// Evaluates the textlineiness of a ColPartition. Uses EvaluateBox below,
// but uses the median top/bottom for horizontal and median left/right for
// vertical instead of the bounding box edges.
// Evaluates for both horizontal and vertical and returns the best result,
// with a positive value for horizontal and a negative value for vertical.
int TextlineProjection::EvaluateColPartition(const ColPartition& part,
                                             const DENORM* denorm,
                                             bool debug) const {
  if (part.IsSingleton())
    return EvaluateBox(part.bounding_box(), denorm, debug);
  // Test vertical orientation.
  TBOX box = part.bounding_box();
  // Use the partition median for left/right.
  box.set_left(part.median_left());
  box.set_right(part.median_right());
  int vresult = EvaluateBox(box, denorm, debug);

  // Test horizontal orientation.
  box = part.bounding_box();
  // Use the partition median for top/bottom.
  box.set_top(part.median_top());
  box.set_bottom(part.median_bottom());
  int hresult = EvaluateBox(box, denorm, debug);
  if (debug) {
    tprintf("Partition hresult=%d, vresult=%d from:", hresult, vresult);
    part.bounding_box().print();
    part.Print();
  }
  return hresult >= -vresult ? hresult : vresult;
}
// Return the ColPartition that contains the given coords, if any, else NULL.
ColPartition* ColPartitionSet::ColumnContaining(int x, int y) {
  ColPartition_IT it(&parts_);
  for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
    ColPartition* part = it.data();
    if (part->ColumnContains(x, y))
      return part;
  }
  return NULL;
}
// Display the edges of the columns at the given y coords.
void ColPartitionSet::DisplayColumnEdges(int y_bottom, int y_top,
                                         ScrollView* win) {
  #ifndef GRAPHICS_DISABLED
  ColPartition_IT it(&parts_);
  for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
    ColPartition* part = it.data();
    win->Line(part->LeftAtY(y_top), y_top, part->LeftAtY(y_bottom), y_bottom);
    win->Line(part->RightAtY(y_top), y_top, part->RightAtY(y_bottom), y_bottom);
  }
  #endif  // GRAPHICS_DISABLED
}
// Provide debug output for this ColPartitionSet and all the ColPartitions.
void ColPartitionSet::Print() {
  ColPartition_IT it(&parts_);
  tprintf("Partition set of %d parts, %d good, coverage=%d+%d"
          " (%d,%d)->(%d,%d)\n",
          it.length(), good_column_count_, good_coverage_, bad_coverage_,
          bounding_box_.left(), bounding_box_.bottom(),
          bounding_box_.right(), bounding_box_.top());
  for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
    ColPartition* part = it.data();
    part->Print();
  }
}
// Adds the coverage, column count and box for a single partition,
// without adding it to the list. (Helper factored from ComputeCoverage.)
void ColPartitionSet::AddPartitionCoverageAndBox(const ColPartition& part) {
  bounding_box_ += part.bounding_box();
  int coverage = part.ColumnWidth();
  if (part.good_width()) {
    good_coverage_ += coverage;
    good_column_count_ += 2;
  } else {
    if (part.blob_type() < BRT_UNKNOWN)
      coverage /= 2;
    if (part.good_column())
      ++good_column_count_;
    bad_coverage_ += coverage;
  }
}
// Return a copy of this. If good_only will only copy the Good ColPartitions.
ColPartitionSet* ColPartitionSet::Copy(bool good_only) {
  ColPartition_LIST copy_parts;
  ColPartition_IT src_it(&parts_);
  ColPartition_IT dest_it(&copy_parts);
  for (src_it.mark_cycle_pt(); !src_it.cycled_list(); src_it.forward()) {
    ColPartition* part = src_it.data();
    if (BLOBNBOX::IsTextType(part->blob_type()) &&
        (!good_only || part->good_width() || part->good_column()))
      dest_it.add_after_then_move(part->ShallowCopy());
  }
  if (dest_it.empty())
    return NULL;
  return new ColPartitionSet(&copy_parts);
}
// Return the bounding boxes of columns at the given y-range
void ColPartitionSet::GetColumnBoxes(int y_bottom, int y_top,
                                     ColSegment_LIST *segments) {
  ColPartition_IT it(&parts_);
  ColSegment_IT col_it(segments);
  col_it.move_to_last();
  for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
    ColPartition* part = it.data();
    ICOORD bot_left(part->LeftAtY(y_top), y_bottom);
    ICOORD top_right(part->RightAtY(y_bottom), y_top);
    ColSegment *col_seg = new ColSegment();
    col_seg->InsertBox(TBOX(bot_left, top_right));
    col_it.add_after_then_move(col_seg);
  }
}
Beispiel #8
0
// Add the partition to this WorkingPartSet. Unrelated partitions are
// stored in the order in which they are received, but if the partition
// has a SingletonPartner, make sure that it stays with its partner.
void WorkingPartSet::AddPartition(ColPartition* part) {
  ColPartition* partner = part->SingletonPartner(true);
  if (partner != NULL) {
    ASSERT_HOST(partner->SingletonPartner(false) == part);
  }
  if (latest_part_ == NULL || partner == NULL) {
    // This partition goes at the end of the list
    part_it_.move_to_last();
  } else if (latest_part_->SingletonPartner(false) != part) {
    // Reposition the iterator to the correct partner, or at the end.
    for (part_it_.move_to_first(); !part_it_.at_last() &&
         part_it_.data() != partner;
         part_it_.forward());
  }
  part_it_.add_after_then_move(part);
  latest_part_ = part;
}
// Accumulate the widths and gaps into the given variables.
void ColPartitionSet::AccumulateColumnWidthsAndGaps(int* total_width,
                                                    int* width_samples,
                                                    int* total_gap,
                                                    int* gap_samples) {
  ColPartition_IT it(&parts_);
  for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
    ColPartition* part = it.data();
    *total_width += part->ColumnWidth();
    ++*width_samples;
    if (!it.at_last()) {
      ColPartition* next_part = it.data_relative(1);
      int gap = part->KeyWidth(part->right_key(), next_part->left_key());
      *total_gap += gap;
      ++*gap_samples;
    }
  }
}
Beispiel #10
0
// Make a block using lines parallel to the given vector that fit between
// the min and max coordinates specified by the ColPartitions.
// Construct a block from the given list of partitions.
void WorkingPartSet::MakeBlocks(const ICOORD& bleft, const ICOORD& tright,
                                int resolution, ColPartition_LIST* used_parts) {
  part_it_.move_to_first();
  while (!part_it_.empty()) {
    // Gather a list of ColPartitions in block_parts that will be split
    // by linespacing into smaller blocks.
    ColPartition_LIST block_parts;
    ColPartition_IT block_it(&block_parts);
    ColPartition* next_part = NULL;
    bool text_block = false;
    do {
      ColPartition* part = part_it_.extract();
      if (part->blob_type() == BRT_UNKNOWN || part->blob_type() == BRT_TEXT)
        text_block = true;
      part->set_working_set(NULL);
      part_it_.forward();
      block_it.add_after_then_move(part);
      next_part = part->SingletonPartner(false);
      if (part_it_.empty() || next_part != part_it_.data()) {
        // Sequences of partitions can get split by titles.
        next_part = NULL;
      }
      // Merge adjacent blocks that are of the same type and let the
      // linespacing determine the real boundaries.
      if (next_part == NULL && !part_it_.empty()) {
        ColPartition* next_block_part = part_it_.data();
        const TBOX& part_box = part->bounding_box();
        const TBOX& next_box = next_block_part->bounding_box();

        // In addition to the same type, the next box must not be above the
        // current box, nor (if image) too far below.
        PolyBlockType type = part->type(), next_type = next_block_part->type();
        if (ColPartition::TypesSimilar(type, next_type) &&
            next_box.bottom() <= part_box.top() &&
            (text_block ||
             part_box.bottom() - next_box.top() < part_box.height()))
          next_part = next_block_part;
      }
    } while (!part_it_.empty() && next_part != NULL);
    if (!text_block) {
      TO_BLOCK* to_block = ColPartition::MakeBlock(bleft, tright,
                                                   &block_parts, used_parts);
      if (to_block != NULL) {
        TO_BLOCK_IT to_block_it(&to_blocks_);
        to_block_it.add_to_end(to_block);
        BLOCK_IT block_it(&completed_blocks_);
        block_it.add_to_end(to_block->block);
      }
    } else {
      // Further sub-divide text blocks where linespacing changes.
      ColPartition::LineSpacingBlocks(bleft, tright, resolution, &block_parts,
                                      used_parts,
                                      &completed_blocks_, &to_blocks_);
    }
  }
  part_it_.set_to_list(&part_set_);
  latest_part_ = NULL;
  ASSERT_HOST(completed_blocks_.length() == to_blocks_.length());
}
// Return true if this ColPartitionSet makes a legal column candidate by
// having legal individual partitions and non-overlapping adjacent pairs.
bool ColPartitionSet::LegalColumnCandidate() {
  ColPartition_IT it(&parts_);
  if (it.empty())
    return false;
  bool any_text_parts = false;
  for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
    ColPartition* part = it.data();
    if (BLOBNBOX::IsTextType(part->blob_type())) {
      if (!part->IsLegal())
        return false;  // Individual partition is illegal.
      any_text_parts = true;
    }
    if (!it.at_last()) {
      ColPartition* next_part = it.data_relative(1);
      if (next_part->left_key() < part->right_key()) {
        return false;
      }
    }
  }
  return any_text_parts;
}
// Returns the total width of all blobs in the part_set that do not lie
// within an approved column. Used as a cost measure for using this
// column set over another that might be compatible.
int ColPartitionSet::UnmatchedWidth(ColPartitionSet* part_set) {
  int total_width = 0;
  ColPartition_IT it(&part_set->parts_);
  for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
    ColPartition* part = it.data();
    if (!BLOBNBOX::IsTextType(part->blob_type())) {
      continue;  // Non-text partitions are irrelevant to column compatibility.
    }
    int y = part->MidY();
    BLOBNBOX_C_IT box_it(part->boxes());
    for (box_it.mark_cycle_pt(); !box_it.cycled_list(); box_it.forward()) {
      const TBOX& box = it.data()->bounding_box();
      // Assume that the whole blob is outside any column iff its x-middle
      // is outside.
      int x = (box.left() + box.right()) / 2;
      ColPartition* col = ColumnContaining(x, y);
      if (col == NULL)
        total_width += box.width();
    }
  }
  return total_width;
}
Beispiel #13
0
ColPartition* M_Utils::getTBoxColPart(ColPartitionGrid* cpgrid,
    TBOX t, PIX* img) {
  ColPartitionGridSearch colsearch(cpgrid);
  colsearch.StartFullSearch();
   ColPartition* curpart = NULL;
   while ((curpart = colsearch.NextFullSearch()) != NULL) {
     BOX* partbox;
     if(curpart->boxes_count() > 0)
       partbox = getColPartImCoords(curpart, img);
     else {
       TBOX b = curpart->bounding_box();
       partbox = tessTBoxToImBox(&b, img);
     }
     TBOX rtbox = t;
     BOX* box = tessTBoxToImBox(&rtbox, img);
     int intersects;
     boxIntersects(partbox, box, &intersects);
     if(intersects)
       return curpart;
     boxDestroy(&partbox);
     boxDestroy(&box);
   }
   return NULL;
}
// Compute the distance of the box from the partition using curved projection
// space. As DistanceOfBoxFromBox, except that the direction is taken from
// the ColPartition and the median bounds of the ColPartition are used as
// the to_box.
int TextlineProjection::DistanceOfBoxFromPartition(const TBOX& box,
                                                   const ColPartition& part,
                                                   const DENORM* denorm,
                                                   bool debug) const {
  // Compute a partition box that uses the median top/bottom of the blobs
  // within and median left/right for vertical.
  TBOX part_box = part.bounding_box();
  if (part.IsHorizontalType()) {
    part_box.set_top(part.median_top());
    part_box.set_bottom(part.median_bottom());
  } else {
    part_box.set_left(part.median_left());
    part_box.set_right(part.median_right());
  }
  // Now use DistanceOfBoxFromBox to make the actual calculation.
  return DistanceOfBoxFromBox(box, part_box, part.IsHorizontalType(),
                              denorm, debug);
}
// Attempt to improve this by adding partitions or expanding partitions.
void ColPartitionSet::ImproveColumnCandidate(WidthCallback* cb,
                                             PartSetVector* src_sets) {
  int set_size = src_sets->size();
  // Iterate over the provided column sets, as each one may have something
  // to improve this.
  for (int i = 0; i < set_size; ++i) {
    ColPartitionSet* column_set = src_sets->get(i);
    if (column_set == NULL)
      continue;
    // Iterate over the parts in this and column_set, adding bigger or
    // new parts in column_set to this.
    ColPartition_IT part_it(&parts_);
    ASSERT_HOST(!part_it.empty());
    int prev_right = MIN_INT32;
    part_it.mark_cycle_pt();
    ColPartition_IT col_it(&column_set->parts_);
    for (col_it.mark_cycle_pt(); !col_it.cycled_list(); col_it.forward()) {
      ColPartition* col_part = col_it.data();
      if (col_part->blob_type() < BRT_UNKNOWN)
        continue;  // Ignore image partitions.
      int col_left = col_part->left_key();
      int col_right = col_part->right_key();
      // Sync-up part_it (in this) so it matches the col_part in column_set.
      ColPartition* part = part_it.data();
      while (!part_it.at_last() && part->right_key() < col_left) {
        prev_right = part->right_key();
        part_it.forward();
        part = part_it.data();
      }
      int part_left = part->left_key();
      int part_right = part->right_key();
      if (part_right < col_left || col_right < part_left) {
        // There is no overlap so this is a new partition.
        AddPartition(col_part->ShallowCopy(), &part_it);
        continue;
      }
      // Check the edges of col_part to see if they can improve part.
      bool part_width_ok = cb->Run(part->KeyWidth(part_left, part_right));
      if (col_left < part_left && col_left > prev_right) {
        // The left edge of the column is better and it doesn't overlap,
        // so we can potentially expand it.
        int col_box_left = col_part->BoxLeftKey();
        bool tab_width_ok = cb->Run(part->KeyWidth(col_left, part_right));
        bool box_width_ok = cb->Run(part->KeyWidth(col_box_left, part_right));
        if (tab_width_ok || (!part_width_ok )) {
          // The tab is leaving the good column metric at least as good as
          // it was before, so use the tab.
          part->CopyLeftTab(*col_part, false);
          part->SetColumnGoodness(cb);
        } else if (col_box_left < part_left &&
                   (box_width_ok || !part_width_ok)) {
          // The box is leaving the good column metric at least as good as
          // it was before, so use the box.
          part->CopyLeftTab(*col_part, true);
          part->SetColumnGoodness(cb);
        }
        part_left = part->left_key();
      }
      if (col_right > part_right &&
          (part_it.at_last() ||
           part_it.data_relative(1)->left_key() > col_right)) {
        // The right edge is better, so we can possibly expand it.
        int col_box_right = col_part->BoxRightKey();
        bool tab_width_ok = cb->Run(part->KeyWidth(part_left, col_right));
        bool box_width_ok = cb->Run(part->KeyWidth(part_left, col_box_right));
        if (tab_width_ok || (!part_width_ok )) {
          // The tab is leaving the good column metric at least as good as
          // it was before, so use the tab.
          part->CopyRightTab(*col_part, false);
          part->SetColumnGoodness(cb);
        } else if (col_box_right > part_right &&
                   (box_width_ok || !part_width_ok)) {
          // The box is leaving the good column metric at least as good as
          // it was before, so use the box.
          part->CopyRightTab(*col_part, true);
          part->SetColumnGoodness(cb);
        }
      }
    }
  }
  ComputeCoverage();
}
// Return true if the partitions in other are all compatible with the columns
// in this.
bool ColPartitionSet::CompatibleColumns(bool debug, ColPartitionSet* other,
                                        WidthCallback* cb) {
  if (debug) {
    tprintf("CompatibleColumns testing compatibility\n");
    Print();
    other->Print();
  }
  if (other->parts_.empty()) {
    if (debug)
      tprintf("CompatibleColumns true due to empty other\n");
    return true;
  }
  ColPartition_IT it(&other->parts_);
  for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
    ColPartition* part = it.data();
    if (part->blob_type() < BRT_UNKNOWN) {
      if (debug) {
        tprintf("CompatibleColumns ignoring image partition\n");
        part->Print();
      }
      continue;  // Image partitions are irrelevant to column compatibility.
    }
    int y = part->MidY();
    int left = part->bounding_box().left();
    int right = part->bounding_box().right();
    ColPartition* left_col = ColumnContaining(left, y);
    ColPartition* right_col = ColumnContaining(right, y);
    if (right_col == NULL || left_col == NULL) {
      if (debug) {
        tprintf("CompatibleColumns false due to partition edge outside\n");
        part->Print();
      }
      return false;  // A partition edge lies outside of all columns
    }
    if (right_col != left_col && cb->Run(right - left)) {
      if (debug) {
        tprintf("CompatibleColumns false due to good width in multiple cols\n");
        part->Print();
      }
      return false;  // Partition with a good width must be in a single column.
    }

    ColPartition_IT it2= it;
    while (!it2.at_last()) {
      it2.forward();
      ColPartition* next_part = it2.data();
      if (!BLOBNBOX::IsTextType(next_part->blob_type()))
        continue;  // Non-text partitions are irrelevant.
      int next_left = next_part->bounding_box().left();
      if (next_left == right) {
        break;  // They share the same edge, so one must be a pull-out.
      }
      // Search to see if right and next_left fall within a single column.
      ColPartition* next_left_col = ColumnContaining(next_left, y);
      if (right_col == next_left_col) {
        // There is a column break in this column.
        // This can be due to a figure caption within a column, a pull-out
        // block, or a simple broken textline that remains to be merged:
        // all allowed, or a change in column layout: not allowed.
        // If both partitions are of good width, then it is likely
        // a change in column layout, otherwise probably an allowed situation.
        if (part->good_width() && next_part->good_width()) {
          if (debug) {
            int next_right = next_part->bounding_box().right();
            tprintf("CompatibleColumns false due to 2 parts of good width\n");
            tprintf("part1 %d-%d, part2 %d-%d\n",
                    left, right, next_left, next_right);
            right_col->Print();
          }
          return false;
        }
      }
      break;
    }
  }
  if (debug)
    tprintf("CompatibleColumns true!\n");
  return true;
}
// The column_set has changed. Close down all in-progress WorkingPartSets in
// columns that do not match and start new ones for the new columns in this.
// As ColPartitions are turned into BLOCKs, the used ones are put in
// used_parts, as they still need to be referenced in the grid.
void ColPartitionSet::ChangeWorkColumns(const ICOORD& bleft,
                                        const ICOORD& tright,
                                        int resolution,
                                        ColPartition_LIST* used_parts,
                                        WorkingPartSet_LIST* working_set_list) {
  // Move the input list to a temporary location so we can delete its elements
  // as we add them to the output working_set.
  WorkingPartSet_LIST work_src;
  WorkingPartSet_IT src_it(&work_src);
  src_it.add_list_after(working_set_list);
  src_it.move_to_first();
  WorkingPartSet_IT dest_it(working_set_list);
  // Completed blocks and to_blocks are accumulated and given to the first new
  // one  whenever we keep a column, or at the end.
  BLOCK_LIST completed_blocks;
  TO_BLOCK_LIST to_blocks;
  WorkingPartSet* first_new_set = NULL;
  WorkingPartSet* working_set = NULL;
  ColPartition_IT col_it(&parts_);
  for (col_it.mark_cycle_pt(); !col_it.cycled_list(); col_it.forward()) {
    ColPartition* column = col_it.data();
    // Any existing column to the left of column is completed.
    while (!src_it.empty() &&
           ((working_set = src_it.data())->column() == NULL ||
            working_set->column()->right_key() <= column->left_key())) {
      src_it.extract();
      working_set->ExtractCompletedBlocks(bleft, tright, resolution,
                                          used_parts, &completed_blocks,
                                          &to_blocks);
      delete working_set;
      src_it.forward();
    }
    // Make a new between-column WorkingSet for before the current column.
    working_set = new WorkingPartSet(NULL);
    dest_it.add_after_then_move(working_set);
    if (first_new_set == NULL)
      first_new_set = working_set;
    // A matching column gets to stay, and first_new_set gets all the
    // completed_sets.
    working_set = src_it.empty() ? NULL : src_it.data();
    if (working_set != NULL &&
        working_set->column()->MatchingColumns(*column)) {
      working_set->set_column(column);
      dest_it.add_after_then_move(src_it.extract());
      src_it.forward();
      first_new_set->InsertCompletedBlocks(&completed_blocks, &to_blocks);
      first_new_set = NULL;
    } else {
      // Just make a new working set for the current column.
      working_set = new WorkingPartSet(column);
      dest_it.add_after_then_move(working_set);
    }
  }
  // Complete any remaining src working sets.
  while (!src_it.empty()) {
    working_set = src_it.extract();
    working_set->ExtractCompletedBlocks(bleft, tright, resolution,
                                        used_parts, &completed_blocks,
                                        &to_blocks);
    delete working_set;
    src_it.forward();
  }
  // Make a new between-column WorkingSet for after the last column.
  working_set = new WorkingPartSet(NULL);
  dest_it.add_after_then_move(working_set);
  if (first_new_set == NULL)
    first_new_set = working_set;
  // The first_new_set now gets any accumulated completed_parts/blocks.
  first_new_set->InsertCompletedBlocks(&completed_blocks, &to_blocks);
}
// Return the ColumnSpanningType that best explains the columns overlapped
// by the given coords(left,right,y), with the given margins.
// Also return the first and last column index touched by the coords and
// the leftmost spanned column.
// Column indices are 2n + 1 for real columns (0 based) and even values
// represent the gaps in between columns, with 0 being left of the leftmost.
// resolution refers to the ppi resolution of the image.
ColumnSpanningType ColPartitionSet::SpanningType(int resolution,
                                                 int left, int right, int y,
                                                 int left_margin,
                                                 int right_margin,
                                                 int* first_col,
                                                 int* last_col,
                                                 int* first_spanned_col) {
  *first_col = -1;
  *last_col = -1;
  *first_spanned_col = -1;
  int margin_columns = 0;
  ColPartition_IT it(&parts_);
  int col_index = 1;
  for (it.mark_cycle_pt(); !it.cycled_list(); it.forward(), col_index += 2) {
    ColPartition* part = it.data();
    if (part->ColumnContains(left, y)) {
      // In the default case, first_col is set, but columns_spanned remains
      // zero, so first_col will get reset in the first column genuinely
      // spanned, but we can tell the difference from a noise partition
      // that touches no column.
      *first_col = col_index;
      if (part->ColumnContains(right, y)) {
        // Both within a single column.
        *last_col = col_index;
        return CST_FLOWING;
      }
      if (left_margin <= part->LeftAtY(y)) {
        // It completely spans this column.
        *first_spanned_col = col_index;
        margin_columns = 1;
      }
    } else if (part->ColumnContains(right, y)) {
      if (*first_col < 0) {
        // It started in-between.
        *first_col = col_index - 1;
      }
      if (right_margin >= part->RightAtY(y)) {
        // It completely spans this column.
        if (margin_columns == 0)
          *first_spanned_col = col_index;
        ++margin_columns;
      }
      *last_col = col_index;
      break;
    } else if (left < part->LeftAtY(y) && right > part->RightAtY(y)) {
      // Neither left nor right are contained within, so it spans this
      // column.
      if (*first_col < 0) {
        // It started in between the previous column and the current column.
        *first_col = col_index - 1;
      }
      if (margin_columns == 0)
        *first_spanned_col = col_index;
      *last_col = col_index;
    } else if (right < part->LeftAtY(y)) {
      // We have gone past the end.
      *last_col = col_index - 1;
      if (*first_col < 0) {
        // It must lie completely between columns =>noise.
        *first_col = col_index - 1;
      }
      break;
    }
  }
  if (*first_col < 0)
    *first_col = col_index - 1;  // The last in-between.
  if (*last_col < 0)
    *last_col = col_index - 1;  // The last in-between.
  ASSERT_HOST(*first_col >= 0 && *last_col >= 0);
  ASSERT_HOST(*first_col <= *last_col);
  if (*first_col == *last_col && right - left < kMinColumnWidth * resolution) {
    // Neither end was in a column, and it didn't span any, so it lies
    // entirely between columns, therefore noise.
    return CST_NOISE;
  } else if (margin_columns <= 1) {
    // An exception for headings that stick outside of single-column text.
    if (margin_columns == 1 && parts_.singleton()) {
      return CST_HEADING;
    }
    // It is a pullout, as left and right were not in the same column, but
    // it doesn't go to the edge of its start and end.
    return CST_PULLOUT;
  }
  // Its margins went to the edges of first and last columns => heading.
  return CST_HEADING;
}