk_setInumdinf(model, clp->numberDualInfeasibilities());
     ekk_setIiternum(model, numberIterations);
     ekk_setRsumpinf(model, clp->sumPrimalInfeasibilities());
     ekk_setRsumdinf(model, clp->sumDualInfeasibilities());
     delete clp;
     if (compressInfo)
          ekk_decompressModel(model, compressInfo);

     if (scaled)
          ekk_scaleRim(model, 2);
     return 0;
}
Beispiel #3
0
//-----------------------------------------------------------------------------
void CbcSolver2::resolve()
{
  int numberColumns = modelPtr_->numberColumns();
  if ((count_<10&&algorithm_==2)||!algorithm_) {
    OsiClpSolverInterface::resolve();
    if (modelPtr_->status()==0) {
      count_++;
      double * solution = modelPtr_->primalColumnSolution();
      int i;
      for (i=0;i<numberColumns;i++) {
	if (solution[i]>1.0e-6||modelPtr_->getStatus(i)==ClpSimplex::basic) {
	  node_[i]=CoinMax(count_,node_[i]);
	  howMany_[i]++;
	}
      }
    } else {
      if (!algorithm_==2)
	printf("infeasible early on\n");
    }
  } else {
    // use counts
    int numberRows=modelPtr_->numberRows();
    int * whichRow = new int[numberRows];
    int * whichColumn = new int [numberColumns];
    int i;
    const double * lower = modelPtr_->columnLower();
    const double * upper = modelPtr_->columnUpper();
    const double * rowUpper = modelPtr_->rowUpper();
    bool equality=false;
    for (i=0;i<numberRows;i++) {
      if (rowUpper[i]==1.0) {
        equality=true;
        break;
      }
    }
    setBasis(basis_,modelPtr_);
    int nNewCol=0;
    // Column copy
    //const double * element = modelPtr_->matrix()->getElements();
    const int * row = modelPtr_->matrix()->getIndices();
    const CoinBigIndex * columnStart = modelPtr_->matrix()->getVectorStarts();
    const int * columnLength = modelPtr_->matrix()->getVectorLengths();
    
    int * rowActivity = new int[numberRows];
    memset(rowActivity,0,numberRows*sizeof(int));
    int * rowActivity2 = new int[numberRows];
    memset(rowActivity2,0,numberRows*sizeof(int));
    char * mark = new char[numberColumns];
    memset(mark,0,numberColumns);
    // Get rows which are satisfied
    for (i=0;i<numberColumns;i++) {
      if (lower[i]>0.0) {
        CoinBigIndex j;
        for (j=columnStart[i];
             j<columnStart[i]+columnLength[i];j++) {
          int iRow=row[j];
          rowActivity2[iRow] ++;
        }
      } else if (!upper[i]) {
        mark[i]=2; // no good
      }
    }
    // If equality - check not infeasible
    if (equality) {
      bool feasible=true;
      for (i=0;i<numberRows;i++) {
        if (rowActivity2[i]>1) {
          feasible=false;
          break;
        }
      }
      if (!feasible) {
        delete [] rowActivity;
        delete [] rowActivity2;
        modelPtr_->setProblemStatus(1);
        delete [] whichRow;
        delete [] whichColumn;
        delete [] mark;
        printf("infeasible by inspection (over)\n");
        return;
      }
    }
    int nNoGood=0;
    for (i=0;i<numberColumns;i++) {
      if (mark[i]==2) {
        nNoGood++;
        continue;
      }
      bool choose;
      if (algorithm_==1)
        choose = true;
      else
        choose = (node_[i]>count_-memory_&&node_[i]>0);
      bool any;
      if (equality) {
        // See if forced to be zero
        CoinBigIndex j;
        any=true;
        for (j=columnStart[i];
             j<columnStart[i]+columnLength[i];j++) {
          int iRow=row[j];
          if (rowActivity2[iRow])
            any=false; // can't be in
        }
      } else {
        // See if not useful
        CoinBigIndex j;
        any=false;
        for (j=columnStart[i];
             j<columnStart[i]+columnLength[i];j++) {
          int iRow=row[j];
          if (!rowActivity2[iRow])
            any=true; // useful
        }
      }
      if (!any&&!lower[i]) {
        choose=false;
        // and say can't be useful
        mark[i]=2;
        nNoGood++;
      }
      if (strategy_&&modelPtr_->getColumnStatus(i)==ClpSimplex::basic)
        choose=true;
      if (choose||lower[i]>0.0) {
        mark[i]=1;
	whichColumn[nNewCol++]=i;
        CoinBigIndex j;
        double value = upper[i];
        if (value) {
          for (j=columnStart[i];
               j<columnStart[i]+columnLength[i];j++) {
            int iRow=row[j];
            rowActivity[iRow] ++;
          }
        }
      }
    }
    // If equality add in slacks
    CoinModel build;
    if (equality) {
      int row=0;
      for (i=0;i<numberRows;i++) {
        // put in all rows if wanted
        if(strategy_)
          rowActivity2[i]=0;
        if (!rowActivity2[i]) {
          double element=1.0;
          build.addColumn(1,&row,&element,0.0,1.0,1.0e8); // large cost
          row++;
        }
      }
    }
    int nOK=0;
    int nNewRow=0;
    for (i=0;i<numberRows;i++) {
      if (rowActivity[i])
        nOK++;
      if (!rowActivity2[i])
        whichRow[nNewRow++]=i; // not satisfied
      else
        modelPtr_->setRowStatus(i,ClpSimplex::basic); // make slack basic
    }
    if (nOK<numberRows) {
      for (i=0;i<numberColumns;i++) {
        if (!mark[i]) {
          CoinBigIndex j;
          int good=0;
          for (j=columnStart[i];
               j<columnStart[i]+columnLength[i];j++) {
            int iRow=row[j];
            if (!rowActivity[iRow]) {
              rowActivity[iRow] ++;
              good++;
            }
          }
          if (good) {
            nOK+=good;
            whichColumn[nNewCol++]=i;
          }
        }
      }
    }
    delete [] rowActivity;
    delete [] rowActivity2;
    if (nOK<numberRows) {
      modelPtr_->setProblemStatus(1);
      delete [] whichRow;
      delete [] whichColumn;
      delete [] mark;
      printf("infeasible by inspection\n");
      return;
    }
    bool allIn=false;
    if (nNewCol+nNoGood+numberRows>numberColumns) {
      // add in all
      allIn=true;
      for (i=0;i<numberColumns;i++) {
        if (!mark[i]) {
          whichColumn[nNewCol++]=i;
        }
      }
    }
    ClpSimplex *  temp = new ClpSimplex(modelPtr_,nNewRow,whichRow,nNewCol,whichColumn);
    if (equality)
      temp->addColumns(build);
    temp->setLogLevel(1);
    printf("small has %d rows and %d columns (%d impossible to help) %s\n",
           nNewRow,nNewCol,nNoGood,allIn ? "all in" : "");
    temp->setSpecialOptions(128+512);
    temp->setDualObjectiveLimit(1.0e50);
    temp->dual();
    assert (!temp->status());
    double * solution = modelPtr_->primalColumnSolution();
    const double * solution2 = temp->primalColumnSolution();
    memset(solution,0,numberColumns*sizeof(double));
    for (i=0;i<nNewCol;i++) {
      int iColumn = whichColumn[i];
      solution[iColumn]=solution2[i];
      modelPtr_->setStatus(iColumn,temp->getStatus(i));
    }
    double * rowSolution = modelPtr_->primalRowSolution();
    const double * rowSolution2 = temp->primalRowSolution();
    double * dual = modelPtr_->dualRowSolution();
    const double * dual2 = temp->dualRowSolution();
    memset(dual,0,numberRows*sizeof(double));
    for (i=0;i<nNewRow;i++) {
      int iRow=whichRow[i];
      modelPtr_->setRowStatus(iRow,temp->getRowStatus(i));
      rowSolution[iRow]=rowSolution2[i];
      dual[iRow]=dual2[i];
    }
    // See if optimal
    double * dj = modelPtr_->dualColumnSolution();
    // get reduced cost for large problem
    // this assumes minimization
    memcpy(dj,modelPtr_->objective(),numberColumns*sizeof(double));
    modelPtr_->transposeTimes(-1.0,dual,dj);
    modelPtr_->setObjectiveValue(temp->objectiveValue());
    modelPtr_->setProblemStatus(0);
    int nBad=0;
    for (i=0;i<numberColumns;i++) {
      if (modelPtr_->getStatus(i)==ClpSimplex::atLowerBound
          &&upper[i]>lower[i]&&dj[i]<-1.0e-5)
        nBad++;
    }
    //modelPtr_->writeMps("bada.mps");
    //temp->writeMps("badb.mps");
    delete temp;
    if (nBad&&!allIn) {
      assert (algorithm_==2);
      //printf("%d bad\n",nBad);
      timesBad_++;
      // just non mark==2
      int nAdded=0;
      for (i=0;i<numberColumns;i++) {
        if (!mark[i]) {
          whichColumn[nNewCol++]=i;
          nAdded++;
        }
      }
      assert (nAdded);
      {
        temp = new ClpSimplex(modelPtr_,nNewRow,whichRow,nNewCol,whichColumn);
        if (equality)
          temp->addColumns(build);
        temp->setLogLevel(2);
        temp->setSpecialOptions(128+512);
        temp->setDualObjectiveLimit(1.0e50);
        temp->primal(1);
        assert (!temp->status());
        double * solution = modelPtr_->primalColumnSolution();
        const double * solution2 = temp->primalColumnSolution();
        memset(solution,0,numberColumns*sizeof(double));
        for (i=0;i<nNewCol;i++) {
          int iColumn = whichColumn[i];
          solution[iColumn]=solution2[i];
          modelPtr_->setStatus(iColumn,temp->getStatus(i));
        }
        double * rowSolution = modelPtr_->primalRowSolution();
        const double * rowSolution2 = temp->primalRowSolution();
        double * dual = modelPtr_->dualRowSolution();
        const double * dual2 = temp->dualRowSolution();
        memset(dual,0,numberRows*sizeof(double));
        for (i=0;i<nNewRow;i++) {
          int iRow=whichRow[i];
          modelPtr_->setRowStatus(iRow,temp->getRowStatus(i));
          rowSolution[iRow]=rowSolution2[i];
          dual[iRow]=dual2[i];
        }
        modelPtr_->setObjectiveValue(temp->objectiveValue());
        modelPtr_->setProblemStatus(0);
        iterationsBad_ += temp->numberIterations();
        printf("clean %d\n",temp->numberIterations());
        delete temp;
      }
    }
    delete [] mark;
    delete [] whichRow;
    delete [] whichColumn;
    basis_ = getBasis(modelPtr_);
    modelPtr_->setSpecialOptions(0);
    count_++;
    if ((count_%100)==0&&algorithm_==2)
      printf("count %d, bad %d - iterations %d\n",count_,timesBad_,iterationsBad_);
    for (i=0;i<numberColumns;i++) {
      if (solution[i]>1.0e-6||modelPtr_->getStatus(i)==ClpSimplex::basic) {
	node_[i]=CoinMax(count_,node_[i]);
	howMany_[i]++;
      }
    }
    if (modelPtr_->objectiveValue()>=modelPtr_->dualObjectiveLimit())
      modelPtr_->setProblemStatus(1);
  }
}