static std::size_t collide(const CollisionGeometry* o1, const Transform3f& tf1, const CollisionGeometry* o2, const Transform3f& tf2, 
                             const NarrowPhaseSolver* nsolver,
                             const CollisionRequest& request, CollisionResult& result)
  {
    if(request.isSatisfied(result)) return result.numContacts();

    if(request.enable_cost && request.use_approximate_cost)
    {
      CollisionRequest no_cost_request(request);
      no_cost_request.enable_cost = false;
      
      MeshShapeCollisionTraversalNode<T_BVH, T_SH, NarrowPhaseSolver> node;
      const BVHModel<T_BVH>* obj1 = static_cast<const BVHModel<T_BVH>* >(o1);
      BVHModel<T_BVH>* obj1_tmp = new BVHModel<T_BVH>(*obj1);
      Transform3f tf1_tmp = tf1;
      const T_SH* obj2 = static_cast<const T_SH*>(o2);

      initialize(node, *obj1_tmp, tf1_tmp, *obj2, tf2, nsolver, no_cost_request, result);
      FCL_REAL sqrDistance;
      fcl::collide(&node, sqrDistance);
      result.distance_lower_bound = sqrt (sqrDistance);

      delete obj1_tmp;

      Box box;
      Transform3f box_tf;
      constructBox(obj1->getBV(0).bv, tf1, box, box_tf);

      box.cost_density = obj1->cost_density;
      box.threshold_occupied = obj1->threshold_occupied;
      box.threshold_free = obj1->threshold_free;
      
      CollisionRequest only_cost_request(result.numContacts(), false, request.num_max_cost_sources, true, false);
      ShapeShapeCollide<Box, T_SH>(&box, box_tf, o2, tf2, nsolver, only_cost_request, result);
    }
    else
    {
      MeshShapeCollisionTraversalNode<T_BVH, T_SH, NarrowPhaseSolver> node;
      const BVHModel<T_BVH>* obj1 = static_cast<const BVHModel<T_BVH>* >(o1);
      BVHModel<T_BVH>* obj1_tmp = new BVHModel<T_BVH>(*obj1);
      Transform3f tf1_tmp = tf1;
      const T_SH* obj2 = static_cast<const T_SH*>(o2);

      initialize(node, *obj1_tmp, tf1_tmp, *obj2, tf2, nsolver, request, result);
      FCL_REAL sqrDistance;
      fcl::collide(&node, sqrDistance);
      result.distance_lower_bound = sqrt (sqrDistance);

      delete obj1_tmp;
    }

    return result.numContacts();
  }
std::size_t ShapeShapeCollide(const CollisionGeometry* o1, const Transform3f& tf1, const CollisionGeometry* o2, const Transform3f& tf2, 
                              const NarrowPhaseSolver* nsolver,
                              const CollisionRequest& request, CollisionResult& result)
{
  if(request.isSatisfied(result)) return result.numContacts();

  if (request.enable_distance_lower_bound) {
    DistanceResult distanceResult;
    DistanceRequest distanceRequest (request.enable_contact);
    FCL_REAL distance = ShapeShapeDistance <T_SH1, T_SH2, NarrowPhaseSolver>
      (o1, tf1, o2, tf2, nsolver, distanceRequest, distanceResult);

    if (distance <= 0) {
      Contact contact (o1, o2, distanceResult.b1, distanceResult.b2);
      const Vec3f& p1 = distanceResult.nearest_points [0];
      const Vec3f& p2 = distanceResult.nearest_points [1];
      contact.pos = .5*(p1+p2);
      contact.normal = (p2-p1)/(p2-p1).length ();
      result.addContact (contact);
      return 1;
    }
    result.distance_lower_bound = distance;
    return 0;
  }

  ShapeCollisionTraversalNode<T_SH1, T_SH2, NarrowPhaseSolver> node;
  const T_SH1* obj1 = static_cast<const T_SH1*>(o1);
  const T_SH2* obj2 = static_cast<const T_SH2*>(o2);

  if(request.enable_cached_gjk_guess)
  {
    nsolver->enableCachedGuess(true);
    nsolver->setCachedGuess(request.cached_gjk_guess);
  }
  else
  {
    nsolver->enableCachedGuess(true);
  }

  initialize(node, *obj1, tf1, *obj2, tf2, nsolver, request, result);
  FCL_REAL sqrDistance = 0;
  collide(&node, sqrDistance);
  result.distance_lower_bound = sqrt (sqrDistance);

  if(request.enable_cached_gjk_guess)
    result.cached_gjk_guess = nsolver->getCachedGuess();

  return result.numContacts();
}
std::size_t orientedMeshCollide(const CollisionGeometry* o1, const Transform3f& tf1, const CollisionGeometry* o2, const Transform3f& tf2, const CollisionRequest& request, CollisionResult& result)
{
  if(request.isSatisfied(result)) return result.numContacts();

  OrientedMeshCollisionTraversalNode node (request.enable_distance_lower_bound);
  const BVHModel<T_BVH>* obj1 = static_cast<const BVHModel<T_BVH>* >(o1);
  const BVHModel<T_BVH>* obj2 = static_cast<const BVHModel<T_BVH>* >(o2);

  initialize(node, *obj1, tf1, *obj2, tf2, request, result);
  FCL_REAL sqrDistance = 0;
  collide(&node, sqrDistance);
  result.distance_lower_bound = sqrt (sqrDistance);

  return result.numContacts();
}
int conservativeAdvancement(const CollisionGeometry* o1,
							const MotionBase* motion1,
							const CollisionGeometry* o2,
							const MotionBase* motion2,
							const CollisionRequest& request,
							CollisionResult& result,
							FCL_REAL& toc)
{
	typedef ConservativeAdvancement<BV, ConservativeAdvancementNode, CollisionNode> 
		ConservativeAdvancementType;

	boost::shared_ptr<ConservativeAdvancementType> advancement = 
		boost::make_shared<ConservativeAdvancementType>(o1, motion1, o2, motion2);

	ContinuousCollisionRequest continuous_request;
	ContinuousCollisionResult continuous_result;

	continuous_request.assign(request);
	advancement->collide(continuous_request, continuous_result);
	result = continuous_result;

	toc = continuous_result.getTimeOfContact();

	return static_cast<int>(result.numContacts() );
}
std::size_t OcTreeCollide(const CollisionGeometry* o1, const Transform3f& tf1, const CollisionGeometry* o2, const Transform3f& tf2,
                          const NarrowPhaseSolver* nsolver,
                          const CollisionRequest& request, CollisionResult& result)
{
  if(request.isSatisfied(result)) return result.numContacts();

  OcTreeCollisionTraversalNode<NarrowPhaseSolver> node;
  const OcTree* obj1 = static_cast<const OcTree*>(o1);
  const OcTree* obj2 = static_cast<const OcTree*>(o2);
  OcTreeSolver<NarrowPhaseSolver> otsolver(nsolver);

  initialize(node, *obj1, tf1, *obj2, tf2, &otsolver, request, result);
  FCL_REAL sqrDistance = 0;
  collide(&node, sqrDistance);

  return result.numContacts();
}
std::size_t BVHOcTreeCollide(const CollisionGeometry* o1, const Transform3f& tf1, const CollisionGeometry* o2, const Transform3f& tf2,
                             const NarrowPhaseSolver* nsolver,
                             const CollisionRequest& request, CollisionResult& result)
{
  if(request.isSatisfied(result)) return result.numContacts();
 
  if(request.enable_cost && request.use_approximate_cost)
  {
    CollisionRequest no_cost_request(request); // request remove cost to avoid the exact but expensive cost computation between mesh and octree
    no_cost_request.enable_cost = false; // disable cost computation

    MeshOcTreeCollisionTraversalNode<T_BVH, NarrowPhaseSolver> node;
    const BVHModel<T_BVH>* obj1 = static_cast<const BVHModel<T_BVH>*>(o1);
    const OcTree* obj2 = static_cast<const OcTree*>(o2);
    OcTreeSolver<NarrowPhaseSolver> otsolver(nsolver);

    initialize(node, *obj1, tf1, *obj2, tf2, &otsolver, no_cost_request, result);
    FCL_REAL sqrDistance = 0;
    collide(&node, sqrDistance);

    Box box;
    Transform3f box_tf;
    constructBox(obj1->getBV(0).bv, tf1, box, box_tf);

    box.cost_density = obj1->cost_density;
    box.threshold_occupied = obj1->threshold_occupied;
    box.threshold_free = obj1->threshold_free;

    CollisionRequest only_cost_request(result.numContacts(), false, request.num_max_cost_sources, true, false);
    ShapeOcTreeCollide<Box, NarrowPhaseSolver>(&box, box_tf, o2, tf2, nsolver, only_cost_request, result);
  }
  else
  {
    MeshOcTreeCollisionTraversalNode<T_BVH, NarrowPhaseSolver> node;
    const BVHModel<T_BVH>* obj1 = static_cast<const BVHModel<T_BVH>*>(o1);
    const OcTree* obj2 = static_cast<const OcTree*>(o2);
    OcTreeSolver<NarrowPhaseSolver> otsolver(nsolver);

    initialize(node, *obj1, tf1, *obj2, tf2, &otsolver, request, result);
    FCL_REAL sqrDistance = 0;
    collide(&node, sqrDistance);
  }
  
  return result.numContacts();
}
std::size_t BVHCollide(const CollisionGeometry* o1, const Transform3f& tf1, const CollisionGeometry* o2, const Transform3f& tf2, const CollisionRequest& request, CollisionResult& result)
{
  if(request.isSatisfied(result)) return result.numContacts();
  
  MeshCollisionTraversalNode<T_BVH> node (request.enable_distance_lower_bound);
  const BVHModel<T_BVH>* obj1 = static_cast<const BVHModel<T_BVH>* >(o1);
  const BVHModel<T_BVH>* obj2 = static_cast<const BVHModel<T_BVH>* >(o2);
  BVHModel<T_BVH>* obj1_tmp = new BVHModel<T_BVH>(*obj1);
  Transform3f tf1_tmp = tf1;
  BVHModel<T_BVH>* obj2_tmp = new BVHModel<T_BVH>(*obj2);
  Transform3f tf2_tmp = tf2;
  
  initialize(node, *obj1_tmp, tf1_tmp, *obj2_tmp, tf2_tmp, request, result);
  FCL_REAL sqrDistance;
  fcl::collide(&node, sqrDistance);
  result.distance_lower_bound = sqrt (sqrDistance);

  delete obj1_tmp;
  delete obj2_tmp;

  return result.numContacts();
}
Beispiel #8
0
int conservativeAdvancement(const CollisionGeometry* o1,
                            const MotionBase* motion1,
                            const CollisionGeometry* o2,
                            const MotionBase* motion2,
                            const CollisionRequest& request,
                            CollisionResult& result,
                            FCL_REAL& toc)
{
  if(request.num_max_contacts == 0)
  {
    std::cerr << "Warning: should stop early as num_max_contact is " << request.num_max_contacts << " !" << std::endl;
    return 0;
  }

  const OBJECT_TYPE object_type1 = o1->getObjectType();
  const NODE_TYPE node_type1 = o1->getNodeType();

  const OBJECT_TYPE object_type2 = o2->getObjectType();
  const NODE_TYPE node_type2 = o2->getNodeType();

  if(object_type1 != OT_BVH || object_type2 != OT_BVH)
    return 0;

  if(node_type1 != BV_RSS || node_type2 != BV_RSS)
    return 0;


  const BVHModel<BV>* model1 = static_cast<const BVHModel<BV>*>(o1);
  const BVHModel<BV>* model2 = static_cast<const BVHModel<BV>*>(o2);

  Transform3f tf1, tf2;
  motion1->getCurrentTransform(tf1);
  motion2->getCurrentTransform(tf2);

  // whether the first start configuration is in collision
  CollisionNode cnode;
  if(!initialize(cnode, *model1, tf1, *model2, tf2, request, result))
    std::cout << "initialize error" << std::endl;

  relativeTransform(tf1.getRotation(), tf1.getTranslation(), tf2.getRotation(), tf2.getTranslation(), cnode.R, cnode.T);

  cnode.enable_statistics = false;
  cnode.request = request;

  collide(&cnode);

  int b = result.numContacts();

  if(b > 0)
  {
    toc = 0;
    // std::cout << "zero collide" << std::endl;
    return b;
  }
  
  ConservativeAdvancementNode node;

  initialize(node, *model1, tf1, *model2, tf2);

  node.motion1 = motion1;
  node.motion2 = motion2;

  do
  {
    Matrix3f R1_t, R2_t;
    Vec3f T1_t, T2_t;

    node.motion1->getCurrentTransform(R1_t, T1_t);
    node.motion2->getCurrentTransform(R2_t, T2_t);

    // compute the transformation from 1 to 2
    relativeTransform(R1_t, T1_t, R2_t, T2_t, node.R, node.T);

    node.delta_t = 1;
    node.min_distance = std::numeric_limits<FCL_REAL>::max();

    distanceRecurse(&node, 0, 0, NULL);

    if(node.delta_t <= node.t_err)
    {
      // std::cout << node.delta_t << " " << node.t_err << std::endl;
      break;
    }

    node.toc += node.delta_t;
    if(node.toc > 1)
    {
      node.toc = 1;
      break;
    }

    node.motion1->integrate(node.toc);
    node.motion2->integrate(node.toc);
  }
  while(1);

  toc = node.toc;

  if(node.toc < 1)
    return 1;

  return 0;
}
Beispiel #9
0
bool CollisionRequest::isSatisfied(const CollisionResult& result) const
{
  return (!enable_cost) && result.isCollision() && (num_max_contacts <= result.numContacts());
}